
Formal Verification of a Novel Snooping Cache Coherence Protocol for CMP

Xuemei Zhao, Karl Sammut, and Fangpo He
School of Informatics and Engineering

Flinders University, Australia
{zhao0043, karl.sammut, fangpo.he}@flinders.edu.au

Abstract
The Chip Multiprocessor (CMP) architecture offers

dramatically faster retrieval of shared data which is cached
on-chip rather than in an off-chip memory. Remote cache
requests are handled through a cache coherence protocol.
In order to obtain the best possible performance with the
CMP architecture, the cache coherence protocol must be
optimized to reduce time lost during remote cache and off-
chip memory accesses. This paper proposes a novel
snooping cache coherence protocol for CMP in which each
processor has both private and shared L2 caches. The
cache coherence protocol is proven by means of formal
verification methods.

1. Introduction
With the emergence of the CMP design paradigm, it

has become possible to integrate multiple processors and
large caches on a single chip to increase computation
performance for a wide variety of workloads. The bus-
based shared-memory multiprocessor architecture,
formerly developed for the Symmetric Multiprocessor
(SMP), is still commonly used for the design of small-
scale CMPs. It facilitates the use of snooping protocols and
achieves low-latency cache-to-cache misses by
broadcasting requests for shared data on the bus. However,
in comparison with the SMP, the access time of remote
cache requests on CMP is reduced dramatically, and is
faster than the off-chip memory access time. Therefore,
directly employing the traditional SMP memory hierarchy
and coherence protocol with the CMP would diminish its
performance advantage. The optimal design of the CMP’s
on-chip cache presents a key challenge in efficiently using
limited on-chip cache capacity while keeping the number
of off-chip accesses to a minimum. Some CMP systems
employ private L2 caches [1][2] to attain fast average
cache access latency by placing data close to the
requesting processor. To prevent replication and improve
the CMP's performance, IBM Power 4 [3] and Sun
Niagara [4] use shared L2 caches to maximize the on-chip
capacity. Recently, several hybrid L2 organizations have
been proposed to reduce access latency by a compromise
between the low latency of private L2 and the low off-chip
access rate of shared L2. For instance, CMP-NuRapid [5],
Victim replication [6], Adaptive Selective Replication
scheme [7], and Cooperative Caching [8] are mainly based
on either private L2 or shared L2. These schemes represent
modifications to the basic architecture and coherence
protocol (snooping or directory-based), however, no
formal verification of the modified cache coherence

protocols is available. We propose an alternative novel L2
cache architecture, in which each processor has Split
Private and Shared L2 (SPS2). When data is loaded it is
located in private L2 or shared L2 according to its state
(exclusive or shared). This scheme makes efficient use of
on-chip L2 capacity and has low average access latency.

The use of formal verification techniques to prove the
functional correctness of CMP cache structures is
becoming an increasingly essential part of the design
process, particularly since most cache performance
improvements come at the cost of greater hardware design
and cache protocol complexity. It is especially useful for
discovering and correcting any errors at the early stage of
protocol design before expending valuable time and
resources on a novel strategy. Several formal verification
methods have been applied to verify the correctness of
some cache coherence protocols [9][10][11].

The principal contributions presented here include: (i)
a novel L2 cache architecture - SPS2, and (ii) a novel
snooping cache-coherence protocol accompanied with its
formal verification method. Due to the distinctive
architecture of SPS2, we use a new state graph method to
express state transactions in our cache coherence protocol,
and verify its correctness and properties using the formal
verification method.

2. Cache Architecture
In this paper, we limit our consideration to a 2-level

on-chip cache hierarchy, although the proposed SPS2
architecture can be readily extended to include more than 2
levels. A traditional bus-based shared-memory
multiprocessor has either private L1s and private L2s, or
private L1s and a shared L2. Both cache architectures have
their pros and cons. The private L2 architecture has fast L2
hit latency but can suffer from large amounts of replicated
shared data copies which reduce on-chip capacity and
increase the off-chip access rate. Conversely, the shared
L2 architecture reduces the off-chip access rates for large
shared working datasets by avoiding wasting cache space
on replicated copies. The banked shared L2 cache
organization is a well-known method to reduce access
latency. However, average L2 access latency is still
influenced by relative placement on the die and network
congestion.

