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Abstract 
The Chip Multiprocessor (CMP) architecture offers 

dramatically faster retrieval of shared data which is cached 
on-chip rather than in an off-chip memory. Remote cache 
requests are handled through a cache coherence protocol. 
In order to obtain the best possible performance with the 
CMP architecture, the cache coherence protocol must be 
optimized to reduce time lost during remote cache and off-
chip memory accesses. This paper proposes a novel 
snooping cache coherence protocol for CMP in which each 
processor has both private and shared L2 caches. The 
cache coherence protocol is proven by means of formal 
verification methods. 

1. Introduction 
With the emergence of the CMP design paradigm, it 

has become possible to integrate multiple processors and 
large caches on a single chip to increase computation 
performance for a wide variety of workloads. The bus-
based shared-memory multiprocessor architecture, 
formerly developed for the Symmetric Multiprocessor 
(SMP), is still commonly used for the design of small-
scale CMPs. It facilitates the use of snooping protocols and 
achieves low-latency cache-to-cache misses by 
broadcasting requests for shared data on the bus. However, 
in comparison with the SMP, the access time of remote 
cache requests on CMP is reduced dramatically, and is 
faster than the off-chip memory access time. Therefore, 
directly employing the traditional SMP memory hierarchy 
and coherence protocol with the CMP would diminish its 
performance advantage. The optimal design of the CMP’s 
on-chip cache presents a key challenge in efficiently using 
limited on-chip cache capacity while keeping the number 
of off-chip accesses to a minimum. Some CMP systems 
employ private L2 caches [1][2] to attain fast average 
cache access latency by placing data close to the 
requesting processor. To prevent replication and improve 
the CMP's performance, IBM Power 4 [3] and Sun 
Niagara [4] use shared L2 caches to maximize the on-chip 
capacity. Recently, several hybrid L2 organizations have 
been proposed to reduce access latency by a compromise 
between the low latency of private L2 and the low off-chip 
access rate of shared L2. For instance, CMP-NuRapid [5], 
Victim replication [6], Adaptive Selective Replication 
scheme [7], and Cooperative Caching [8] are mainly based 
on either private L2 or shared L2. These schemes represent 
modifications to the basic architecture and coherence 
protocol (snooping or directory-based), however, no 
formal verification of the modified cache coherence 

protocols is available. We propose an alternative novel L2 
cache architecture, in which each processor has Split 
Private and Shared L2 (SPS2). When data is loaded it is 
located in private L2 or shared L2 according to its state 
(exclusive or shared). This scheme makes efficient use of 
on-chip L2 capacity and has low average access latency. 

The use of formal verification techniques to prove the 
functional correctness of CMP cache structures is 
becoming an increasingly essential part of the design 
process, particularly since most cache performance 
improvements come at the cost of greater hardware design 
and cache protocol complexity. It is especially useful for 
discovering and correcting any errors at the early stage of 
protocol design before expending valuable time and 
resources on a novel strategy. Several formal verification 
methods have been applied to verify the correctness of 
some cache coherence protocols [9][10][11].  

The principal contributions presented here include: (i) 
a novel L2 cache architecture - SPS2, and (ii) a novel 
snooping cache-coherence protocol accompanied with its 
formal verification method. Due to the distinctive 
architecture of SPS2, we use a new state graph method to 
express state transactions in our cache coherence protocol, 
and verify its correctness and properties using the formal 
verification method. 

2. Cache Architecture 
In this paper, we limit our consideration to a 2-level 

on-chip cache hierarchy, although the proposed SPS2 
architecture can be readily extended to include more than 2 
levels. A traditional bus-based shared-memory 
multiprocessor has either private L1s and private L2s, or 
private L1s and a shared L2. Both cache architectures have 
their pros and cons. The private L2 architecture has fast L2 
hit latency but can suffer from large amounts of replicated 
shared data copies which reduce on-chip capacity and 
increase the off-chip access rate. Conversely, the shared 
L2 architecture reduces the off-chip access rates for large 
shared working datasets by avoiding wasting cache space 
on replicated copies. The banked shared L2 cache 
organization is a well-known method to reduce access 
latency. However, average L2 access latency is still 
influenced by relative placement on the die and network 
congestion.  

