
Workshop on Chip Multiprocessor Memory Systems and Interconnects (CMP-MSI)
in conjunction with HPCA-13, Feb 2007.

A Reusability-Aware Cache Memory Sharing Technique
for High Performance CMPs with Private L2 Caches

Sungjune Youn, Hyunhee Kim and Jihong Kim
School of Computer Science & Engineering, Seoul National University, Seoul, Korea

{spica81, hh0726, jihong}@davinci.snu.ac.kr

ABSTRACT

For high-performance chip multiprocessors (CMPs) to
achieve their maximum performance potential, an efficient
support for memory hierarchy is important. Since off-chip
accesses require a long latency, high-performance CMPs are
typically based on multiple levels of on-chip cache memories.
For example, most current CMPs support two levels of on-chip
caches. While the L1 cache architecture of these CMPs is
almost same, the L2 cache organization is quite different. All
the processors in the CMP may share the same L2 cache or
each processor may have its own private L2 cache. While a
private L2 cache has a short access time, a shared L2 cache
can better adapt to varying memory requirements of each
processor.

In this paper, we propose an on-chip L2 cache organization
which takes advantage of both a private L2 cache and a
shared L2 cache. In skeleton, our L2 cache organization is
based on a private L2 cache organization which has the short
access latency. When a cache block in the private L2 cache is
selected for an eviction, our proposed organization first
evaluates the reusability of the cache block. If the cache block
is likely to be reused, we save the evicted cache block in one of
peer L2 caches which may have efficiently invalid blocks. By
selectively writing evicted cache blocks to peer L2 caches, the
proposed L2 cache organization can effectively simulate a
shared L2 cache. Experimental results using a CMP simulator
showed that the proposed L2 cache organization improved the
average memory latency by 14% on average over a pure
private L2 cache organization for the SPLASH2 benchmark
programs.

1. Introduction

For high-performance chip multiprocessors (CMPs) to
achieve their maximum performance potential, an efficient
support for memory hierarchy is important. Since the on-chip
cache memory space is limited in CMPs and the off-chip
memory accesses require a longer latency than the on-chip
memory access latency, we need to manage the on-chip cache
space carefully to improve the overall system performance
[4][5].

Most high-performance CMPs are typically based on
multiple levels of on-chip cache memories to manage the on-
chip cache space efficiently. For example, most current CMPs
support two levels of on-chip caches. In typical CMPs, each
processor has a small private L1 cache because the access
latency of the L1 cache affects system performance directly.
However, the L2 cache organization of CMPs is quite different.
All the processors in the CMP may share the same L2 cache or
each processor may have its own private L2 cache. A shared
L2 cache utilizes cache space more flexibly, reducing the
number of the off-chip memory accesses. But, it has the longer
access latency and generates more on-chip network traffic than
a private L2 cache. On the other hand, a private L2 cache has
the short access latency but it is inefficient in utilizing the L2
cache space with many duplicated copies of the same memory
block.

In order to use on-chip cache memory space more
efficiently in CMPs, several research groups have proposed
different on-chip cache organizations such as CMP-SNUCA
[8], Victim Replication [3], CMP-NuRAPID [2] and CMP-CC
[1]. CMP-SNUCA [8] scheme applies NUCA [7] to the CMPs
architecture. They migrate blocks close to the requestor to
reduce wire-delay. Victim Replication [3] scheme attempts to
keep copies of local primary cache victims within the local L2
cache slice to reduce wire-delay in shared L2 cache. CMP-
NuRAPID [2] scheme makes copies close to requestors to
allow fast access for read-only sharing, and does not make
copies for read-write sharing to avoid coherence misses. They
also propose capacity stealing of neighbor’s cache when the
cache capacity is not enough to store private data. CMP-CC
[1] writes back a block to a peer L2 cache1 when the block is
evicted from a private L2 cache randomly with a given
probability to redistribute private L2 cache space. A similar
technique proposed in [11] also selectively writes back L2
victims to a peer L2 cache but it is quite limited in sharing L2
blocks in peer L2 caches.