We propose a new scheme, SPS2, to organize the
placement of data. All data items are categorised into one
of two classes depending on whether the data is shared or
exclusive. Correspondingly, the L2 cache hardware
organization of each processor is also divided into two
parts, private and shared L2. The proposed scheme places

exclusive data in the private L2 cache and shared data in
the shared L2 cache. This arrangement provides fast cache
accesses for unique data from the private L2. It also allows
large amounts of data to be shared between several
processors without replication of the data and thus makes
better use of the available shared L2 cache capacity which
is distributed between the processors.
 The proposed SPS2 cache scheme is shown in Figure
1. Each processor has its own private L1 (PL1), private L2
(PL2) and shared L2 (SL2). The shared L2 is a multi-
banked cache that could be accessed by all the processors
directly over the bus. The corresponding cache coherence
protocol is referred to as the SPS2 protocol. In this paper,
we define a node as an entity comprising a single
processor and three caches, i.e., PL1, PL2 and SL2. In a
physical realization, SL2 could have the same number of
banks as the number of processors, where each SL2 bank
is physically located close to its respective processor. This
regular structure is very amenable to VLSI implementation
although other bank arrangements could also be used. The
role of the SL2 is to store shared data, while the role of
PL2 is to store modified exclusive data. All new data for
reading is fetched from memory and simultaneously
loaded into PL1 and SL2. Data for writing will be placed
in PL1 only. PL1 and PL2 are exclusive, but PL1 and SL2
are inclusive. If a data item exists in PL1 then it cannot
also exist in PL2, however, if exclusive data is evicted
from PL1, it will be placed in PL2, from where it may later
be evicted again back to memory. If a shared data item
exists in PL1, then a copy must exist in SL2, however, the
existence of a data item in SL2 does not imply that a copy
must also exist in a PL1 cache.

CPU core

L1I L1D

PL2 SL2

CPU core

L1I L1D

PL2 SL2

CPU core

L1I L1D

PL2 SL2

CPU core

L1I L1D

PL2 SL2

To
Memory

Figure 1. SPS2 cache architecture

 Unlike the unified L2 cache structure, the SPS2
system with its split private and shared L2 caches can be
flexibly and individually designed according to demand.
First, PL2 could be designed as a direct-mapped cache to
provide fast access and low power, while SL2 could be
designed as a set-associative cache to reduce conflict.
Second, PL2 and SL2 do not have to match each other in
size, and they could have different replacement policies.
We can evaluate the advantages of dividing shared data
and modified data. Take for example an application
comprising a large quantity of shared data that needs to be
used by several threads from different processors and also
a large quantity of data that is exclusive to one processor.
In the case of a private L2 architecture several copies of
the same shared data set will exist in the L2 caches of the
different processors. This architecture will suffer from

wasted cache space and incur higher numbers of on-chip
misses for large data sets and/or multiple concurrent
processes/threads. In the case of a shared L2 architecture,
any processor can access all of the shared data, however,
since many of the requested data blocks would not be
available in the local bank, it will result in high access
latencies while blocks are fetched from other banks. In the
case of the SPS2 architecture, each processor has two
separate L2 caches (PL2 and SL2), which could be
individually and simultaneously accessed. This scheme
reduces access latency and contention between shared data
and exclusive data. It imposes a low L2 hit latency because
most of the exclusive data should be found in the local
PL2. Shared data will be placed in SL2 which collectively
provide high storage capacity to help reduce off-chip
access. The SPS2 cache system does not need any new
additional CPU instructions to support its protocol, and
hence, no changes to the instruction-set or CPU hardware
interface are required to enable the cache system to work
with a conventional multiprocessor design. The only parts
that need to be modified comprise the cache architecture
and the cache controller that includes the realization of
cache coherence protocol.

3. Description of Coherence Protocol
 The protocol employed in SPS2 is based on the MOSI
(Modified, Owned, Shared, Invalid) protocol and
introduces no new states. Data contained in PL1 may have
all four possible states (M, O, S, I), while shared data
contained in SL2 has only two states (S, I), and evicted
data contained in PL2 has three possible states (M, O, I).
The SPS2 protocol uses the write-invalidate policy on
write-back caches. To keep consistency and coherency
between the three different caches, the cache coherence
protocol should also be modified accordingly.
 The protocol works roughly as follows. Initially, any
data entry in the three caches (PL1, PL2 and SL2) should
be Invalid (I). When node i makes a read access for an
instruction or data block at a given address, PL1i will be
searched first. Since PL1i is empty, then PL2i and SL2 will
be searched next. Again, neither PL2i nor SL2 have the
requested data, so a GetS message will be sent on the bus.
Since all the caches in all the processors are initially
invalid, the memory will put the data on the bus, and SL2
and PL1i will both store the data and change their states
from I to S. If another node j requires this same data
shortly after, the data will be copied from SL2 to PL1j
without needing to fetch the data from memory or to place
another copy in PL2j. If a read request finds the data in the
local PL1i, then no bus transaction is needed and data will
be supplied to the processor directly.

