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Abstract

Nowadays, there is a clear trend in industry towards
employing the growing amount of transistors on chip
in replicating execution cores, where each core is Si-
multaneous Multithreading (SMT). In order to appro-
priately connect such a growing number of on-chip
execution cores to a shared cache subsystem, some tra-
ditional considerations regarding SMT should be re-
visited.

In this paper we study the effects of long latency
instructions and their interaction with the processor to
cache interconnection network in new scenarios com-
prising multiple on-chip SMT cores. We show results
that clearly indicate the important role of the on-chip
interconnection networks, used to communicate the
execution cores with the shared L2 Cache, and its in-
teraction with the specific architecture of each core.

1 Introduction

As process technology advances, and we have at
our disposal more transistors on chip, the issue of how
to effectively employ so many resources gets more
importance. This quest of effectiveness led to Si-
multaneous Multithreading (SMT) [4, 8, 11] and On-
Chip Multiprocessors (CMP) [5]. Nowadays, there
is a clear trend in industry towards CMP or even
CMP+SMT processors, like the Intel Core 2 Duo [10],
IBM Power5 [2], and Sun’s T1 [1] Niagara processors.
Morever, this trend seems to head towards high-degree

CMPs1, with lots of on-chip cores.
On the one hand, the CMP conventional designs

share the second level (L2) cache among all the on-
chip cores by means of an interconnection switch. As
the number of on-chip cores increases, the pressure on
this L2 cache and interconnection network is also aug-
mented. As a result, the L2 access time turns more
unpredictable.

On the other hand, in SMT processors, L2 access
time is used to determine when a thread has missed in
the L2 cache. As shown by some authors the L2 cache
misses are of a key importance in SMTs [7], since a
long latency instruction may stall the whole machine.
A way to deal with long-latency operations, like L2
cache misses, is the Instruction Fetch Policy. The
IFetch Policy determines from which thread(s) instruc-
tions are fetched every cycle. Several authors have
shown that long latency operations have to be taken
into account by the IFetch Policy in order to boost
SMT performance [3, 7, 9]. Some of these IFetch poli-
cies track the delay of loads when accessing the outer
cache level (the L2 cache in our processor setup) to
determine whether they miss and stop/flush the corres-
ponding thread.

In this paper we shed some light on the implications
of having multiple SMT cores sharing a single L2. We
focus on the forthcoming high-degree CMP proces-
sor generations, with multiple SMT cores sharing an
L2 Cache. As we augment the number of replicated

1In this paper the termdegree of a CMPrefers to number of
cores of the CMP. Analogously, the termdegree of an SMTrefers
to the number of contexts of that SMT. For example, IBM Power5
is a 2-degree CMP where each core is a 2-degree SMT.



SMT cores sharing an L2 cache the competition for
the interconnection network that communicates each
core with the shared L2 increases. Our results show
that the FLUSH IFetch policy, which has probed to be
better than the ICOUNT fetch policy for single-core
SMTs, reduces its improvements over ICOUNT as we
increase the number of SMT cores and even provides
worse results than ICOUNT for quad-core configura-
tions.

2 Methodology

We use a trace driven SMT simulator derived from
SMTsim [8]. The simulator consists of our own trace
driven front-end and an improved version of the SMT-
sim’s back-end that provides multicore support. Our
simulator also permits simulating the impact of exe-
cuting along wrong paths on the branch predictor and
the instruction cache by having a separate basic block
dictionary in which information of all static instruc-
tions is contained.

Our workloads2 use the SPEC2000 benchmark
suite. From them, we have collected traces of the most
representative 300 million instruction segment of each
benchmark, following the idea presented in [6]. Each
program is compiled with the–O2 –nonsharedop-
tions using DEC Alpha AXP-21264 C/C++ compiler
and executed using the reference input set. Since a
complete study of all benchmarks is not feasible due
to excessive simulation time, we have chosen some
of them, making groups according to their charac-
teristics. We classified benchmarks into INT/FP ac-
cording to the spec suite, and into high-ILP (ILP) or
memory-bounded (MEM) according to their memory
behavior [3]. Figure 1 shows the main simulation pa-
rameters so as the workloads chosed.

