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ABSTRACT 
 

For high-performance chip multiprocessors (CMPs) to 
achieve their maximum performance potential, an efficient 
support for memory hierarchy is important. Since off-chip 
accesses require a long latency, high-performance CMPs are 
typically based on multiple levels of on-chip cache memories. 
For example, most current CMPs support two levels of on-chip 
caches. While the L1 cache architecture of these CMPs is 
almost same, the L2 cache organization is quite different. All 
the processors in the CMP may share the same L2 cache or 
each processor may have its own private L2 cache. While a 
private L2 cache has a short access time, a shared L2 cache 
can better adapt to varying memory requirements of each 
processor. 

In this paper, we propose an on-chip L2 cache organization 
which takes advantage of both a private L2 cache and a 
shared L2 cache. In skeleton, our L2 cache organization is 
based on a private L2 cache organization which has the short 
access latency. When a cache block in the private L2 cache is 
selected for an eviction, our proposed organization first 
evaluates the reusability of the cache block. If the cache block 
is likely to be reused, we save the evicted cache block in one of 
peer L2 caches which may have efficiently invalid blocks. By 
selectively writing evicted cache blocks to peer L2 caches, the 
proposed L2 cache organization can effectively simulate a 
shared L2 cache. Experimental results using a CMP simulator 
showed that the proposed L2 cache organization improved the 
average memory latency by 14% on average over a pure 
private L2 cache organization for the SPLASH2 benchmark 
programs. 

 
1. Introduction 
 

For high-performance chip multiprocessors (CMPs) to 
achieve their maximum performance potential, an efficient 
support for memory hierarchy is important. Since the on-chip 
cache memory space is limited in CMPs and the off-chip 
memory accesses require a longer latency than the on-chip 
memory access latency, we need to manage the on-chip cache 
space carefully to improve the overall system performance 
[4][5].  

Most high-performance CMPs are typically based on 
multiple levels of on-chip cache memories to manage the on-
chip cache space efficiently. For example, most current CMPs 
support two levels of on-chip caches. In typical CMPs, each 
processor has a small private L1 cache because the access 
latency of the L1 cache affects system performance directly. 
However, the L2 cache organization of CMPs is quite different. 
All the processors in the CMP may share the same L2 cache or 
each processor may have its own private L2 cache. A shared 
L2 cache utilizes cache space more flexibly, reducing the 
number of the off-chip memory accesses. But, it has the longer 
access latency and generates more on-chip network traffic than 
a private L2 cache. On the other hand, a private L2 cache has 
the short access latency but it is inefficient in utilizing the L2 
cache space with many duplicated copies of the same memory 
block.  

In order to use on-chip cache memory space more 
efficiently in CMPs, several research groups have proposed 
different on-chip cache organizations such as CMP-SNUCA 
[8], Victim Replication [3], CMP-NuRAPID [2] and CMP-CC 
[1]. CMP-SNUCA [8] scheme applies NUCA [7] to the CMPs 
architecture. They migrate blocks close to the requestor to 
reduce wire-delay. Victim Replication [3] scheme attempts to 
keep copies of local primary cache victims within the local L2 
cache slice to reduce wire-delay in shared L2 cache. CMP-
NuRAPID [2] scheme makes copies close to requestors to 
allow fast access for read-only sharing, and does not make 
copies for read-write sharing to avoid coherence misses. They 
also propose capacity stealing of neighbor’s cache when the 
cache capacity is not enough to store private data. CMP-CC 
[1] writes back a block to a peer L2 cache1 when the block is 
evicted from a private L2 cache randomly with a given 
probability to redistribute private L2 cache space. A similar 
technique proposed in [11] also selectively writes back L2 
victims to a peer L2 cache but it is quite limited in sharing L2 
blocks in peer L2 caches. 

In this paper, we propose an on-chip L2 cache organization 
which takes advantage of both a private L2 cache and a shared 
L2 cache in CMPs. In skeleton, our L2 cache organization is 
based on a private L2 cache organization which has the short 

                                            
1 In this paper, we call a private L2 cache of neighboring 

processors as a peer L2 cache. 