When node i needs to make a write access and a write
miss is detected because the data block is not present in
PL1i, PL2i, and SL2, the cache controller starts a block
replacement cycle, possibly evicting a dirty block from the
cache. A GetX message will be sent on the bus to fetch
data from the other nodes or memory and place the
requested data in the recently vacated slot. All the other
nodes will check their own PL1 and PL2 caches for the
requested data. If any node, for example j, finds Modified

(M) data with same address as the requested data, the
contents will be sent to PL1i and all the caches (including j
and excluding i) should invalidate data with this address.
Once the data is placed in PL1i and updated, its state will
be changed to M. Since the SPS2 scheme employs a write-
back policy, modified data will not be written back to
memory until it is replaced. A data item with state M
means this node exclusively retains the most recent version
of the data and that the data in memory is obsolete. If,
conversely, the write operation finds the data block in PL1i
or PL2i with state M (implying a write hit), then the write
process will proceed with no bus transactions involved.

Suppose that after node i executes a write command,
another node j needs to read data or fetch instruction from
same address, it will check PL1j first, then PL2j and SL2.
Since any copy that node j may have previously held
would have been invalidated by the write operation from
node i, it will be unable to find the data locally. Therefore
a GetS message will be placed on the bus requesting the
other nodes to send back the data. Node i will check its
own PL1i and PL2i, and find the requested data block with
state M in PL1i. The modified data will then be placed on
the bus and stored in both SL2 and PL1j. The cache state in
PL1i will be changed from M to O and that in PL1j will be
set to S.
 If a free slot is not available in any of the caches, then
the existing data block will need to be swapped out and
replaced with the new block. The old data block in PL1
will be evicted to PL2, if its state is M or O. Any data
evicted from PL2 will be written back to memory. If the
state of the data evicted from PL1 is S, which means that
SL2 must have a copy, then the data need not be copied
back to SL2, but simply invalidated. When data in SL2 is
evicted, write back is not needed.

4. Formal Verification of Cache Coherence
Protocol

 Cache coherence is a critical requirement for correct
behavior of a memory system. The goal of a formal
protocol verification procedure is to prove that it adheres
to a given specification. The specification is a list of
correctness properties required from the protocol. The
cache protocol verification procedure includes checking
for data consistency, incomplete protocol specification,
and absence of deadlock and livelock. Using formal
verification in the early stage of the design process is
helpful in finding consistency problems and eliminating
them before committing to hardware.

To maintain data consistency between caches and
memory, each node is equipped with a finite-state
controller that reacts to the read and write requests.
Abstracting from the low-level implementation details of
read, write, and synchronization primitives, one may
consider cache coherence protocol as families of identical
finite-state machines. The following section will illustrate
how the SPS2 protocol works using a state machine
description.

4.1 State graph of SPS2 cache protocol

Each node in the SPS2 architecture has three caches

(PL1, PL2, and SL2), each of which has its own state
representation. These three states can be concatenated to
form a single vector {XYZ} representing the state of a
single cache block in a node. X indicates the state of a PL1
cache block with four possible states (I, S, M, O), Y
indicates the state of a PL2 cache block with three possible
states (I, M, O), and Z indicates the state of a SL2 cache
block which has only two states (I and S). Therefore, for
each node a cache block could have up to 4×3×2=24
different states, although some of these states are
unreachable. For example, SMS is an impossible state,
because if PL2 has a modified block, it is impossible for
both PL1 and SL2 to have shared copies of this block.
Another impossible state for a data block is IMS, which
implies that the block in PL1 is invalid, while PL2 owns a
modified version, and SL2 has a shared copy. Excluding
the set of invalid states, there are only seven possible states,
i.e., III, IIS, SIS, MII, IMI, OIS, and IOS. III is the initial
state of each data block.