Regarding the configurations used in this paper, we
denote them as CXTY, where X stands for the num-
ber of cores and Y stands for the number of threads on
each core (i.e. C4T2 stands for a configuration with 4
cores with 2 threads in each core). The specific con-
figuration of each core is the one shown in Figure 1.

Running multi-threaded simulations requires a
commitment regarding the finalization methology, that

2Whenever a thread is used more than once in a workload each
additional instance is forwarded 1 million instruccions more than
the prior instance.

is, when do we consider a simulation to be finished.
For such a simulation to yield reliable results, we
must assure that all threads run simultaneously during
a representative amount of time. This may suppose
prohibitive computational costs with a wide range of
workloads, since not all benchmarks require the same
amount of time to finish their executions. In this sense
we considerer a simulation finishes after executing 120
million of cycles3.

3 Interaction between the IFetch Policy and
the intercontection network

In our research we focus on CMPs comprised of
SMT cores. Each core allows two threads running si-
multaneously and has its private Instruction Cache and
Data Cache (see details in Figure 1). The first level
cache is connected through an on-chip bus-based inter-
connection network to a shared L2 Cache; each core‘s
ICache and DCache is connected to each of the shared
L2 banks.

In order to evaluate the traffic effects on the on-chip
core-to-cache interconnection network and the inter-
action with the intra-core IFetch policy implemented
we use two well-known IFetch policies: ICOUNT and
FLUSH.

The ICOUNT policy [9] prioritizes threads with
fewer instructions in the pre-issue stages, and presents
good results for threads with high ILP. However, SMT
has difficulties with threads that experience many
loads that miss in L2. When this situation happens,
then ICOUNT does not realize that a thread can be
blocked on an L2 miss and will not make forward
progress for many cycles. Depending on the amount of
instructions dependent of the blocked load, many pro-
cessor resources may be blocked and the total through-
put suffers from a serious slowdown.

The performance of fetch policies dealing with load
miss latency depends on the following two factors: the
detection moment (DM) and the response action (RA).
The DM indicates the moment in which the policy de-
tects a load that fails or is predicted to fail in cache.
Possible values range from the fetch of the load until
the moment that the load finally fails in the L2 cache.
Two characteristics associated with the DM are the

3We refer here to simulated cycles.
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Simulation Parameters

Pipeline depth 11 stages L1 I-Cache 64KB, 4-way, 8 banks
Queues Entries 64 int, 64 fp, 64 ld/st L1 D-Cache 32KB, 4-way, 8 banks
Execution Units 4 int, 3 fp, 2 ld/st L1 lat./miss 3/22 cycs.
Physical Registers 320 regs. I-TLB ,D-TLB 512 ent. Full-assoc.
ROB Size* 256 entries TLB miss 300 cycs.
Branch Predictor perceptron L2 Cache 4MB, 12-way, 4 banks

(4K local, 256 perceps) L2 latency 15 cycs.
BTB 256 entries, Main Memory lat. 250 cycs.

4-way associative
RAS* 100 entries

gzip a swim n
vpr b apsi o
gcc c wupwise p
mcf d equake q
crafty e lucas r
perlbmk f mesa s
parser g fma3d t
eon h sixtrack u
gap i facerec v
vortex j applu w
bzip2 k galgel x
twolf l ammp y
art m mgrid z

