
Providing QoS with Virtual Private Machines

Kyle J. Nesbit, James Laudon*, and James E. Smith

University of Wisconsin – Madison
Dept. Electrical and Computer Engineering

{ nesbit, jes }@ece.wisc.edu

Sun Microsystem*
james.laudon@sun.com

1. Motivation

To provide both efficiency and high throughput,
CMP-based systems exploit resource sharing,
especially in the memory hierarchy. Shared resources
include both bandwidth, including interconnection
paths with associated buffering, and storage space.
Resource sharing leads to interference among threads
so that a thread’s performance depends on the threads
with which it is co-scheduled. Although main memory
space is managed by operating system algorithms, most
of the other memory resources – main memory
bandwidth and all cache spaces and bandwidths – are
typically managed through hardware mechanisms.

The weakening of software control over shared
hardware resources comes at a time when trends
suggest predictable performance and equitable resource
management will be critical for evolving and emerging
applications. To illustrate this, consider the following
applications and application trends.

1) Applications with soft real-time constraints, for
example those that support multimedia such as HD
videos and resource-intensive video games, will
become more important in the future as consumer
computing moves away from the desktops and towards
game consoles (digital hubs) and portable devices (cell-
phones). It is important that a system based on multi-
threaded chips can provide assured performance levels
for certain threads regardless of what other threads are
doing.

2) Fine-grain parallel applications are the key to
the long-term success of increasingly multi-threaded
chips at the client level. To extract fine-grain
parallelism from an application, it is important that
developers can rely on predictable execution times in
order to effectively schedule concurrent tasks and
optimize synchronization overheads.

3) The availability of inexpensive multiprocessor
systems will create a new wave of server consolidation
and hosted applications. In these workloads, a server
supports multiple threads on behalf of independent
customers. It is important that resources be shared in a
controlled and equitable manner so that customer tasks
perform in a responsive, timely way, and that
customers receive the service they pay for, regardless
of what other customers are doing.

Consequently, future CMP-based systems must
incorporate hardware mechanisms and software
policies to provide threads with Quality of Service
(QoS). QoS is necessary to preserve performance
predictability and facilitate the design of dependable
systems.

2. Virtual Private Machines

To provide a solution, we propose a QoS
framework based on Virtual Private Machines (VPMs).
A VPM is defined as a set of allocated resources
(notably processors, bandwidths, and memory spaces).
The key objective is that a VPM should provide
performance at least as good as a real private machine
having the same resources.

System software and applications implement
policies that determine VPM configurations, and
hardware mechanisms enforce the allocations [1]. For
example, Figure 1 illustrates a generic CMP-based
system and Figure 2 illustrates the CMP is divided into
four VPMs. VPM0 is given a significant fraction (50%)
of resources to support a demanding multimedia
application, while the other three VPMs are assigned a
much lower fraction of resources (10% each). This
leaves 20% of the cache memory resources
unallocated. Overall, VPMs provide system software
with a useful abstraction for maintaining control over
shared microarchitecture resources.

Main Memory (Capacity M)

Memory Controller

Proc. 1

L1 Cache

Interconnect

Proc. 2

L1 Cache

Proc. 3

L1 Cache

Proc. 4

L1 Cache

L2 Cache (Capacity C)

Bandwidth K

Bandwidth L

Figure 1: CMP-Based System with Shared Memory
System Resources

Main Memory

Memory Cntl.

L2 Cache
(Capacity .5C)

Proc. 1

L1 Cache

VPM 1

Main Memory

Memory Cntl.

L2 Cache
(Capacity .1C)

Proc. 2

L1 Cache

VPM 2

BW .5L BW .1L

Main Memory

Memory Cntl.

L2 Cache
(Capacity .1C)

Proc. 3

L1 Cache

VPM 3

Main Memory

Memory Cntl.