III

IIS SIS

OIS IOS

MII IMI

read
repS

rea
d

rep1

rep1

write

repS

read
/write

read/write

write

re
p2

rep2

write

re
ad

read

write

wr
ite

read

rep1

repS

(a) State transition graph (from processor perspective)

III

IIS SIS

OIS IOS

MII IMI

GetX

GetS

GetS

GetX

GetX

GetX

G
etX

GetS

GetS

G
et

S

GetS

GetX

GetX

GetS

(b) State transition graph (from bus perspective)

Figure 2. State transition graph of SPS2 cache protocol

Our coherence protocol requires two different sets of
commands. All the transition arcs in Figure 2(a)
correspond to access commands issued by a local
processor. These commands are labeled as read, write, and
replacement (rep1, rep2 and repS). All the arcs in Figure
2(b) correspond to commands issued by processors via the
snooping bus. They include GetS, GetX, inv, invS. All
these commands are defined below:

read: issued when a processor needs to fetch
instruction or load data;
write: issued when a processor needs to write data;
rep1: issued when PL1 needs room for new data;
rep2: issued when PL2 needs room for new data;
repS: issued when SL2 needs room for new data;

GetS: issued when requesting other nodes or memory
to share data, following a read miss;
GetX: issued when requesting other nodes or memory
for exclusive data, following a write miss;
inv: issued to invalidate copies in other nodes when a
local write access results in a hit.
invS: issued to invalidate other copies in PL1 when a
cache block in SL2 is replaced.

As shown in Figure 2, the cache state of any node will
change to the next state according to its current state and
the received command.

4.2 Verification using HyTech

One of the new techniques described in the research
literature relating to formal verification of coherence
protocols, is to validate protocols independent of the
number of processors in the system. This technique is
referred to as parameterized verification. In this section,
HyTech [12], an abstraction-level model checker, is used
to verify the SPS2 cache coherence protocol.

The first step is to define the SPS2 protocol using a
finite-state machine model. According to [13][14], we
limit ourselves to consider protocols controlling single
memory blocks and single cache blocks although the
procedure could be easily extended to encompass the
whole memory and cache system.

Let k be the number of nodes of a given
multiprocessor system. The behavior of the caches Ni in
node i is represented as a finite system <Q,∑i, fi,δi>
where Q is a finite set of states of a node (such as IIS, IOS,
etc.), ∑i is the set of operations (read, write, GetS, GetX,
etc.) causing state transitions, fi: Qk→{true, false} is the
characteristic function from the perspective of Ni , and δi
defines the state transition Im(fi)×Q×∑i→Q (where Im(fi)
is the image of fi).

Similarly, we could use EFSM (extended finite-state
machine) [14] to model parameterized cache coherence
protocol. The behavior of system is modeled as the global
machine MG = <QG,∑G,F,δG> which is associated with
protocol P, where QG ={s1, ..., sn}. si is the possible states

of cache blocks in one node. , F =<f1

k
G i== ∪Σ iΣ 1,...,fk> ,

δG: Im(F)×QG×∑G→QG. We model MG via an EFSM
with only one location and n data variables <x1, ..., xn>
(denoted as x) ranging over the set of positive integers. For
simplicity, location could be omitted, hence the EFSM-
states are tuples of natural numbers <c1,...,cn> (denoted as
c) where ni denotes the number of nodes in states si∈Q
during a run of MG. Transitions are represented via a
collection of guarded linear transformations defined over
the vector of variables <x1, ..., xn> (denoted as x) and
<x1', ..., xn'> (denoted as x'), where xi and xi' denote the
number of nodes in state si, respectively, before and after
the occurrence of an event. Transitions have the form G(x)
→T(x,x'), where G(x) is the guard and T(x,x') is the
transformation. The transformation T(x,x') is defined as
x'=M•x+c where M is an n×n-matrix with unit vectors as
columns. Since the number of nodes is an invariant of the
system, we require the transformation to satisfy the

condition x1+...+ xn= x1'+...+xn'.
The following gives an informal definition of how the

transitions of a cache coherence protocol can be modeled
via guarded transformations.
� Internal action. Caches in a node move from state s1

to state s2: x1'=x1-1, x2'=x2+1with the proviso that x1≥1
is part of G(x). For example, a read miss makes the
state of a node move from IIS to SIS.

� Synchronization. Two nodes synchronize on a signal:
a node N1 in state s1 changes to state s2, and another
node N2 in state s3 changes to state s4. This is modeled
as x1'=x1-1, x2'=x2+1, x3'=x3-1, x4'=x4+1, with the
proviso that x1≥1, x3≥1 is part of G(x). For instance,
a read miss may not only make a node change from III
to SIS, but also make another node change from MII to
OIS.