In this paper, we propose an on-chip L2 cache organization
which takes advantage of both a private L2 cache and a shared
L2 cache in CMPs. In skeleton, our L2 cache organization is
based on a private L2 cache organization which has the short

1 In this paper, we call a private L2 cache of neighboring

processors as a peer L2 cache.

access latency. Figure 1 shows our target CMP architecture
with a private L2 cache and a shared bus. When a cache block
in the private L2 cache is selected for an eviction, our
proposed organization first evaluates the reusability of the
cache block. If the cache block is likely to be reused, we save
the evicted cache block in the private L2 cache of other
processors which may have efficiently invalid blocks. Since
accessing the private L2 cache of a nearby processor is faster
than accessing the off-chip memory, saving cache blocks with
high reusability in a peer L2 cache will improve the memory
performance. By selectively writing evicted cache blocks to
peer L2 caches, the proposed L2 cache organization can
simulate a shared L2 cache organization.

Writing back an evicted block to peer L2 caches is not a
new idea as proposed in CMP-CC [1]. However CMP-CC
does not consider the reusability of evicted L2 blocks in
deciding whether the evicted L2 blocks are saved in peer L2
caches. If there are too many blocks which are not reused, the
CMP performance may be deteriorated over the CMP
architecture with private L2 caches. L2 blocks with low
reusability should not be saved to a peer L2 cache. Therefore,
it is important to consider the reusability of an evicted block
when saving the evicted blocks to peer L2 caches. In this paper,
we describe a reusability-aware cache memory sharing
technique based on the reusability estimate of the evicted
blocks. Our scheme reduces the average memory access
latency by 14% over a private L2 scheme on average, thus
improving the average IPC by 3%.

The rest of the paper is organized as follows. In Section 2,
we explain the proposed reusability-aware cache sharing
technique. Performance evaluation is discussed in Section 3.

2. Reusability-Aware Cache Sharing Technique

2.1. Motivation

CMP-CC [1] writes back L2 victims to peer L2 caches

randomly with a given probability without any consideration
about the property of blocks. [11] also proposes selective L2
cache write back technique, but their technique can not exploit
full advantage of writing back to peer L2 caches. Because they
write back to peer L2 cache only when there exists a shared

line or an invalid line in peer L2 caches even though there is
not enough number of a shared line and an invalid line.

Figure 2 shows the number of reused blocks and unused
blocks among blocks written back to a peer L2 cache in the
CMP-CC100% scheme which writes back every L2 victims to
peer L2 caches. Experimental parameters are shown in Table 1.
In every benchmark, the number of unused blocks is larger
than the number of reused blocks. The performance of a
system can be damaged because of unused blocks. They
occupy peer L2 cache space unnecessarily, and they generate
additional on-chip shared bus transactions which can cause
conflicts on a shared bus. And remote private L2 hits are
increased while local private L2 hits are decreased. This is the
necessity of the selective write back of L2 victims to peer L2
caches.

So if we reduce the number of unused blocks, system
performance can be improved. To get full advantage of the
private L2 cache sharing technique, we consider the property
of the block and each private L2 cache when we decide which
L2 victims to be written back to which peer L2 cache. Our
scheme does not write back to a peer L2 cache if the L2 victim
block is not likely to be reused. When we write back a block
with high-reusability to a peer L2 cache, one of blocks in the
peer L2 cache should be evicted. In that case, we only evict a
block with low reusability in the peer L2 cache. If there is no
peer L2 cache which has a low reusability block, we write
back the L2 victim only to the peer L2 cache which has
smaller memory demand than the L2 cache’s which evicts the
block. In Section 2.2 we explain about the block reusability
prediction technique, and Section 2.3 describes the memory
demand prediction technique. We explain about how the
Reusability-Aware Cache Sharing (RACS) technique works in
Section 2.4.