 

access latency. Figure 1 shows our target CMP architecture 
with a private L2 cache and a shared bus. When a cache block 
in the private L2 cache is selected for an eviction, our 
proposed organization first evaluates the reusability of the 
cache block. If the cache block is likely to be reused, we save 
the evicted cache block in the private L2 cache of other 
processors which may have efficiently invalid blocks. Since 
accessing the private L2 cache of a nearby processor is faster 
than accessing the off-chip memory, saving cache blocks with 
high reusability in a peer L2 cache will improve the memory 
performance. By selectively writing evicted cache blocks to 
peer L2 caches, the proposed L2 cache organization can 
simulate a shared L2 cache organization.  

Writing back an evicted block to peer L2 caches is not a 
new idea as proposed in CMP-CC [1]. However CMP-CC 
does not consider the reusability of evicted L2 blocks in 
deciding whether the evicted L2 blocks are saved in peer L2 
caches. If there are too many blocks which are not reused, the 
CMP performance may be deteriorated over the CMP 
architecture with private L2 caches. L2 blocks with low 
reusability should not be saved to a peer L2 cache. Therefore, 
it is important to consider the reusability of an evicted block 
when saving the evicted blocks to peer L2 caches. In this paper, 
we describe a reusability-aware cache memory sharing 
technique based on the reusability estimate of the evicted 
blocks. Our scheme reduces the average memory access 
latency by 14% over a private L2 scheme on average, thus 
improving the average IPC by 3%. 

The rest of the paper is organized as follows. In Section 2, 
we explain the proposed reusability-aware cache sharing 
technique. Performance evaluation is discussed in Section 3.  

 
2. Reusability-Aware Cache Sharing Technique 
 
2.1. Motivation 

 
CMP-CC [1] writes back L2 victims to peer L2 caches 

randomly with a given probability without any consideration 
about the property of blocks. [11] also proposes selective L2 
cache write back technique, but their technique can not exploit 
full advantage of writing back to peer L2 caches. Because they 
write back to peer L2 cache only when there exists a shared 

line or an invalid line in peer L2 caches even though there is 
not enough number of a shared line and an invalid line. 

Figure 2 shows the number of reused blocks and unused 
blocks among blocks written back to a peer L2 cache in the 
CMP-CC100% scheme which writes back every L2 victims to 
peer L2 caches. Experimental parameters are shown in Table 1. 
In every benchmark, the number of unused blocks is larger 
than the number of reused blocks. The performance of a 
system can be damaged because of unused blocks. They 
occupy peer L2 cache space unnecessarily, and they generate 
additional on-chip shared bus transactions which can cause 
conflicts on a shared bus. And remote private L2 hits are 
increased while local private L2 hits are decreased. This is the 
necessity of the selective write back of L2 victims to peer L2 
caches. 

So if we reduce the number of unused blocks, system 
performance can be improved. To get full advantage of the 
private L2 cache sharing technique, we consider the property 
of the block and each private L2 cache when we decide which 
L2 victims to be written back to which peer L2 cache. Our 
scheme does not write back to a peer L2 cache if the L2 victim 
block is not likely to be reused. When we write back a block 
with high-reusability to a peer L2 cache, one of blocks in the 
peer L2 cache should be evicted. In that case, we only evict a 
block with low reusability in the peer L2 cache. If there is no 
peer L2 cache which has a low reusability block, we write 
back the L2 victim only to the peer L2 cache which has 
smaller memory demand than the L2 cache’s which evicts the 
block. In Section 2.2 we explain about the block reusability 
prediction technique, and Section 2.3 describes the memory 
demand prediction technique. We explain about how the 
Reusability-Aware Cache Sharing (RACS) technique works in 
Section 2.4. 
 
2.2. Block Reusability Prediction Technique 

 
In a conventional replacement algorithm of a cache or a 

buffer, recency or frequency of accesses to a block is used to 
predict reusability of the block [15]. But in our scheme, we 
can not consider recency because a block has almost no 
recency when it is evicted from a private L2 cache. So we 
consider frequency of accesses to the block and a time interval 

Figure 1.  A target CMP architecture. Figure 2. The number of unused blocks and reused blocks among 
blocks written back to peer L2 cache in CMP-CC100%. 



 

between two consecutive accesses to the block in the past, 
instead of recency. 