� Re-allocation. The state of all nodes C1,...,Ck is a
constant numberλ of nodes whose state changes to Cz
for z>k and to state Ci for i>k: x1'=0,..., xk'=0,
xi'=x1+...+xk-λ, xz'=λ. This feature can be used to
model bus invalidation signals.
Some of the transition rules are listed in Figure 3.

Because SPS2 protocol has seven different states (III, IIS,
SIS, MII, IMI, OIS, and IOS), we use these seven
variables of integer type to indicate seven states
respectively. Rule r1 corresponds to a read hit event: i.e.,
no action is needed; and rules r2 - r7 correspond to read
miss events. For the sake of brevity, other events (such as
write hit, write miss, replacement, etc.) are omitted in
Figure 3.

(r1) SIS+OIS+MII≥1→__
(r2) III≥1, MII=0, IMI=0 → III'=0, SIS'=SIS+1, IIS'=IIS+III-1
(r3) III ≥ 1, MII ≥ 1 → III'=0, SIS'=SIS+1, MII'=MII-1,

OIS'=OIS+1, IIS'=IIS+III-1
(r4) III ≥ 1, IMI ≥ 1 → III'=0, SIS'=SIS+1, IMI'=IMI-1,

IOS'=IOS+1, IIS'=IIS+III-1
(r5) IIS≥1 → IIS'=IIS-1, SIS'=SIS+1
(r6) IMI≥1 → MII'=MII+1, IMI'=IMI-1
(r7) IOS≥1 → OIS'=OIS+1, IOS'=IOS-1

......

Figure 3. EFSM for SL2 protocol

Possible sources of data inconsistency are outlined
below.

(i) OIS>=1 & MII >= 1. This indicates that data is
inconsistent if a node with state OIS coexists with other
cache blocks in other nodes with state MII. OIS implies
that PL1 modified the data and has ownership, and that
other nodes share this data through SL2. This is
contradicted by the corresponding block label MII for
another node which informs that PL1 has modified data,
and that PL2 and SL2 have no valid data. We can see there
are two conflicts. The first inconsistency is that if a cache
in one node has modified data, no other cache should have
valid copies (labeled O or S). The second inconsistency is
that since the state of one node is OIS then all the
corresponding states of the other nodes could only be IIS
or SIS. Since SL2 is a common shared cache, then the state
of SL2 should be coherent.

(ii) OIS >= 2. If more than one node has state OIS for

the same block, then data integrity will not hold, because it
is impossible for two or more PL1s to own the same block
of data.

(iii) IIS>=1 & IMI >= 1. If a block in one node is
shared as indicated by state IIS, then no other cache should
have a modified copy, i.e. with state IMI, of the shared
block.

In order to verify data consistency all possible sources
of data inconsistency must first be defined. As proven in
[13] [15][16], whenever both the guards of a given EFSM
and the target states are represented via constraints that
represent upward-closed sets, a symbolic reachability
algorithm using integer constraints for representing sets of
states always terminates. In this way we automatically
verified the properties of our SPS2 protocol using the
HyTech tool.

4.3 Verification using SMV

Computation Tree Logic (CTL) is a very simple
subset of model tense logic defined by Clark and Emerson
[17]. It can express the mandatory properties of the
protocols. It has three components: atomic propositions,
boolean connectives, and temporal operators. Atomic
propositions talk about the values of individual state
variables. The boolean connectives are the standard ones
(∧,∨,┐). Each temporal operator consists of two parts:
a path quantifier (A or E) and a temporal modality (F, G, X,
or U). Quantifier A indicates that the operator denotes a
property that should be true of all execution paths from a
given state whereas quantifier E denotes that the property
is exclusive to one path. The modalities describe the
ordering of events in time along an execution path and
have the following intuitive meanings:
(i) Fφ (φ holds sometime in the future) is true of a path
if there exists a state on the path for which the formulaφ
is true.
(ii) Gφ (φ holds globally) means that φ is true for
every state along the path.
(iii) Xφ (φ holds in the next state) means that φ is
true in the second state along the path.
(iv) φUψ (φ holds untilψ holds) means that there
exists some state along the path for which ψ is true, and
for all preceding states, φ is true.

