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ABSTRACT 
Analytical Placement (AP) is a CAD algorithm 

for ASIC placement.  This algorithm generates a 

system of linear equations, which we solve using 

Gaussian elimination.  We demonstrate how the 

specific sub-problem of Gaussian elimination on 
AP input matrices has the unique property where 

the pivot row is always in place, and show how 

this greatly enhances our ability to parallelize the 

algorithm.  We demonstrate why a sparse-matrix 

implementation of the elimination algorithm 

would be difficult if not impossible to implement 

on a GPU.  We then parallelize a full-matrix 

implementation of the placer on a GPU using 

CUDA, and show good speedups versus an 

optimized CPU implementation. 

 

1.  INTRODUCTION 
 

GPUs are a useful tool for parallelization of non-

graphical programs that would traditionally be 

executed on a CPU.  They contain an abundance 

of parallelization hardware that can be exploited 

to provide fine-grained parallelization that would 
require too much overhead in a thread-based 

CPU approach.  This, combined with the fact 

that GPU manufacturers have been adding APIs 

to access this hardware from pre-processed C 

code, makes this approach particularly attractive.  

We focus our research exclusively on the 

NVIDIA API called CUDA. 

 CAD algorithms are generally known to 

be computationally expensive, so we chose to 

parallelize a classic algorithm in this space called 

Analytical Placement (AP).  AP is a placement 
technique, often used commercially in an ASIC 

CAD flow.  It is known in literature for its good 

quality and fast runtimes.  A typical AP flow 

computes a placement in a single run of the 

algorithm.  It does this by forming a set of 

simultaneous linear equations which represent a 

fixed IO placement, a set of blocks to be placed, 

the nets that connect them, and a goal to 

minimize.  These equations are then solved, 

producing a real-valued coordinate for each 

block.  The block coordinates are then 

discretized using various heuristics.  For 

simplicity purposes, this paper will focus purely 

on minimization of wirelength, although other 

goals, such as timing, power, and signal integrity 

are also commonly used.  As well, this paper will 

not focus on the heuristics and techniques used 

for discretizing the placement. 

The sections of this paper are as 

follows.  In section 2, we discuss the problem 

definition as well as the theoretical background 

for AP.  In section 3, we discuss a unique 
property of the problem space that allows us to 

implement a much faster parallelization 

technique, as well as the pseudo-code for the 

algorithm that we chose.  In section 4 we show 

our results.  In section 5, we give a step-by-step 

study of how one might re-design the algorithm 

in order to fully maximize use of the hardware.  

In section 6 we present our conclusion. 

 

2.  PROBLEM DEFINITION 
 

The AP problem inputs are: 

 A netlist of blocks and connectivity 
 Coordinates for fixed blocks (I/Os) 

 A net model 

The AP output is a real-valued (x, y) coordinate 

for every non-fixed block in the netlist. 

One example of a net model is the 

clique model.  A clique in an undirected graph G 

is a set of vertices V such that for every two 

vertices in V there exists an edge connecting the 

two.  In this model, each of the blocks in the 

netlist is a vertex, and the pins of a net form a 

clique.  A net with |V| pins is thus modeled as a 
clique, and assigned edge weights 2/|V|.  The 

total weight of all edges in the clique is |V|-1, the 

number of connections in a binary tree. 

 Another popular model for a net is the 

star model, where a dummy block is introduced 

to connect the blocks of a net.  We will not focus 

on this model, although [1] demonstrates that 

these two techniques are actually equivalent. 

 With the netlist represented as a graph 

made of cliques, the AP cost function to 

minimize is defined as shown in Equation 1.  In 



this function, the square of the wirelength is 

minimized, which approximates the goal of 

minimizing wirelength. 

This cost function is separable for x and 

y components.  To minimize this cost function, 

we set the derivative with respect to each 
unknown variable to zero.  This produces a set of 

linear equations, which can be expressed in the 

form shown in Equation 2.  The system of 

equations to be solved is shown more succinctly 

in equations 3 to 5. 
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Equation 1: 
i and j iterate over all n blocks in the netlist 
wij is the sum of the weights between blocks i 

and j or 0 for no edge 

x* and y* are x and y coordinates for the fixed 

IOs, or unknowns for blocks to place. 

 

         [Q]x= c  (2) 

Equation 2: 
Q is an m × m “connectivity matrix,” where m is 

the number of objects in the system whose 

placements are unknown 

x  is an m × 1 variable matrix 

c  is an m × 1 “anchoring” vector, which results 

from the fixed blocks 
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Equations 3 – 5: 
k is the set of all blocks 

z is the set of all fixed blocks 

This system of equations is solved using 

standard techniques.  This paper will focus on 

Gaussian elimination, since this technique has 

the smallest computational complexity.  See 

Table 1 for details. 