We classify blocks into Access Time Interval and 
Frequency (ATIF) patterns and monitor how many blocks 
which are written back to peer L2 cache are reused and unused 
per each pattern. If the number of unused blocks is much 
larger than the number of reused blocks in certain pattern, we 
predict that blocks in that pattern have low reusability and do 
not write back these blocks to peer L2 caches. 

We count the number of accesses with a long time interval 
and a short time interval per each block while the block is in a 
private L2 cache to classify blocks into ATIF patterns. We 
distinguish a short and long time interval with a very simple 
technique. We estimate the access time interval of the block is 
long when there is any intervening access to a block that 
belongs to the same set. If not, we estimate the interval is short. 
An ATIF pattern of a block is decided by these two counts 
when the block is evicted from a private L2 cache. We use a 4-
bit counter to record the number of accesses to a block with a 
short access time interval and a 2-bit counter to record the 
number of accesses with a long access time interval per each 
block. Blocks are classified into 16 ATIF patterns using an 
upper 2 bits value of the 4-bit counter and a value of the 2-bit 
counter. 

We add 16 2-bit counters in each private L2 cache to record 
the reuse rate of blocks per each ATIF pattern. If a block 
written back to a peer L2 cache is reused, corresponding ATIF 
pattern counter of the block’s original owner L2 cache is 
increased by one. If the block written back to peer L2 cache is 
evicted from the peer L2 cache without reuse, the ATIF 
pattern counter is decreased by one. When the ATIF pattern 
counter becomes 0, we predict blocks that belong to the ATIF 
pattern have very low reusability. 

Figure 3 shows the fraction of unused blocks and reused 
blocks among blocks written back to peer L2 caches in CMP-
CC100% per each ATIF pattern. The first number of the ATIF 
pattern is an upper 2 bits value of a 4-bit counter for a short 
access time interval and the second number of the ATIF 
pattern is a value of a 2-bit counter for a long access time 
interval. Some patterns have very high reusability while some 
patterns have very low reusability. It shows predicting the 
reusability of blocks with ATIF patterns is reasonable. The 
block reusability prediction technique can reflect the property 
of an application dynamically. 

2.3. Memory Demand Prediction Technique 
 
We predict that a processor requires more memory as more 

frequently as replacement occurs in a private L2 cache. So we 
use a replacement time interval history (Replinterval_history) as the 
prediction value of the processor’s memory demand. Each 
private L2 cache has this value, and it is updated every time 
replacement occurs in private L2 cache by following formula. 

 
Replinterval_history(prev) is an old prediction value of a memory 

demand and Replinterval_history(new) is a new value. Replinterval is a 
time interval between last two consecutive replacements. As 
an L2 cache has smaller Replinterval_history value, it means the 
processor requires more memory. This prediction value is used 
only for comparison of a memory demand between L2 caches, 
not for an exact memory demand. To calculate the time 
interval, we use 8-bit counter to record the time from the last 
replacement. This counter is increased by one every 32 cycle 
and reset to 0 when the replacement occurs.  
 
2.4. Process of the RACS technique  

 
Figure 4 shows the process of deciding which L2 victims to 

be written back to which peer L2 cache in the RACS technique. 
When a block is evicted from a private L2 cache, we do not 
write back to a peer L2 cache if the state of the block is shared. 
Because it means that there already exists the same block in 
other L2 cache. And we also do not write back to a peer L2 
cache if the block is written back from other L2 cache but is 
not reused. Because it means that the block already had a 
chance. And then we check the reusability of the block. If the 
reusability is low, we do not write back. If the reusability is 
high, check if there exists any block with low reusability at the 
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Figure 3. Fraction of unused blocks and reused blocks among 
blocks written back to peer L2 cache in CMP-CC100% 
per each ATIF pattern (Benchmark: Radix). 

Figure 4. Process of deciding which L2 victims to be written back to 
which peer L2 cache in the RACS technique. 



 

Table 1. Processor and cache/memory configuration. 

bottom of LRU stack in peer L2 caches. If there exists, we 
write back the block to the peer L2 cache. If there does not 
exist, we check if there exists any peer L2 cache whose 
memory demand is ω times smaller than the memory demand 
of the cache which evicts the block. If there exists, we write 
back the block to the peer L2 cache. If there is no such a peer 
L2 cache, we do not write back the block to a peer L2 cache 
even though it has high reusability. ω value varies between 4/3 
and 3. And each private L2 cache has its own ω value. ω value 
is decreased by 1/3 when a block is reused and increased by 
1/3 when three blocks are written back to other cache. So it 
has smaller value as more blocks are reused. It means that if 
many of blocks are reused we can write back a block to a peer 
L2 cache even though the difference of memory demand is not 
so large. Writing back to a peer L2 cache does not cause a 
subsequent write back to other peer L2 cache to avoid a ripple 
effect. 

