
Parallelizing an Analytical Placer

David Goldman*
david.goldman@rogers.com

Bryce Leung*
bryce.leung@rogers.com

Jungmoo Oh*
moo8181@gmail.com

*Department of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario, Canada

ABSTRACT
Analytical Placement (AP) is a CAD algorithm

for ASIC placement. This algorithm generates a

system of linear equations, which we solve using

Gaussian elimination. We demonstrate how the

specific sub-problem of Gaussian elimination on
AP input matrices has the unique property where

the pivot row is always in place, and show how

this greatly enhances our ability to parallelize the

algorithm. We demonstrate why a sparse-matrix

implementation of the elimination algorithm

would be difficult if not impossible to implement

on a GPU. We then parallelize a full-matrix

implementation of the placer on a GPU using

CUDA, and show good speedups versus an

optimized CPU implementation.

1. INTRODUCTION

GPUs are a useful tool for parallelization of non-

graphical programs that would traditionally be

executed on a CPU. They contain an abundance

of parallelization hardware that can be exploited

to provide fine-grained parallelization that would
require too much overhead in a thread-based

CPU approach. This, combined with the fact

that GPU manufacturers have been adding APIs

to access this hardware from pre-processed C

code, makes this approach particularly attractive.

We focus our research exclusively on the

NVIDIA API called CUDA.

 CAD algorithms are generally known to

be computationally expensive, so we chose to

parallelize a classic algorithm in this space called

Analytical Placement (AP). AP is a placement
technique, often used commercially in an ASIC

CAD flow. It is known in literature for its good

quality and fast runtimes. A typical AP flow

computes a placement in a single run of the

algorithm. It does this by forming a set of

simultaneous linear equations which represent a

fixed IO placement, a set of blocks to be placed,

the nets that connect them, and a goal to

minimize. These equations are then solved,

producing a real-valued coordinate for each

block. The block coordinates are then

discretized using various heuristics. For

simplicity purposes, this paper will focus purely

on minimization of wirelength, although other

goals, such as timing, power, and signal integrity

are also commonly used. As well, this paper will

not focus on the heuristics and techniques used

for discretizing the placement.

The sections of this paper are as

follows. In section 2, we discuss the problem

definition as well as the theoretical background

for AP. In section 3, we discuss a unique
property of the problem space that allows us to

implement a much faster parallelization

technique, as well as the pseudo-code for the

algorithm that we chose. In section 4 we show

our results. In section 5, we give a step-by-step

study of how one might re-design the algorithm

in order to fully maximize use of the hardware.

In section 6 we present our conclusion.

2. PROBLEM DEFINITION

The AP problem inputs are:

 A netlist of blocks and connectivity
 Coordinates for fixed blocks (I/Os)

 A net model

The AP output is a real-valued (x, y) coordinate

for every non-fixed block in the netlist.

One example of a net model is the

clique model. A clique in an undirected graph G

is a set of vertices V such that for every two

vertices in V there exists an edge connecting the

two. In this model, each of the blocks in the

netlist is a vertex, and the pins of a net form a

clique. A net with |V| pins is thus modeled as a
clique, and assigned edge weights 2/|V|. The

total weight of all edges in the clique is |V|-1, the

number of connections in a binary tree.

 Another popular model for a net is the

star model, where a dummy block is introduced

to connect the blocks of a net. We will not focus

on this model, although [1] demonstrates that

these two techniques are actually equivalent.

 With the netlist represented as a graph

made of cliques, the AP cost function to

minimize is defined as shown in Equation 1. In

this function, the square of the wirelength is

minimized, which approximates the goal of

minimizing wirelength.

This cost function is separable for x and

y components. To minimize this cost function,

we set the derivative with respect to each
unknown variable to zero. This produces a set of

linear equations, which can be expressed in the

form shown in Equation 2. The system of

equations to be solved is shown more succinctly

in equations 3 to 5.

() ()∑∑ −−
n

=i

n

=j

jiijjiij yyw+xxw=φ
1 1

22
 (1)

Equation 1:
i and j iterate over all n blocks in the netlist
wij is the sum of the weights between blocks i

and j or 0 for no edge

x* and y* are x and y coordinates for the fixed

IOs, or unknowns for blocks to place.

 [Q]x= c (2)

Equation 2:
Q is an m × m “connectivity matrix,” where m is

the number of objects in the system whose

placements are unknown

x is an m × 1 variable matrix

c is an m × 1 “anchoring” vector, which results

from the fixed blocks

Q
ii
=∑

k

w
ik (3)

Q
ij
= Q

ji
= − w

ij (4)

c
i
=∑

z

w
iz
× x

z (5)

Equations 3 – 5:
k is the set of all blocks

z is the set of all fixed blocks

This system of equations is solved using

standard techniques. This paper will focus on

Gaussian elimination, since this technique has

the smallest computational complexity. See

Table 1 for details.