Number of Threads
Type 2 4 6 8

ILP1 e, j e, t, u, j h, e, t, w, u, j i, j, c, f, k, e, a, h
ILP2 i, f h, j, k, f a, h, j, k, e, f k, e, a, h, o, p, s, t
ILP3 o, p w, p, s, t u, w, p, z, s, t j, f, e, h, p, t, v, y
ILP4 a, p e, a, w, p k, j, h, s, y, t w, u, v, z, u+1, p, s, t
ILP5 k, t k, h, s, t h, u, y, j, a, w c, w, f, x, e, z, a, y
MEM1 l, d m, l, q, d b, m, l, q, g, d d, l, b, g, m, n, r, q
MEM2 m, n m, n, r, q m, r, n, r+1, q, m+1 l, b, l+1, g, b+1, l+2, b+2, g+1
MEM3 b, g d, l, b, g b, d, l, b+1, g, l+1 m, n, m+1, r, n+1, m+2, n+2, r+1
MEM4 g, r b, g, m, r l, b, g, m, q, r b, g, r, q, b+1, g+1, r+1, q+1
MEM5 n, q l, g, n, q l, l+1, g, n, q, n+1 d, l, m, n, d+1, l+1, m+1, n+1
MIX1 b, j b, q, t, j l, b, q, f, t, j d, l, b, g, i, j, c, f
MIX2 n, e l, n, p, e g, l, n, p, e, a b, g, m, n, a, h, o, p
MIX3 d, a d, s, r, a d, l, s, w, r, a m, n, r, q, i, j, e, h
MIX4 g, f g, b, m, f r, g, b, m, h, f l, b, g, m, n, r, f, s
MIX5 r, p r, j, f, p h, l, e, r, m, d q, b, c, k, e, a, o, t

Figure 1. Simulation parameters and Workloads. (resources marked with * are replicated per thread)

reliability and the speed. The higher the speed of a
method to detect a delinquent load, the lower its relia-
bility. On the one hand, if we wait until the load misses
in L2, we know for certain that it is a delinquent load:
totally reliable but too late. On the other hand, we can
predict which loads are going to miss by adding a load
miss predictor to the front-end. In this case, the speed
is highest, but the reliability is low due to predictor
mispredictions. The RA indicates the behavior of the
policy once a load is detected or predicted to miss in
cache, that is, it defines the measures that the fetch
policy takes for delinquent threads. With these two
parameters, we will classify all current policies related
to long latency loads.

In [7] several RA are proposed. We focus on the
mechanism leading to the best performance, what we
call FLUSH. As a result of applying FLUSH, the of-
fending thread temporarily does not compete for re-
sources and, more importantly, the resources used by

this thread are freed, giving the other threads full ac-
cess to them. Several DM are proposed for the FLUSH
response action.

• Delay after issue DM:When this DM is used, a
load is declared to miss in the L2 cache when it
spends more cycles in the cache hierarchy than
needed to access the L2 cache, including possible
resource conflicts. We will refer to this FLUSH’s
DM as Speculative (FL-SX) - X stands for the
delay after which the mechanism is triggered.

• Trigger on miss DM:In this case we wait the load
miss in the L2 to start the corresponding RA. We
will refer to this FLUSH’s DM as Non Specula-
tive (FL-NS).
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3.1 Single-core analysis

According to our simulation parameters (see Fi-
gure 1) we chose 30 cycles (FL-S30) as the delay after
issuing a load from the load issue queue to activate
FLUSH mechanism.

Our results are consistent with [7]: the delay-after-
issue DM is better than trigger on miss, both improv-
ing ICOUNT. For this experiment, we simulated a
single-core SMT configuration. In this uniprocessor,
with two hardware contexts, we ran all two-threaded
workloads in Figure 1. From the results shown in
Figure 2 it can be asserted that the FLUSH mecha-
nism reduces throughput losses in workloads contain-
ing threads with bad memory behaviors (MEM and
MIX). Thus, the FLUSH mechanism yields speedups
of up to 93% in MIX workloads, with an average
speedup of 22%. However, as we will see following,
these asserts are highly dependent on the specific con-
figuration. In particular with the amount of replicated
SMT cores.

3.2 Multiple-core analysis

Next, we simulated the whole workloads in Figure 1
replicating SMT cores with two threads per core. The
average results per each workload type and machine
configuration are shown in Figure 4. These results
reveals that in multicore configurations with an in-
creasing number of SMT cores per chip the prior af-
firmations can not be asserted. In fact, as we increase
the amount of replicated SMT cores the 22% ave-
rage speedup obtained with the FLUSH mechanism, as
compared to ICOUNT, experiences a progressive re-
duction. Hence, with a four-core configuration (C4T2)
the FLUSH mechanism yields an average slowdown
close to 9%.