We need to communicate with peer L2 caches to decide 
which peer L2 cache we write back to. So we assume 
additional peer-to-peer communication lines among L2 caches. 
If a block has high reusability, the L2 cache sends set number 
of the block, ω value and Replinterval_history to peer L2 caches. 
And then peer L2 caches reply two bits information. One bit 
indicates the cache has the block with low reusability at the 
bottom of LRU stack. The other bit indicates Replinterval_history of 
the cache is ω times larger than received Replinterval_history. We 
can decide if we write back a block or not and write back to 
which peer L2 cache with these information. 

The RACS technique has hardware overhead compared to a 
pure private L2 cache organization because we need additional 
counters for two prediction schemes and peer-to-peer 
communication lines between L2 caches. But the maximum 
data transferred by this line is only up to 21 bits and we need 
only six lines when the number of private L2 caches is 4. The 
area overhead of counters is less than 1% of the private L2 
cache. So hardware overhead of our technique is not 
significant.  

And write back decision is not on the critical path because it 
could be made after a block is evicted from the cache and 
placed in the write back queue. 

 
3. Performance Evaluation 

 
3.1. Simulation Environment 

 

We modify CATS [12] multiprocessor simulator to evaluate 
our technique. We use a MESI protocol for cache coherency. 
Cache-to-cache transfer of the cache block among private L2 
caches is applied in all schemes. Table 1 shows the processor 
and cache/memory configuration. When a cache is accessed 
through the shared bus, bus delay cycles and conflict cycles 
are added on cache access latency. Table 2 shows the L2 cache 
and memory energy per access. We get cache energy values 
from eCACTI [14] and memory energy from MICRON 
MT48V8M32LF SDRAM [16]. 

Shared L2 cache, private L2 cache, CMP-CC, RACS and 
oracle- schemes are implemented and evaluated. And we 
evaluate our scheme with Cholesky, FMM, LU, Radix in 
SPLASH2 [10] benchmark. 

 
3.2. Experimental Results 

 
Figure 5 shows the number of unused blocks and reused 

blocks of each scheme among blocks written back to peer L2 
caches. The number of unused blocks and reused blocks are 
increasing in the CMP-CC scheme with same ratio as the 
probability increases. The RACS scheme has the almost same 
number of reused blocks with CMP-CC100% except Cholesky 
and reduces the number of unused blocks by 65% on average 
compared to CMP-CC100%. The reason why Cholesky has the 
smaller number of reused blocks in the RACS scheme is that it 
predicts too many blocks not to be reused because Cholesky 
has too low reusability even though there exist blocks to be 
reused. The oracle- scheme writes back the block that will be 

Table 2. L2 cache and memory energy per access. 
 (cache and memory configuration in table 1) 

Figure 5. The number of unused blocks and reused blocks of 
each scheme among blocks written back to peer L2 caches. 



 

reused in the future and evicts the block which will be reused 
in the farthest future among the blocks at the bottom of LRU 
stacks of the private L2 caches. The oracle- has larger number 
of reused blocks than any other schemes and smaller number 
of unused blocks than CMP-CC100%. But it has larger number 
of unused blocks than the RACS because the oracle- writes 
back a block even though block will be reused in too far future, 
which might not be reused after it is written back to peer L2 
cache and evicted without reuse. 

Figure 6 shows the normalized number of off-chip memory 
accesses of each scheme varying the cache size. Each size 
indicates the size of private L2 cache, CMP-CC, RACS and 
oracle- scheme, while the shared L2 cache size of shared 
scheme is four times larger than the size denoted in Figure 6. 
The number of off-chip accesses is decreasing in CMP-CC as 
the probability increases. In the RACS scheme, the number of 
off-chip accesses is decreased up to 4% than CMP-CC100% in 
LU and Radix. But it has the almost same number of off-chip 
accesses with CMP-CC100% in FMM and it has larger number 
of off-chip accesses in Cholesky. The oracle- scheme has the 
least number of off-chip accesses in most cases, but it has the 
larger number of off-chip accesses than RACS in LU (512KB) 
and Radix (128KB). Because oracle- does not write back a 
block to a peer L2 cache if the block will be reused in the 
farthest future among blocks at the bottom of the LRU stack in 

peer L2 caches. In this case, none of blocks could be reused if 
all of these blocks will be evicted soon. If we would write 
back the evicted block, at least one block could be reused 
because it remains at on-chip. 