We propose a new scheme, SPS2, to organize the 
placement of data. All data items are categorised into one 
of two classes depending on whether the data is shared or 
exclusive. Correspondingly, the L2 cache hardware 
organization of each processor is also divided into two 
parts, private and shared L2. The proposed scheme places 



exclusive data in the private L2 cache and shared data in 
the shared L2 cache. This arrangement provides fast cache 
accesses for unique data from the private L2. It also allows 
large amounts of data to be shared between several 
processors without replication of the data and thus makes 
better use of the available shared L2 cache capacity which 
is distributed between the processors.  
    The proposed SPS2 cache scheme is shown in Figure 
1. Each processor has its own private L1 (PL1), private L2 
(PL2) and shared L2 (SL2). The shared L2 is a multi-
banked cache that could be accessed by all the processors 
directly over the bus. The corresponding cache coherence 
protocol is referred to as the SPS2 protocol. In this paper, 
we define a node as an entity comprising a single 
processor and three caches, i.e., PL1, PL2 and SL2. In a 
physical realization, SL2 could have the same number of 
banks as the number of processors, where each SL2 bank 
is physically located close to its respective processor. This 
regular structure is very amenable to VLSI implementation 
although other bank arrangements could also be used. The 
role of the SL2 is to store shared data, while the role of 
PL2 is to store modified exclusive data. All new data for 
reading is fetched from memory and simultaneously 
loaded into PL1 and SL2. Data for writing will be placed 
in PL1 only. PL1 and PL2 are exclusive, but PL1 and SL2 
are inclusive. If a data item exists in PL1 then it cannot 
also exist in PL2, however, if exclusive data is evicted 
from PL1, it will be placed in PL2, from where it may later 
be evicted again back to memory. If a shared data item 
exists in PL1, then a copy must exist in SL2, however, the 
existence of a data item in SL2 does not imply that a copy 
must also exist in a PL1 cache.  
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Figure 1. SPS2 cache architecture 

    Unlike the unified L2 cache structure, the SPS2 
system with its split private and shared L2 caches can be 
flexibly and individually designed according to demand. 
First, PL2 could be designed as a direct-mapped cache to 
provide fast access and low power, while SL2 could be 
designed as a set-associative cache to reduce conflict. 
Second, PL2 and SL2 do not have to match each other in 
size, and they could have different replacement policies. 
We can evaluate the advantages of dividing shared data 
and modified data. Take for example an application 
comprising a large quantity of shared data that needs to be 
used by several threads from different processors and also 
a large quantity of data that is exclusive to one processor. 
In the case of a private L2 architecture several copies of 
the same shared data set will exist in the L2 caches of the 
different processors. This architecture will suffer from 

wasted cache space and incur higher numbers of on-chip 
misses for large data sets and/or multiple concurrent 
processes/threads. In the case of a shared L2 architecture, 
any processor can access all of the shared data, however, 
since many of the requested data blocks would not be 
available in the local bank, it will result in high access 
latencies while blocks are fetched from other banks. In the 
case of the SPS2 architecture, each processor has two 
separate L2 caches (PL2 and SL2), which could be 
individually and simultaneously accessed. This scheme 
reduces access latency and contention between shared data 
and exclusive data. It imposes a low L2 hit latency because 
most of the exclusive data should be found in the local 
PL2. Shared data will be placed in SL2 which collectively 
provide high storage capacity to help reduce off-chip 
access. The SPS2 cache system does not need any new 
additional CPU instructions to support its protocol, and 
hence, no changes to the instruction-set or CPU hardware 
interface are required to enable the cache system to work 
with a conventional multiprocessor design. The only parts 
that need to be modified comprise the cache architecture 
and the cache controller that includes the realization of 
cache coherence protocol.  