 

Technique Additions Multiplications/ 

Divisions 

Gauss-Jordan n3/2 n3/2 

Gaussian 

Elimination 

n3/3 n3/3 

x =Q-1 c  2n3 2n3 

Cramer’s Rule n4/3 n4/3 

Table 1:  Computational Complexity of 

Various Solving Techniques (adapted from 

[2]) 

3.  GAUSSIAN ELIMINATION 

USING CUDA 
In the context of the Q matrix for AP, we note 

that pivot elements are always in place, and row 

swaps are never necessary during Gaussian 
Elimination.  This is because the pivot variable 

essentially acts as a summation of all forces 

acting on a given block.  In practice, pivots can 

only be zero if: 

1. Summation of connected weights is 

zero 

2. Zero is generated during row 

subtraction 

Situation 1 only occurs if a block is 

completely unconnected.  Situation 2 only occurs 

if some blocks form a disjoint subgraph.  Since 

neither of these degenerate netlists is relevant, 
we can eliminate the row swapping portion of 

the Gaussian elimination operation. 

 Using this knowledge, we can condense 

the traditional Gaussian Elimination algorithm to 

the algorithm shown in Algorithm 1. 

 

Algorithm Gaussian Elimination (Q,,x, c) { 
   For row = 1 to m of Q { 

      Normalize the (pivot) row so that the 

leftmost entry is one 

      CUDA:  one entry per thread 

      Cache the pivot column so that the value of 

the subtractor for each row will be known 

      CUDA:  One cached value per thread 
      For each row/column combination below the 

pivot row, multiply the pivot row value by 

the cached pivot column entry and subtract 

from the entry – thus eliminating the pivot 

value 

      CUDA:  One entry per thread 

   } 

   // Q is now upper triangular 

   Perform back-substitution to find each value of 

x matrix 

} 
 

Algorithm 1:  Gauss-Elimination 

 
Note that the algorithm shown in Algorithm 1 

relies on caching the pivot column.  In order to 

eliminate the leftmost value of some row, we 

must use the correct multiplier.  The multiplier is 

the value of the leftmost entry, however, since 

we cannot rely on the fact that this entry will 

remain in place during the processing of 



subsequent row entries, we must cache this value 

before launching any elimination threads. 

A key observation is that the Q matrix 

is constant for solving both the x and the y 

dimensions.  Using this observation, we can 

perform the Gaussian elimination on the Q 
matrix, and simultaneously augment the 

constraint matrix for both dimensions.  This 

effectively halves the runtime of our solution, 

and lends support to our choice of Gaussian 

elimination as our solving technique. 

We implemented an AP using the C++ 

programming language using more primitive 

CUDA code wherever necessary.  A screenshot 

of a placed netlist is shown in Figure 1 

Figure 1, below.  Note that we used 

EasyGL [3] for graphical debugging purposes. 

 

 
 

Figure 1:  A screenshot of a netlist placement 

We had intended to create a sparse-

matrix implementation and parallelize it in order 
to achieve further gains.  However, it became 

apparent that non-zero entries would become 

zero, and, more importantly, zero-entries would 

become non-zero during the course of Gaussian 

Elimination.  It was not obvious how to achieve 

this in the CUDA implementation since it would 

rely on re-allocating arrays at times. 

 

4.  RESULTS AND ANALYSIS 
 

In order to test our placer, we needed netlists of 

varying sizes.  We chose to implement a random 

circuit generator, and use it to create our test 
circuits.  The circuit generator takes as 

parameters the number of blocks, nets, and IOs, 

and the likelihood of large multi-fanout nets.  

Using this generator, we created benchmarks 

with one, two, and four-thousand blocks, and the 

number of nets equal to one third the number of 

blocks.  35% of the nets in all netlists had high 

fanout. 
 All our testing was done on an Intel 

Core 2 Quad Q9550 computers at 2.83GHz, 

using the GTX280 NVIDIA card. 

Figures 2 and 3 show the results of our 

initial implementation in terms of absolute 

runtime and percentage speedups.  Note that the 

speedups improve dramatically as the netlists get 

bigger, as we see a nearly 8X speedup on the 

GPU implementation compared to the serial 

algorithm on the largest netlist containing 4000 

blocks. 
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Figure 2:  First-implementation GPU versus 

CPU 
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Figure 3. First-implementation GPU versus 

CPU (speedup) 

In practice, it is difficult to calculate the 
optimal runtime of the algorithm on a GPU.  For 

a rough upper bound, we calculate as follows.  