Figure 7 shows the normalized average memory access 
latency of each scheme varying the cache size. The shared 
scheme shows the worst performance because of the long 
access latency. Average memory access latency is decreasing 
in CMP-CC as the probability increases in most cases, but it is 
increasing in Cholesky and FMM when the cache size is 
128KB and 256KB. Because there are too many blocks written 
back to peer L2 caches and are not used, they occupy peer L2 
cache space and generate shared bus conflicts even though the 
number of off-chip memory accesses is reduced. Furthermore 
remote private L2 hits are increased but local private L2 hits 
are decreased in these cases. The RACS scheme shows the 
best performance among all schemes except oracle- in most 
cases. The RACS scheme has the larger number of off-chip 
memory accesses in some cases, but it has shorter average 
memory access latency in these cases because it reduces 
unused blocks. The RACS scheme reduces average memory 
access latency by 14% and 4% over the private L2 scheme and 
CMP-CC100% on average, respectively. 

Figure 8 shows the normalized average IPC of each scheme 
varying the cache size. It shows almost same property with 

Figure 7. Normalized average memory access latency 
(Normalized to private scheme). 

Figure 8. Normalized average IPC 
 (Normalized to private scheme). 

Figure 9. Normalized energy consumption of L2 caches and  
off-chip memory (Normalized to private scheme). 

Figure 6. Normalized number of off-chip memory accesses 
(Normalized to private scheme). 



 

average memory access latency. But the result of the shared 
scheme is not appeared in most cases in Figure 8, because it 
has smaller IPC than 0.95. The RACS scheme improves 
average IPC by 3% and 1% over the private L2 scheme and 
CMP-CC100% on average, respectively. 

Figure 9 shows the normalized L2 cache and off-chip 
memory energy of each scheme when the private cache size is 
256KB and the shared cache size is 1MB. Energy consumption 
of the shared scheme is much larger than any other scheme 
because it has larger energy consumption per access as shown 
in table 2. The private scheme has the largest energy 
consumption except the shared scheme because of the large 
number of off-chip accesses. RACS consumes less energy than 
CMP-CC100% except Cholesky. RACS consumes 10% and 2% 
less energy on average over the private L2 scheme and CMP-
CC100%, respectively 

 
4. Conclusions 

 
We proposed an on-chip L2 cache organization which takes 

advantage of both a private L2 cache and a shared L2 cache in 
CMPs. In order to have the short access latency, the proposed 
L2 cache organization, RACS, is based on a private L2 cache 
organization. When a cache block in the private L2 cache is 
selected for an eviction, RACS evaluates the reusability of the 
cache block. If the cache block is likely to be reused, we save 
the evicted cache block in one of peer L2 caches which may 
have efficiently invalid blocks. 

We evaluated the RACS scheme using a modified CMP 
simulator and compared the performance with the private 
scheme, shared scheme, CMP-CC scheme and oracle- scheme. 
The RACS scheme reduces the number of unused blocks 
(which were written back to peer L2 cache) by 65% over 
CMP-CC100%. It also reduces the average memory access 
latency by 14% and 4% over the private L2 scheme and CMP-
CC100%, respectively. The RACS scheme improves the average 
IPC by 3% and 1% over the private L2 scheme and CMP-
CC100%, respectively. 

The proposed RACS scheme can be further improved in 
several directions. First, the prediction heuristic in the RACS 
scheme can be improved significantly. For example, about 
43% blocks are not reused even though the prediction heuristic 
classifies those blocks as highly-reusable blocks. Second, the 
RACS scheme has a significant hardware overhead if the 
number of processors is more than 8 because it needs peer-to-
peer communication line among private L2 caches. It is an 
interesting future work to make the RACS scheme to be more 
scalable for large-scale CMP processors. 
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