3. Description of Coherence Protocol 
    The protocol employed in SPS2 is based on the MOSI 
(Modified, Owned, Shared, Invalid) protocol and 
introduces no new states. Data contained in PL1 may have 
all four possible states (M, O, S, I), while shared data 
contained in SL2 has only two states (S, I), and evicted 
data contained in PL2 has three possible states (M, O, I). 
The SPS2 protocol uses the write-invalidate policy on 
write-back caches. To keep consistency and coherency 
between the three different caches, the cache coherence 
protocol should also be modified accordingly.  
    The protocol works roughly as follows. Initially, any 
data entry in the three caches (PL1, PL2 and SL2) should 
be Invalid (I). When node i makes a read access for an 
instruction or data block at a given address, PL1i will be 
searched first. Since PL1i is empty, then PL2i and SL2 will 
be searched next. Again, neither PL2i nor SL2 have the 
requested data, so a GetS message will be sent on the bus. 
Since all the caches in all the processors are initially 
invalid, the memory will put the data on the bus, and SL2 
and PL1i will both store the data and change their states 
from I to S. If another node j requires this same data 
shortly after, the data will be copied from SL2 to PL1j 
without needing to fetch the data from memory or to place 
another copy in PL2j. If a read request finds the data in the 
local PL1i, then no bus transaction is needed and data will 
be supplied to the processor directly. 

When node i needs to make a write access and a write 
miss is detected because the data block is not present in 
PL1i, PL2i, and SL2, the cache controller starts a block 
replacement cycle, possibly evicting a dirty block from the 
cache. A GetX message will be sent on the bus to fetch 
data from the other nodes or memory and place the 
requested data in the recently vacated slot. All the other 
nodes will check their own PL1 and PL2 caches for the 
requested data. If any node, for example j, finds Modified 



(M) data with same address as the requested data, the 
contents will be sent to PL1i and all the caches (including j 
and excluding i) should invalidate data with this address. 
Once the data is placed in PL1i and updated, its state will 
be changed to M. Since the SPS2 scheme employs a write-
back policy, modified data will not be written back to 
memory until it is replaced. A data item with state M 
means this node exclusively retains the most recent version 
of the data and that the data in memory is obsolete. If, 
conversely, the write operation finds the data block in PL1i 
or PL2i with state M (implying a write hit), then the write 
process will proceed with no bus transactions involved.  

Suppose that after node i executes a write command, 
another node j needs to read data or fetch instruction from 
same address, it will check PL1j first, then PL2j and SL2. 
Since any copy that node j may have previously held 
would have been invalidated by the write operation from 
node i, it will be unable to find the data locally. Therefore 
a GetS message will be placed on the bus requesting the 
other nodes to send back the data. Node i will check its 
own PL1i and PL2i, and find the requested data block with 
state M in PL1i. The modified data will then be placed on 
the bus and stored in both SL2 and PL1j. The cache state in 
PL1i will be changed from M to O and that in PL1j will be 
set to S.  
    If a free slot is not available in any of the caches, then 
the existing data block will need to be swapped out and 
replaced with the new block. The old data block in PL1 
will be evicted to PL2, if its state is M or O. Any data 
evicted from PL2 will be written back to memory. If the 
state of the data evicted from PL1 is S, which means that 
SL2 must have a copy, then the data need not be copied 
back to SL2, but simply invalidated. When data in SL2 is 
evicted, write back is not needed. 

4. Formal Verification of Cache Coherence 
Protocol 

    Cache coherence is a critical requirement for correct 
behavior of a memory system. The goal of a formal 
protocol verification procedure is to prove that it adheres 
to a given specification. The specification is a list of 
correctness properties required from the protocol. The 
cache protocol verification procedure includes checking 
for data consistency, incomplete protocol specification, 
and absence of deadlock and livelock. Using formal 
verification in the early stage of the design process is 
helpful in finding consistency problems and eliminating 
them before committing to hardware. 