L2 Cache
(Capacity .1C)

Proc. 4

L1 Cache

VPM 4

BW .1L BW .1L

BW .5K BW .1K BW .1K BW .1K

Figure 2: Four Virtual Private Machines

A VPM is not the same as hardware partitioning.
In a VPM, a thread is allocated a minimum amount of
shared resources, and if excess resources are available,
the VPM may receive more than its allocated
resources, thus providing additional speedup. Excess
resources are resources that are either unallocated, or
resources that are allocated to a VPM but are not used.
Excess resources are distributed according to an excess
resource policy.

We briefly describe a few important applications
of VPMs, and describe how system software and
application developers can control VPMs in order to
achieve system-level objectives.

2.1. Soft Real-Time

For single-threaded applications with soft real-
time performance requirements, an application
developer can use automated tools to determine the
minimum VPM resources required to meet the
application’s performance requirements. When the
application is deployed, as long as the application is
running inside a validated VPM configuration, the
application will meets its performance requirements
regardless of the load placed on the CMP by other
tasks [2]. An application’s VPM configuration is
encoded in the application binary, and at run time is
part of the application’s architected state (via ISA-
supported control registers). Whenever the application
is context switched in, its VPM configuration is loaded.

VPM hardware mechanisms must be supported
by an OS scheduler that takes into account
applications’ VPM and computation time requirements.
Such a scheduling algorithm ensures that the shared
CMP resources are never over allocated.

Traditionally, general-purpose OSes use priority
levels to ensure that the most critical applications meet
their performance objectives. Priority levels do not
offer the same control over QoS as VPMs do, but
priority levels do provide some information about
applications’ relative performance requirements.
Policies that translate priority levels to VPM
configurations is an open research problem.

2.2. Performance Isolation

In server systems, VPMs provide performance
isolation. The system software (an OS or VM)
allocates individual clients their own VPMs. In this
case, a client may be an internet user connected to a
streaming server, or a business leasing a fraction of a
server to host a scientific or enterprise application. In
either case, the client’s VPM ensures that the client
will receive its allocated (purchased) share of the
server regardless of the load placed on the server by
other clients.

Performance isolation is also important for other
computing environments, such as desktops, as it can be
disconcerting to a user when his/her application

displays significant performance differences for no
obvious reason.

2.3. Excess Resource Policies

As described earlier, excess resource policies
control how excess resources are distributed. Excess
resources are resources that are not needed to meet a
workload’s strict performance requirements (e.g. soft
real-time requirements).

Excess resource policies depend on system-wide
objectives, and in turn, these objectives depend on the
system’s workload. Two examples of system-wide
objectives are to improve aggregate performance and
fairness; sometimes these objectives appear in
combination. Because applications have diverse and
sometimes disparate resource requirements, hardware
should support multiple parameterized excess service
policies that can be controlled by system-level software
policies.

System software has a global view of resources
and applications, which gives software the potential to
distribute resources in a globally optimized manner, at
least when compared with hardware mechanisms that
tend to be based on simple, localized heuristic.

Software policies may partially override the
hardware’s excess resource policy by allocating
resources that would have otherwise been unallocated,
although software policies have to rely on the
hardware’s excess resource policies to distribute excess
resources that have been allocated to a thread but are
unused. For this reason, VPM software and hardware
excess policies should be co-designed.

3. Conclusion

In this paper, we have summarized the VPM
framework, including its constituent hardware
mechanisms and software policies. It is our position
that the VPM framework has the potential to meet the
disparate QoS requirements of general-purpose CMP-
based systems. Through future research we plan to
illustrate the effectiveness and feasibility of the
proposed tools, hardware mechanisms, and software
policies.

4. References

[1] Kyle J. Nesbit, Nidhi Aggarwal, James Laudon, and
James E. Smith, Fair Queuing Memory Systems, In
Proceedings of the 39th Annual International
Symposium on Microarchitecture (MICRO-39), Dec.
2006.
[2] Jae W. Lee, and Krste Asanovic, METERG:
Measurement-Based End-to-End Performance
Estimation Technique in QoS-Capable
Multiprocessors. In 12th Real-Time an Embbeded
Technology and Applications Symposium (RTAS-12),
April 2006.