2.2. Block Reusability Prediction Technique

In a conventional replacement algorithm of a cache or a

buffer, recency or frequency of accesses to a block is used to
predict reusability of the block [15]. But in our scheme, we
can not consider recency because a block has almost no
recency when it is evicted from a private L2 cache. So we
consider frequency of accesses to the block and a time interval

Figure 1. A target CMP architecture. Figure 2. The number of unused blocks and reused blocks among
blocks written back to peer L2 cache in CMP-CC100%.

between two consecutive accesses to the block in the past,
instead of recency.

We classify blocks into Access Time Interval and
Frequency (ATIF) patterns and monitor how many blocks
which are written back to peer L2 cache are reused and unused
per each pattern. If the number of unused blocks is much
larger than the number of reused blocks in certain pattern, we
predict that blocks in that pattern have low reusability and do
not write back these blocks to peer L2 caches.

We count the number of accesses with a long time interval
and a short time interval per each block while the block is in a
private L2 cache to classify blocks into ATIF patterns. We
distinguish a short and long time interval with a very simple
technique. We estimate the access time interval of the block is
long when there is any intervening access to a block that
belongs to the same set. If not, we estimate the interval is short.
An ATIF pattern of a block is decided by these two counts
when the block is evicted from a private L2 cache. We use a 4-
bit counter to record the number of accesses to a block with a
short access time interval and a 2-bit counter to record the
number of accesses with a long access time interval per each
block. Blocks are classified into 16 ATIF patterns using an
upper 2 bits value of the 4-bit counter and a value of the 2-bit
counter.

We add 16 2-bit counters in each private L2 cache to record
the reuse rate of blocks per each ATIF pattern. If a block
written back to a peer L2 cache is reused, corresponding ATIF
pattern counter of the block’s original owner L2 cache is
increased by one. If the block written back to peer L2 cache is
evicted from the peer L2 cache without reuse, the ATIF
pattern counter is decreased by one. When the ATIF pattern
counter becomes 0, we predict blocks that belong to the ATIF
pattern have very low reusability.

Figure 3 shows the fraction of unused blocks and reused
blocks among blocks written back to peer L2 caches in CMP-
CC100% per each ATIF pattern. The first number of the ATIF
pattern is an upper 2 bits value of a 4-bit counter for a short
access time interval and the second number of the ATIF
pattern is a value of a 2-bit counter for a long access time
interval. Some patterns have very high reusability while some
patterns have very low reusability. It shows predicting the
reusability of blocks with ATIF patterns is reasonable. The
block reusability prediction technique can reflect the property
of an application dynamically.

2.3. Memory Demand Prediction Technique

We predict that a processor requires more memory as more

frequently as replacement occurs in a private L2 cache. So we
use a replacement time interval history (Replinterval_history) as the
prediction value of the processor’s memory demand. Each
private L2 cache has this value, and it is updated every time
replacement occurs in private L2 cache by following formula.

Replinterval_history(prev) is an old prediction value of a memory

demand and Replinterval_history(new) is a new value. Replinterval is a
time interval between last two consecutive replacements. As
an L2 cache has smaller Replinterval_history value, it means the
processor requires more memory. This prediction value is used
only for comparison of a memory demand between L2 caches,
not for an exact memory demand. To calculate the time
interval, we use 8-bit counter to record the time from the last
replacement. This counter is increased by one every 32 cycle
and reset to 0 when the replacement occurs.

2.4. Process of the RACS technique

Figure 4 shows the process of deciding which L2 victims to

be written back to which peer L2 cache in the RACS technique.
When a block is evicted from a private L2 cache, we do not
write back to a peer L2 cache if the state of the block is shared.
Because it means that there already exists the same block in
other L2 cache. And we also do not write back to a peer L2
cache if the block is written back from other L2 cache but is
not reused. Because it means that the block already had a
chance. And then we check the reusability of the block. If the
reusability is low, we do not write back. If the reusability is
high, check if there exists any block with low reusability at the

4
Repl3Repl

Repl intervalprevhistoryinterval
newhistoryinterval

+×
=)(_

)(_

Figure 3. Fraction of unused blocks and reused blocks among
blocks written back to peer L2 cache in CMP-CC100%
per each ATIF pattern (Benchmark: Radix).