To maintain data consistency between caches and 
memory, each node is equipped with a finite-state 
controller that reacts to the read and write requests. 
Abstracting from the low-level implementation details of 
read, write, and synchronization primitives, one may 
consider cache coherence protocol as families of identical 
finite-state machines. The following section will illustrate 
how the SPS2 protocol works using a state machine 
description. 

4.1 State graph of SPS2 cache protocol 

Each node in the SPS2 architecture has three caches 

(PL1, PL2, and SL2), each of which has its own state 
representation. These three states can be concatenated to 
form a single vector {XYZ} representing the state of a 
single cache block in a node. X indicates the state of a PL1 
cache block with four possible states (I, S, M, O), Y 
indicates the state of a PL2 cache block with three possible 
states (I, M, O), and Z indicates the state of a SL2 cache 
block which has only two states (I and S). Therefore, for 
each node a cache block could have up to 4×3×2=24 
different states, although some of these states are 
unreachable. For example, SMS is an impossible state, 
because if PL2 has a modified block, it is impossible for 
both PL1 and SL2 to have shared copies of this block. 
Another impossible state for a data block is IMS, which 
implies that the block in PL1 is invalid, while PL2 owns a 
modified version, and SL2 has a shared copy. Excluding 
the set of invalid states, there are only seven possible states, 
i.e., III, IIS, SIS, MII, IMI, OIS, and IOS. III is the initial 
state of each data block.  
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(a) State transition graph (from processor perspective) 
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(b) State transition graph (from bus perspective) 

Figure 2. State transition graph of SPS2 cache protocol 

Our coherence protocol requires two different sets of 
commands. All the transition arcs in Figure 2(a) 
correspond to access commands issued by a local 
processor. These commands are labeled as read, write, and 
replacement (rep1, rep2 and repS). All the arcs in Figure 
2(b) correspond to commands issued by processors via the 
snooping bus. They include GetS, GetX, inv, invS. All 
these commands are defined below: 

read: issued when a processor needs to fetch 
instruction or load data; 
write: issued when a processor needs to write data; 
rep1: issued when PL1 needs room for new data; 
rep2: issued when PL2 needs room for new data; 
repS: issued when SL2 needs room for new data;  



GetS: issued when requesting other nodes or memory 
to share data, following a read miss;   
GetX: issued when requesting other nodes or memory 
for exclusive data, following a write miss; 
inv: issued to invalidate copies in other nodes when a 
local write access results in a hit. 
invS: issued to invalidate other copies in PL1 when a 
cache block in SL2 is replaced. 

As shown in Figure 2, the cache state of any node will 
change to the next state according to its current state and 
the received command. 

4.2 Verification using HyTech 

One of the new techniques described in the research 
literature relating to formal verification of coherence 
protocols, is to validate protocols independent of the 
number of processors in the system. This technique is 
referred to as parameterized verification. In this section, 
HyTech [12], an abstraction-level model checker, is used 
to verify the SPS2 cache coherence protocol. 

The first step is to define the SPS2 protocol using a 
finite-state machine model. According to [13][14], we 
limit ourselves to consider protocols controlling single 
memory blocks and single cache blocks although the 
procedure could be easily extended to encompass the 
whole memory and cache system. 

Let k be the number of nodes of a given 
multiprocessor system. The behavior of the caches Ni in 
node i is represented as a finite system <Q,∑i, fi,δi> 
where Q is a finite set of states of a node (such as IIS, IOS, 
etc.), ∑i is the set of operations (read, write, GetS, GetX, 
etc.) causing state transitions, fi: Qk→{true, false} is the 
characteristic function from the perspective of Ni , and δi 
defines the state transition Im(fi)×Q×∑i→Q (where Im(fi) 
is the image of fi).  