The following examples illustrate the expressive
power of the logic.
(i) AG (req →AF ack): it automatically follows that if the
signal req is high, then eventually ack will also be high.
(ii) AG AF enabled: enabled holds infinitely on every
computation path.
(iii) AG EF restart: it is possible to reach the restart state
from any state.
(iv) AG (send →A(send U recv)): it is always the case
that if send occurs, then eventually recv is true, and until
that time, send must remain true.

To avoid state explosion, recent model checkers use
an implicit representation for finite-state systems based on
ordered binary decision diagrams (OBDD). SMV
(symbolic model verifier) [14] is one such tool for
checking that finite-state systems satisfy specifications

given in CTL. Applications of the symbolic model
checking method have been used to successfully verify the
snooping protocols of the Gigamax [18] and the
Futurebus+ [19]. The formal verification of the Stanford
FLASH cache coherence protocol via SMV proof assistant
is given in [9]. The following section show how SMV is
used to model and verify the proposed SPS2 protocol.

4.3.1 Modeling the protocol using SMV

Figure 4 shows a portion of the SMV program used to
model the state transactions of a single block in a node in
the SPS2 cache system. In lines 1-3, the ASSIGN
declaration initially assigns the state of the cache block the
value III and then proceeds to assign it the next state
depending on the command received. Lines 5-9 reveal that
when no command is present the next value of state is a
random value. Lines 10-27 express that if this node is
master, the next corresponding value of state differs
depending on the command (read, write, GETS, ...). Lines
28-35 reveal the next value of state when the current node
is not master and command is GETS.

ASSIGN 1
init(state) := III; 2
next(state) := 3
 case 4
 CMD=none: 5
 case 6
 ... 7
 1: state; 8
 esac; 9
 master: 10
 case 11
 CMD=gets: 12
 case 13
 state=III: SIS; 14
 1: any; 15
 esac; 16
 CMD=read: 17
 case 18
 state=IIS: SIS; 19
 state=IOS: OIS; 20
 state=IMI: MII; 21
 state in {SIS, MII, OIS}: state; 22
 1: any; 23
 esac; 24
 ... 25
 1: any; 26
 esac; 27
 CMD=gets: 28
 case 29
 state=III: IIS; 30
 state=MII: OIS; 31
 state=IMI: IOS; 32
 state in {IIS, SIS, OIS, IOS}: state; 33
 1: any; 34
 esac; 35
 CMD=read: state; 36
 ... 37
 1: any; 38

esac; 39

Figure 4. Modeling SPS2 protocol using SMV

4.3.2. Verifying the protocol

To verify data integrity, we introduce another
variable M to indicate if the content of a cache block has
been modified. Therefore, we could check whether the bus
has had any errors using formulas, such as
AG(CMD=replacement & M=1). As defined in Section 4.3, this

formula means that it is always true that when the
command is replacement, M must be high because if this
data block has not been modified, there is no need to
replace it. Another form of error is processor error which
typically reveals when state and command conflict. The
specification could be shown in the following formulae:

AG (p1.shared → p2.shared)
 AG (p1.state=SIS & p2.state=SIS → p1.data = p2.data)
 AG (p1.state=OIS & p2.state=IIS → p1.data = p2.data)
 AG (p1.readable & !M → p1.data=mem.data)
 AG (p1.excl → ! p2.readable)

The first formula states that it is always true that if one
node has a shared data block, then eventually another node
(for example, node 2) will also have this shared data. The
second formula declares that if the states of two nodes are
both SIS, the value of the data in both nodes must be the
same. Similarly, the third formula declares if the state of
one node is OIS and the state of another node 2 is IIS, the
value of the data in both nodes must be the same. The
fourth formula means that if the data in node 1 is readable
and not modified, then data should have same value as that
stored in the memory. The fifth formula means that if node
1 has exclusive data, then no other node has corresponding
data.
 Similarly, the SPS2 protocol could be verified for
liveness using the following formula by proving that from
any state it is possible to get to the states (OIS, MII, SIS)
or that the block is readable or writable:

AG EF p1.state=OIS or AG EF p1.state=MII or
AG EF p1.state=SIS or
AG EF p1.readable or AG EF p1.writable

The SMV verification process has been used to check
250 OBDD nodes. The safety properties of the SPS2
protocol are thus proved conclusively.