In order to shed some light into the rationale be-
hind these results, we deeply analyzed the influence of
the access time to L2. For this experiment, we mea-
sure the number of cycles it takes a load to access the
L2 cache since it is issued from the load/store issue
queue, see Figure 3. For this experiment we use the
ICOUNT policy given that FLUSH work on top of it.
We observe that augmenting the number of cores criti-
cally increases the probability of suffering from higher
latencies in L2 accesses. Increasing the number of

SMT cores has a deep impact on the traffic of the inter-
connection network that communicates each core with
each of the shared L2 cache banks, so as L2 banks
contention. Since each core has a limited number of
Load/Store (LDST) units, shared by all threads run-
ning in the core, increasing the number of cores puts
more pressure on the interconnection network and the
L2 cache. As we increase the amount of cores con-
nected to this shared resource, the possibility of suf-
fering from contention increases. We also observe that
as we increase the number of cores the dispersion also
increases. This indicates us that there is no a single
threshold that we can choose for the trigger mecha-
nism that provides good results.

This high variability in the L2 access time causes
the following effects.

• On the one hand, if we establish a low threshold
the number offalse missesincreases. That is, the
number of times we flush a load predicting that
it is going to miss and finally it turns out to be a
non-miss L2 cache access. As a result, the perfor-
mance of the FLUSH policy is heavily affected.

• On the other hand, if we establish a high threshold
the number of cycles a thread can clog resources
increases, leading to performance lost. We com-
ment on this issue in the next section.

To sum up, the throughput of the FLUSH mecha-
nism configurations reflects a clear trend to get dimi-
nishing returns as we increase the number of cores. In
fact, the FLUSH mechanism turns ineffective just by
passing from a dual core to a quadruple core as de-
picted in Figure 4.

3.3 Detection Moment Analysis

The results presented so far indicates a clear trend
to higher levels of dispersion as augment the number
of on-chip replicated SMT cores. To deeply analyze
this effect we ran some additional simulations cover-
ing a wider DM spectrum. For an explanatory analysis,
in this experiment we chosed two representative four-
cored configuration examples. The 8-threaded MIX3
(see Figure 1) and an 8-threaded workload comprised
of bzip2 and twolf, where instances of the two appli-
cations never share a single core, are presented in left
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and right side of Figure 5, respectively. In the first, the
trigger value that yields the highest overall through-
put is 50 cycles. However, compared to speculative
instances, the non-speculative FLUSH implementation
yields the highest overall throughput. In the second,
the best trigger value is 90 cycles. These examples
indicates that there may be trigger values which best
balance the amount of false misses and the clog re-
sources, yielding the highest overall throughput.

As shown in the left side of Figure 5, such a
best-balanced trigger may be improved by a non-

speculative FLUSH implementation, where no harm-
ful false misses occurs. However, this latter situation
varies depending on the specific workload analyzed,
with examples in both senses that either favor the non-
speculative or some speculative instance, as occurs in
the right side of Figure 5. This dependency of the spe-
cific workload run together with the dependency to the
number of cores definitely imposes hard constraints to
stablish a good-for-all trigger value.
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4 Conclusions

In this paper we show results which clearly indi-
cate that future high-degree Multithreaded CMPs, with
multiple SMT execution cores sharing an L2 cache,
may not simply rely on SMT IFetch policies to boost
overall throughput. Neglecting the important role of
both the on-chip processor to memory interconnec-
tion network and the outer on-chip cache level design
may have disastrous consequences. Thus, conven-
tional SMT mechanisms to obtain high performance
are directly affected by possible interconnection traf-
fic and heavy cache banks contention, not considered
in their original design, turning them into not effec-
tive. A bus-based interconnection network between
each SMT execution core and a shared L2 cache may
not be enough in this new scenario; requiring a bigger
on-chip resource budget to implement latency hiding
interconnection networks.
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