Similarly, we could use EFSM (extended finite-state 
machine) [14] to model parameterized cache coherence 
protocol. The behavior of system is modeled as the global 
machine MG = <QG,∑G,F,δG> which is associated with 
protocol P, where QG ={s1, ..., sn}. si is the possible states 

of cache blocks in one node. , F =<f1

k
G i== ∪Σ iΣ 1,...,fk> ,

δG: Im(F)×QG×∑G→QG. We model MG via an EFSM 
with only one location and n data variables <x1, ..., xn> 
(denoted as x) ranging over the set of positive integers. For 
simplicity, location could be omitted, hence the EFSM-
states are tuples of natural numbers <c1,...,cn> (denoted as 
c) where ni denotes the number of nodes in states si∈Q 
during a run of MG. Transitions are represented via a 
collection of guarded linear transformations defined over 
the vector of variables <x1, ..., xn> (denoted as x) and 
<x1', ..., xn'> (denoted as x'), where xi and xi' denote the 
number of nodes in state si, respectively, before and after 
the occurrence of an event. Transitions have the form G(x)
→T(x,x'), where G(x) is the guard and T(x,x') is the 
transformation. The transformation T(x,x') is defined as 
x'=M•x+c where M is an n×n-matrix with unit vectors as 
columns. Since the number of nodes is an invariant of the 
system, we require the transformation to satisfy the 

condition x1+...+ xn= x1'+...+xn'.  
The following gives an informal definition of how the 

transitions of a cache coherence protocol can be modeled 
via guarded transformations. 
� Internal action. Caches in a node move from state s1 

to state s2: x1'=x1-1, x2'=x2+1with the proviso that x1≥1 
is part of G(x). For example, a read miss makes the 
state of a node move from IIS to SIS.  

� Synchronization. Two nodes synchronize on a signal: 
a node N1 in state s1 changes to state s2, and another 
node N2 in state s3 changes to state s4. This is modeled 
as x1'=x1-1, x2'=x2+1, x3'=x3-1, x4'=x4+1, with the 
proviso that x1≥1, x3≥1 is part of G(x). For instance, 
a read miss may not only make a node change from III 
to SIS, but also make another node change from MII to 
OIS. 

� Re-allocation. The state of all nodes C1,...,Ck is a 
constant numberλ of nodes whose state changes to Cz 
for z>k and to state Ci for i>k: x1'=0,..., xk'=0, 
xi'=x1+...+xk-λ, xz'=λ. This feature can be used to 
model bus invalidation signals. 
Some of the transition rules are listed in Figure 3. 

Because SPS2 protocol has seven different states (III, IIS, 
SIS, MII, IMI, OIS, and IOS), we use these seven 
variables of integer type to indicate seven states 
respectively. Rule r1 corresponds to a read hit event: i.e., 
no action is needed; and rules r2 - r7 correspond to read 
miss events. For the sake of brevity, other events (such as 
write hit, write miss, replacement, etc.) are omitted in 
Figure 3.  

(r1) SIS+OIS+MII≥1→__ 
(r2) III≥1, MII=0, IMI=0 → III'=0, SIS'=SIS+1, IIS'=IIS+III-1 
(r3) III ≥ 1, MII ≥ 1 →  III'=0, SIS'=SIS+1, MII'=MII-1,

OIS'=OIS+1, IIS'=IIS+III-1 
(r4) III ≥ 1, IMI ≥ 1 →  III'=0, SIS'=SIS+1, IMI'=IMI-1,

IOS'=IOS+1, IIS'=IIS+III-1 
(r5) IIS≥1 → IIS'=IIS-1, SIS'=SIS+1 
(r6) IMI≥1 → MII'=MII+1, IMI'=IMI-1 
(r7) IOS≥1 → OIS'=OIS+1, IOS'=IOS-1 

...... 

Figure 3. EFSM for SL2 protocol 

Possible sources of data inconsistency are outlined 
below.  