Figure 4. Process of deciding which L2 victims to be written back to
which peer L2 cache in the RACS technique.

Table 1. Processor and cache/memory configuration.

bottom of LRU stack in peer L2 caches. If there exists, we
write back the block to the peer L2 cache. If there does not
exist, we check if there exists any peer L2 cache whose
memory demand is ω times smaller than the memory demand
of the cache which evicts the block. If there exists, we write
back the block to the peer L2 cache. If there is no such a peer
L2 cache, we do not write back the block to a peer L2 cache
even though it has high reusability. ω value varies between 4/3
and 3. And each private L2 cache has its own ω value. ω value
is decreased by 1/3 when a block is reused and increased by
1/3 when three blocks are written back to other cache. So it
has smaller value as more blocks are reused. It means that if
many of blocks are reused we can write back a block to a peer
L2 cache even though the difference of memory demand is not
so large. Writing back to a peer L2 cache does not cause a
subsequent write back to other peer L2 cache to avoid a ripple
effect.

We need to communicate with peer L2 caches to decide
which peer L2 cache we write back to. So we assume
additional peer-to-peer communication lines among L2 caches.
If a block has high reusability, the L2 cache sends set number
of the block, ω value and Replinterval_history to peer L2 caches.
And then peer L2 caches reply two bits information. One bit
indicates the cache has the block with low reusability at the
bottom of LRU stack. The other bit indicates Replinterval_history of
the cache is ω times larger than received Replinterval_history. We
can decide if we write back a block or not and write back to
which peer L2 cache with these information.

The RACS technique has hardware overhead compared to a
pure private L2 cache organization because we need additional
counters for two prediction schemes and peer-to-peer
communication lines between L2 caches. But the maximum
data transferred by this line is only up to 21 bits and we need
only six lines when the number of private L2 caches is 4. The
area overhead of counters is less than 1% of the private L2
cache. So hardware overhead of our technique is not
significant.

And write back decision is not on the critical path because it
could be made after a block is evicted from the cache and
placed in the write back queue.

3. Performance Evaluation

3.1. Simulation Environment

We modify CATS [12] multiprocessor simulator to evaluate
our technique. We use a MESI protocol for cache coherency.
Cache-to-cache transfer of the cache block among private L2
caches is applied in all schemes. Table 1 shows the processor
and cache/memory configuration. When a cache is accessed
through the shared bus, bus delay cycles and conflict cycles
are added on cache access latency. Table 2 shows the L2 cache
and memory energy per access. We get cache energy values
from eCACTI [14] and memory energy from MICRON
MT48V8M32LF SDRAM [16].

Shared L2 cache, private L2 cache, CMP-CC, RACS and
oracle- schemes are implemented and evaluated. And we
evaluate our scheme with Cholesky, FMM, LU, Radix in
SPLASH2 [10] benchmark.

3.2. Experimental Results

Figure 5 shows the number of unused blocks and reused

blocks of each scheme among blocks written back to peer L2
caches. The number of unused blocks and reused blocks are
increasing in the CMP-CC scheme with same ratio as the
probability increases. The RACS scheme has the almost same
number of reused blocks with CMP-CC100% except Cholesky
and reduces the number of unused blocks by 65% on average
compared to CMP-CC100%. The reason why Cholesky has the
smaller number of reused blocks in the RACS scheme is that it
predicts too many blocks not to be reused because Cholesky
has too low reusability even though there exist blocks to be
reused. The oracle- scheme writes back the block that will be

Table 2. L2 cache and memory energy per access.
 (cache and memory configuration in table 1)

Figure 5. The number of unused blocks and reused blocks of
each scheme among blocks written back to peer L2 caches.

reused in the future and evicts the block which will be reused
in the farthest future among the blocks at the bottom of LRU
stacks of the private L2 caches. The oracle- has larger number
of reused blocks than any other schemes and smaller number
of unused blocks than CMP-CC100%. But it has larger number
of unused blocks than the RACS because the oracle- writes
back a block even though block will be reused in too far future,
which might not be reused after it is written back to peer L2
cache and evicted without reuse.