We know that we need precisely the following 

number of global memory accesses, where x is 

the number of blocks in the netlist. 
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 We could then take this number, divide 

it by 16, the number of elements retrieved in a 



coalesced memory access.  Furthermore, we take 

the number of cycles of latency for a memory 

access, and, assuming that one read/write request 

can be dispatched in each of these cycles, divide 

by this number to get the number of memory 

accesses that are not “hidden” by other accesses.  
This assumes a “perfect” (no synchronization) 

algorithm.  We did not perform this calculation 

in our case. 

We note, however, that while we do 

achieve good speedups, we are not approaching 

anything near the maximum throughput of the 

device.  This is because we must sync after the 

normalization step, which is quite small relative 

to the main subtraction component.  

Furthermore, the steps themselves result in a 

non-optimal (un-coalesced) memory access 

pattern. 
Using the domain-specific property, we 

implemented the optimization of skipping the 

row swapping operation.  The results are shown 

in figures 4 and 5.  These graphs show a more 

dramatic performance increase in the 1000 block 

netlist, but the performance difference 

diminishes as netlist size increases as gains are 

amortized over the longer absolute run-time.  

This demonstrates the fact that no real swappings 

were necessary in the base case, so the overhead 

of doing the swaps was primarily of constant 
time. 
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Figure 4:  No row-swapping 
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Figure 5. No row-swapping (speedup) 
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Figure 6:  Number of items per thread 

We also measured the effect of increasing the 

per-thread workload, as show in figure 6.  Not 

surprisingly, increasing the number of items each 

thread processes slowed the implementation 

down rather than sped it up.  This demonstrates 

the fine-grained breakdown of the problem 

combined with some amortized amount of 

memory coalescing in retrieving array elements 

from global memory. 

 

5.ALGORITHM REDESIGN STUDY 
The nature of the algorithm lends itself well 

to coalescing, since we are running inherently 

linear memory accesses.  However, there may 

still be sub-optimal global memory access 

patterns due to misaligned starting addresses 

when operations are performed on an individual 
row.  Therefore, a promising avenue of future 

investigation is to optimize the memory accesses 

in order to achieve optimal coalescing, as shown 

in figure 7. 
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Figure 7:  Half-warp begin address for 

coalescing. 

Generally, we want every thread to work on one 

array element.  However, we also want a half-

warp to access locations in a contiguous block of 

memory beginning at a “region-sized” boundary.  

We would therefore choose that the first half-

warp should actually work on fewer than the 
maximum number of elements.  This is so that 

the next half-warp can begin accessing on a 

region-sized boundary.  In the case shown, the 

two zero elements would mean that the algorithm 

should first process node x.  If the first element 

is on a region boundary, for example, and we are 



working with floats, the region size is 128 bytes, 

so the first warp would access 30 values instead 

of 32. 

 

Since every thread acting on an individual 

row must retrieve the pivot value, this is a prime 
candidate for use of shared memory.  If we 

partition the problem so that all threads in a warp 

are working on the same row, another promising 

avenue of future investigation is to exploit the 

shared memory to retrieve the pivot value of 

each row.  We would achieve this partitioning by 

padding the input array so that dummy values 

(e.g. zeros) are processed by the extraneous 

threads within the last warp working on every 

row.  We would effectively use the shared 

memory broadcast mode, rather than our current 

use of global memory. 
Using the knowledge that swaps will never 

be necessary, we propose an additional extension 

to our parallelization algorithm:  Pipelined 

Elimination. 

In this extension, we use synchronization 

primitives to ensure that the maximum number 

of processing units operate at once.  We make 

the observation that, after the elimination has 

been done on the row below the current pivot, 

the new pivot row is ready to use.  That is, the 

algorithm need not wait for the current pivot to 
pass down the matrix.  We can assign some 

threads to do normalization while other threads 

are doing elimination.  Futhermore, we do not 

need to synchronize after an elimination stage 

ends before the next can begin. This 

optimization, combined with optimal memory 

coalescing, should allow us to achieve near 

optimal results.   

In a similar manner, we can parallelize the 

back-substitution algorithm, which is currently 

done serially due to the relatively small amount 

of time the algorithm spends performing this 
operation. However, the exact formulation for 

this is not obvious. 

 

6.  CONCLUSION 
 

We have successfully implemented and 
parallelized an analytical placer on a GPU.  We 

used domain-specific knowledge of the input 

problem in order to greatly optimize our 

algorithm.  We then also give a step-by-step 

study of how one might create a near optimal 

implementation of the algorithm to work on a 

GPU, in order to fully exploit the graphics card 

capabilities. 
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