(i) OIS>=1 & MII >= 1. This indicates that data is 
inconsistent if a node with state OIS coexists with other 
cache blocks in other nodes with state MII. OIS implies 
that PL1 modified the data and has ownership, and that 
other nodes share this data through SL2. This is 
contradicted by the corresponding block label MII for 
another node which informs that PL1 has modified data, 
and that PL2 and SL2 have no valid data. We can see there 
are two conflicts. The first inconsistency is that if a cache 
in one node has modified data, no other cache should have 
valid copies (labeled O or S). The second inconsistency is 
that since the state of one node is OIS then all the 
corresponding states of the other nodes could only be IIS 
or SIS. Since SL2 is a common shared cache, then the state 
of SL2 should be coherent.  

(ii) OIS >= 2. If more than one node has state OIS for 



the same block, then data integrity will not hold, because it 
is impossible for two or more PL1s to own the same block 
of data. 

(iii) IIS>=1 & IMI >= 1. If a block in one node is 
shared as indicated by state IIS, then no other cache should 
have a modified copy, i.e. with state IMI, of the shared 
block. 

In order to verify data consistency all possible sources 
of data inconsistency must first be defined. As proven in 
[13] [15][16], whenever both the guards of a given EFSM 
and the target states are represented via constraints that 
represent upward-closed sets, a symbolic reachability 
algorithm using integer constraints for representing sets of 
states always terminates. In this way we automatically 
verified the properties of our SPS2 protocol using the 
HyTech tool.  

4.3 Verification using SMV 

Computation Tree Logic (CTL) is a very simple 
subset of model tense logic defined by Clark and Emerson 
[17]. It can express the mandatory properties of the 
protocols. It has three components: atomic propositions, 
boolean connectives, and temporal operators. Atomic 
propositions talk about the values of individual state 
variables. The boolean connectives are the standard ones 
(∧,∨,┐). Each temporal operator consists of two parts: 
a path quantifier (A or E) and a temporal modality (F, G, X, 
or U). Quantifier A indicates that the operator denotes a 
property that should be true of all execution paths from a 
given state whereas quantifier E denotes that the property 
is exclusive to one path. The modalities describe the 
ordering of events in time along an execution path and 
have the following intuitive meanings: 
(i) Fφ (φ holds sometime in the future) is true of a path 
if there exists a state on the path for which the formulaφ 
is true. 
(ii) Gφ (φ holds globally) means that φ is true for 
every state along the path. 
(iii) Xφ (φ holds in the next state) means that φ is 
true in the second state along the path. 
(iv) φUψ (φ holds untilψ holds) means that there 
exists some state along the path for which ψ is true, and 
for all preceding states, φ is true. 

The following examples illustrate the expressive 
power of the logic. 
(i) AG (req →AF ack): it automatically follows that if the 
signal req is high, then eventually ack will also be high. 
(ii) AG AF enabled: enabled holds infinitely on every 
computation path. 
(iii) AG EF restart: it is possible to reach the restart state 
from any state. 
(iv) AG (send →A(send U recv)): it is always the case 
that if send occurs, then eventually recv is true, and until 
that time, send must remain true. 

To avoid state explosion, recent model checkers use 
an implicit representation for finite-state systems based on 
ordered binary decision diagrams (OBDD). SMV 
(symbolic model verifier) [14] is one such tool for 
checking that finite-state systems satisfy specifications 

given in CTL. Applications of the symbolic model 
checking method have been used to successfully verify the 
snooping protocols of the Gigamax [18] and the 
Futurebus+ [19]. The formal verification of the Stanford 
FLASH cache coherence protocol via SMV proof assistant 
is given in [9]. The following section show how SMV is 
used to model and verify the proposed SPS2 protocol. 