Figure 6 shows the normalized number of off-chip memory
accesses of each scheme varying the cache size. Each size
indicates the size of private L2 cache, CMP-CC, RACS and
oracle- scheme, while the shared L2 cache size of shared
scheme is four times larger than the size denoted in Figure 6.
The number of off-chip accesses is decreasing in CMP-CC as
the probability increases. In the RACS scheme, the number of
off-chip accesses is decreased up to 4% than CMP-CC100% in
LU and Radix. But it has the almost same number of off-chip
accesses with CMP-CC100% in FMM and it has larger number
of off-chip accesses in Cholesky. The oracle- scheme has the
least number of off-chip accesses in most cases, but it has the
larger number of off-chip accesses than RACS in LU (512KB)
and Radix (128KB). Because oracle- does not write back a
block to a peer L2 cache if the block will be reused in the
farthest future among blocks at the bottom of the LRU stack in

peer L2 caches. In this case, none of blocks could be reused if
all of these blocks will be evicted soon. If we would write
back the evicted block, at least one block could be reused
because it remains at on-chip.

Figure 7 shows the normalized average memory access
latency of each scheme varying the cache size. The shared
scheme shows the worst performance because of the long
access latency. Average memory access latency is decreasing
in CMP-CC as the probability increases in most cases, but it is
increasing in Cholesky and FMM when the cache size is
128KB and 256KB. Because there are too many blocks written
back to peer L2 caches and are not used, they occupy peer L2
cache space and generate shared bus conflicts even though the
number of off-chip memory accesses is reduced. Furthermore
remote private L2 hits are increased but local private L2 hits
are decreased in these cases. The RACS scheme shows the
best performance among all schemes except oracle- in most
cases. The RACS scheme has the larger number of off-chip
memory accesses in some cases, but it has shorter average
memory access latency in these cases because it reduces
unused blocks. The RACS scheme reduces average memory
access latency by 14% and 4% over the private L2 scheme and
CMP-CC100% on average, respectively.

Figure 8 shows the normalized average IPC of each scheme
varying the cache size. It shows almost same property with

Figure 7. Normalized average memory access latency
(Normalized to private scheme).

Figure 8. Normalized average IPC
 (Normalized to private scheme).

Figure 9. Normalized energy consumption of L2 caches and
off-chip memory (Normalized to private scheme).

Figure 6. Normalized number of off-chip memory accesses
(Normalized to private scheme).

average memory access latency. But the result of the shared
scheme is not appeared in most cases in Figure 8, because it
has smaller IPC than 0.95. The RACS scheme improves
average IPC by 3% and 1% over the private L2 scheme and
CMP-CC100% on average, respectively.

Figure 9 shows the normalized L2 cache and off-chip
memory energy of each scheme when the private cache size is
256KB and the shared cache size is 1MB. Energy consumption
of the shared scheme is much larger than any other scheme
because it has larger energy consumption per access as shown
in table 2. The private scheme has the largest energy
consumption except the shared scheme because of the large
number of off-chip accesses. RACS consumes less energy than
CMP-CC100% except Cholesky. RACS consumes 10% and 2%
less energy on average over the private L2 scheme and CMP-
CC100%, respectively

4. Conclusions

We proposed an on-chip L2 cache organization which takes

advantage of both a private L2 cache and a shared L2 cache in
CMPs. In order to have the short access latency, the proposed
L2 cache organization, RACS, is based on a private L2 cache
organization. When a cache block in the private L2 cache is
selected for an eviction, RACS evaluates the reusability of the
cache block. If the cache block is likely to be reused, we save
the evicted cache block in one of peer L2 caches which may
have efficiently invalid blocks.

We evaluated the RACS scheme using a modified CMP
simulator and compared the performance with the private
scheme, shared scheme, CMP-CC scheme and oracle- scheme.
The RACS scheme reduces the number of unused blocks
(which were written back to peer L2 cache) by 65% over
CMP-CC100%. It also reduces the average memory access
latency by 14% and 4% over the private L2 scheme and CMP-
CC100%, respectively. The RACS scheme improves the average
IPC by 3% and 1% over the private L2 scheme and CMP-
CC100%, respectively.