5. Summary
To improve the CMP cache performance, we propose

a new cache architecture SPS2 with split private and
shared L2 cache, which takes advantages of the low
latency of L2P and the high capacity of L2S. We also
propose a corresponding SPS2 cache coherence protocol
described by means of new state transition graphs in which
each node has three states to indicate the states of private
L1, split private L2 and split shared L2 respectively. Using
the state transition graphs, the functional correctness of
coherence protocol is proven through two formal
verification methods.

The use of formal design verification methods helps
identify coherence problems in the early stage, and provide
assurance of the correctness of the protocol before
commencing on the hardware development.

References
[1] K. Krewell. UltraSPARC IV Mirrors Predecessor.

Microprocessor Report, pages 1-3, Nov. 2003.
[2 C. McNairy and R. Bhatia. Montecito: A Dual-core Dual-

thread Intalium Processor. IEEE Micro, 25(2): 10-20,
March/April 2005.

[3] K. Diefendorff. Power4 Focuses on Memory Bandwidth.

Microprocessor Report. 13(13): 1-8, Oct. 1999.
[4] P, Jibgetura. A 32-way Multithreaded SPARC/E processor.

In proceedings of the 16th HotChips Symposium, Aug. 2004.
[5] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing

Replication, Communication and Capacity Allocation in
CMPs. In proceedings of 32th International Symposium on
Computer Architecture, pages 357-368, June 2005.

[6] M. Zhang and K. Asanovic. Victim Replication:
Maximizing Capacity while Hiding Wire Delay in Tiled
Chip Multiprocessors. In proceedings of 32th International
Symposium on Computer Architecture, pages 336-345, June
2005.

[7] B. M. Beckmann, M. R. Marty, and D. A. Wood. Balancing
Capacity and Latency in CMP Caches. Univ. of. Wisconsin
Computer Sciences Technical Report CS-TR-2006-1554,
February 2006.

[8] J. Chang, and G. S. Sohi. Cooperative Caching for Chip
Multiprocessors. In proceedings of 33th International
Symposium on Computer Architecture, pages 264-2765,
June 2006.

[9] K. L. McMillian, Parameterized Verification of the FLASH
Cache Coherence Protocol by Compositional Model
Checking. In CHARME'01, Livingston, Scotland, LNCS
2144, Springer-Verlag, 2001, pp.179--195.

[10] D. J. Sorin, M. Plakai, A. E. Condon, et. al. Specifying and
Verifying a Broadcast and a Multicast Snooping Cache
Coherence Protocol. IEEE Transaction on Parallel and
Distribution System. 13(6): 556-578, 2002

[11] Milo M. K. Martin. Formal Verification and its Impact on
the Snooping versus Directory Protocol Debate. In
Proceedings of the 2005 International Conference on
Computer Design. 2005: 543-449

[12] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: a
Model Checker for Hybrid Systems. In Orna Grumberg,
editor, In Proceedings of 9th Conf. on Computer Aided
Verification (CAV'97), LNCS 1254:460-463. Springer-
Verlag, 1997.

[13] G. Delzanno. Automatic Verification of Parameterized
Cache Coherence Protocols. 12th International Conference
2000, LNCS 1855,Chicago, IL, USA, pp.53-68.

[14] K.L. McMillan, Symbolic Model Checking: An Approach to
the State Explosion Problem, Ph.D. Dissertation, Carnegie
Mellon University, May 1992.

[15] J. Esparza, A. Finkel, and R. Mayr. On the Verification of
Broadcast Protocols. In Procedings of the 14th Annual
Symposium on Logic in Computer Science (LICS'99), 352-
359, 1999.

[16] G. Delzanno, J. Esparza, and A. Podelski. Constraint-based
Analysis of Broadcast Protocols. In Proceedings of the
Annual Conference of the European Association for
Computer Science Logic (CSL'99), LNCS 1683, 50-66,
Springer-Verlag, 1999.

[17] E. M. Clarke and E. A. Emerson. Synthesis of
Synchronization Skeletons for Branching Time Temporal
Logic. In Dexter Kozen, editor, Logic of Programs:
Workshop, LNCS 131 , Springer-Verlag, 1981

[18] K.L. McMillan, and J. Schwalbe, Formal Verification of the
Gigamax Cache Consistency Protocol, In Proceedings of the
ISSM Int’l Conf. on Parallel and Distributed Computing,
Oct. 1991.

[19] E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long,
K.L. McMillan, and L.A. Ness, Verification of the
Futurebus+ Cache Coherence Protocol, In Proceedings of
the 11th Int’l Symp. on Computer Hardware Description
Languages and Their Applications, Apr. 1993.