4.3.1 Modeling the protocol using SMV 

Figure 4 shows a portion of the SMV program used to 
model the state transactions of a single block in a node in 
the SPS2 cache system. In lines 1-3, the ASSIGN 
declaration initially assigns the state of the cache block the 
value III and then proceeds to assign it the next state 
depending on the command received. Lines 5-9 reveal that 
when no command is present the next value of state is a 
random value. Lines 10-27 express that if this node is 
master, the next corresponding value of state differs 
depending on the command (read, write, GETS, ...). Lines 
28-35 reveal the next value of state when the current node 
is not master and command is GETS. 

ASSIGN   1
init(state) := III;    2 
next(state) :=    3 
    case     4 
    CMD=none:    5 
 case    6 
 ...    7 
 1: state;    8 
 esac;    9 
    master:    10 
 case    11 
 CMD=gets:   12 
  case   13 
  state=III: SIS;  14 
  1: any;   15 
  esac;   16 
 CMD=read:   17 
  case   18 
  state=IIS: SIS;  19 
  state=IOS: OIS;  20 
  state=IMI: MII;  21 
  state in {SIS, MII, OIS}: state; 22 
  1: any;   23 
  esac;   24 
   ...    25 
 1: any;    26 
 esac;    27 
 CMD=gets:   28 
  case   29 
  state=III: IIS;  30 
  state=MII: OIS;  31 
  state=IMI: IOS;  32 
  state in {IIS, SIS, OIS, IOS}: state; 33 
  1: any;   34 
  esac;   35 
 CMD=read: state;   36 
 ...    37 
 1: any;    38 

esac;   39

Figure 4. Modeling SPS2 protocol using SMV 

4.3.2. Verifying the protocol 

To verify data integrity, we introduce another 
variable M to indicate if the content of a cache block has 
been modified. Therefore, we could check whether the bus 
has had any errors using formulas, such as 
AG(CMD=replacement & M=1). As defined in Section 4.3, this 



formula means that it is always true that when the 
command is replacement, M must be high because if this 
data block has not been modified, there is no need to 
replace it. Another form of error is processor error which 
typically reveals when state and command conflict. The 
specification could be shown in the following formulae: 

AG (p1.shared → p2.shared) 
  AG (p1.state=SIS & p2.state=SIS → p1.data = p2.data) 
  AG (p1.state=OIS & p2.state=IIS → p1.data = p2.data) 
  AG (p1.readable & !M → p1.data=mem.data) 
  AG (p1.excl → ! p2.readable) 

The first formula states that it is always true that if one 
node has a shared data block, then eventually another node 
(for example, node 2) will also have this shared data. The 
second formula declares that if the states of two nodes are 
both SIS, the value of the data in both nodes must be the 
same. Similarly, the third formula declares if the state of 
one node is OIS and the state of another node 2 is IIS, the 
value of the data in both nodes must be the same. The 
fourth formula means that if the data in node 1 is readable 
and not modified, then data should have same value as that 
stored in the memory. The fifth formula means that if node 
1 has exclusive data, then no other node has corresponding 
data. 
    Similarly, the SPS2 protocol could be verified for 
liveness using the following formula by proving that from 
any state it is possible to get to the states (OIS, MII, SIS) 
or that the block is readable or writable: 

AG EF p1.state=OIS or AG EF p1.state=MII or  
AG EF p1.state=SIS or 
AG EF p1.readable or AG EF p1.writable 

The SMV verification process has been used to check 
250 OBDD nodes. The safety properties of the SPS2 
protocol are thus proved conclusively.  

5. Summary 
To improve the CMP cache performance, we propose 

a new cache architecture SPS2 with split private and 
shared L2 cache, which takes advantages of the low 
latency of L2P and the high capacity of L2S. We also 
propose a corresponding SPS2 cache coherence protocol 
described by means of new state transition graphs in which 
each node has three states to indicate the states of private 
L1, split private L2 and split shared L2 respectively. Using 
the state transition graphs, the functional correctness of 
coherence protocol is proven through two formal 
verification methods.  

The use of formal design verification methods helps 
identify coherence problems in the early stage, and provide 
assurance of the correctness of the protocol before 
commencing on the hardware development.  
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