The proposed RACS scheme can be further improved in
several directions. First, the prediction heuristic in the RACS
scheme can be improved significantly. For example, about
43% blocks are not reused even though the prediction heuristic
classifies those blocks as highly-reusable blocks. Second, the
RACS scheme has a significant hardware overhead if the
number of processors is more than 8 because it needs peer-to-
peer communication line among private L2 caches. It is an
interesting future work to make the RACS scheme to be more
scalable for large-scale CMP processors.

Acknowledgement

This work was supported in part by the Brain Korea 21 Project

in 2006 and MIC & IITA through IT Leading R&D Support
Project.

References

[1] J. Chang and G.S. Sohi. Cooperative Caching for Chip
Multiprocessors. In Proc. of International Symposium on
Computer Architecture (ISCA), pages 264-276, 2006.

[2] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing
Replication, Communication and Capacity Allocation in
CMPs. In Proc. of International Symposium on Computer
Architecture (ISCA), pages 357-368, 2005.

[3] M. Zhang and K. Asanovic. Victim Replication:
Maximizing Capacity while Hiding Wire Delay in Tiled
Chip Multiprocessors. In Proc. of International Symposium
on Computer Architecture (ISCA), pages 336-345, 2005.

[4] J. Huh, D. Burger and S.W. Keckler. Exploring the Design
Space of Future CMPs. In Proc. of the International
Conference on Parallel Architectures and Compilation
Techniques, pages 199-210, 2001.

[5] B. A. Nayfeh, L. Hammond and K. Olukotun. Evaluation of
Design Alternatives for a Multiprocessor Microprocessor. In
Proc. of International Symposium on Computer Architecture
(ISCA), pages 76-77, 1996.

[6] Z. Chishti, M. D. Powell and T. N. Vijaykumar. Distance
Associativity for High-Performance Energy-Efficient Non-
Uniform Cache Architectures. In Proc. of International
Symposium on Microarchitecture (MICRO 36), pages 55-56,
2004.

[7] C. Kim, D. Burger and S. W. Keckler. An Adaptive, Non-
Uniform Cache Structure for Wire-Delay Dominated On-
Chip Caches. In Proc. of Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 211-222, 2002.

[8] B. M. Beckmann and D. A. Wood. Managing Wire Delay in
Large Chip-Multiprocessor Cache. In Proc. of the 37th
International Symposium on Microarchitecture (MICRO
37), pages 319-330, 2004.

[9] N. Jouppi. Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and
Prefetch Buffers. In Proc. of International Symposium on
Computer Architecture (ISCA), 1990.

[10] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. In Proc. of International
Symposium on Computer Architecture (ISCA), pages 24-36,
1995.

[11] E. Speight, H. Shafi, L. Zhang and R. Rajamony. Adaptive
Mechanisms and Policies for Managing Cache Hierarchies
in Chip Multiprocessors. In Proc. Of International
Symposium on Computer Architecture (ISCA), pages 346-
356, 2005.

[12] D. H. Kim. The CATS Framework for MPSoC System,
http://mesl.ucsd.edu/dhkim/CATS/

[13] T. Austin. SimpleScalar. http://www.simplescalar.com
[14] M. Mamidipaka and N. Dutt. eCACTI: An Enhanced Power

Estimation Model for On-Chip Caches.
http://www.ics.uci.edu/~maheshmm/eCACTI/main.htm

[15] D. Lee, J. Choi, J. Kim, S. H. Noh, S. Min, Y. Cho, C. Kim.
LRFU: A Spectrum of Policies that Subsumes the Least
Recently Used and Least Frequently Used Policies. In IEEE
Transactions on Computers, vol. 50, pages 1352-1361,
2001.

[16] Micron Technology Inc., http://www.micron.com/products/
dram/mobilesdram/. MICRON Mobile SDRAM
MT48V8M32LF Datasheet, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