Technique Additions Multiplications/

Divisions

Gauss-Jordan n3/2 n3/2

Gaussian

Elimination

n3/3 n3/3

x =Q-1 c 2n3 2n3

Cramer’s Rule n4/3 n4/3

Table 1: Computational Complexity of

Various Solving Techniques (adapted from

[2])

3. GAUSSIAN ELIMINATION

USING CUDA
In the context of the Q matrix for AP, we note

that pivot elements are always in place, and row

swaps are never necessary during Gaussian
Elimination. This is because the pivot variable

essentially acts as a summation of all forces

acting on a given block. In practice, pivots can

only be zero if:

1. Summation of connected weights is

zero

2. Zero is generated during row

subtraction

Situation 1 only occurs if a block is

completely unconnected. Situation 2 only occurs

if some blocks form a disjoint subgraph. Since

neither of these degenerate netlists is relevant,
we can eliminate the row swapping portion of

the Gaussian elimination operation.

 Using this knowledge, we can condense

the traditional Gaussian Elimination algorithm to

the algorithm shown in Algorithm 1.

Algorithm Gaussian Elimination (Q,,x, c) {
 For row = 1 to m of Q {

 Normalize the (pivot) row so that the

leftmost entry is one

 CUDA: one entry per thread

 Cache the pivot column so that the value of

the subtractor for each row will be known

 CUDA: One cached value per thread
 For each row/column combination below the

pivot row, multiply the pivot row value by

the cached pivot column entry and subtract

from the entry – thus eliminating the pivot

value

 CUDA: One entry per thread

 }

 // Q is now upper triangular

 Perform back-substitution to find each value of

x matrix

}

Algorithm 1: Gauss-Elimination

Note that the algorithm shown in Algorithm 1

relies on caching the pivot column. In order to

eliminate the leftmost value of some row, we

must use the correct multiplier. The multiplier is

the value of the leftmost entry, however, since

we cannot rely on the fact that this entry will

remain in place during the processing of

subsequent row entries, we must cache this value

before launching any elimination threads.

A key observation is that the Q matrix

is constant for solving both the x and the y

dimensions. Using this observation, we can

perform the Gaussian elimination on the Q
matrix, and simultaneously augment the

constraint matrix for both dimensions. This

effectively halves the runtime of our solution,

and lends support to our choice of Gaussian

elimination as our solving technique.

We implemented an AP using the C++

programming language using more primitive

CUDA code wherever necessary. A screenshot

of a placed netlist is shown in Figure 1

Figure 1, below. Note that we used

EasyGL [3] for graphical debugging purposes.

Figure 1: A screenshot of a netlist placement

We had intended to create a sparse-

matrix implementation and parallelize it in order
to achieve further gains. However, it became

apparent that non-zero entries would become

zero, and, more importantly, zero-entries would

become non-zero during the course of Gaussian

Elimination. It was not obvious how to achieve

this in the CUDA implementation since it would

rely on re-allocating arrays at times.

4. RESULTS AND ANALYSIS

In order to test our placer, we needed netlists of

varying sizes. We chose to implement a random

circuit generator, and use it to create our test
circuits. The circuit generator takes as

parameters the number of blocks, nets, and IOs,

and the likelihood of large multi-fanout nets.

Using this generator, we created benchmarks

with one, two, and four-thousand blocks, and the

number of nets equal to one third the number of

blocks. 35% of the nets in all netlists had high

fanout.
 All our testing was done on an Intel

Core 2 Quad Q9550 computers at 2.83GHz,

using the GTX280 NVIDIA card.

Figures 2 and 3 show the results of our

initial implementation in terms of absolute

runtime and percentage speedups. Note that the

speedups improve dramatically as the netlists get

bigger, as we see a nearly 8X speedup on the

GPU implementation compared to the serial

algorithm on the largest netlist containing 4000

blocks.

0

5000

10000

15000

20000

25000

30000

1000 2000 4000

R
u

n
e

 T
im

e
 (

m
s)

Netlist Size (Blocks)

GPU

Serial

Figure 2: First-implementation GPU versus

CPU

0

1

2

3

4

5

6

7

8

9

1000 2000 4000

Sp
e

e
d

u
p

Netlist Size (Blocks)

Figure 3. First-implementation GPU versus

CPU (speedup)

In practice, it is difficult to calculate the
optimal runtime of the algorithm on a GPU. For

a rough upper bound, we calculate as follows.

We know that we need precisely the following

number of global memory accesses, where x is

the number of blocks in the netlist.

3

)12)(1(
2

0

2 ++
=∑

xxx
k

n

 We could then take this number, divide

it by 16, the number of elements retrieved in a

coalesced memory access. Furthermore, we take

the number of cycles of latency for a memory

access, and, assuming that one read/write request

can be dispatched in each of these cycles, divide

by this number to get the number of memory

accesses that are not “hidden” by other accesses.
This assumes a “perfect” (no synchronization)

algorithm. We did not perform this calculation

in our case.

We note, however, that while we do

achieve good speedups, we are not approaching

anything near the maximum throughput of the

device. This is because we must sync after the

normalization step, which is quite small relative

to the main subtraction component.

Furthermore, the steps themselves result in a

non-optimal (un-coalesced) memory access

pattern.
Using the domain-specific property, we

implemented the optimization of skipping the

row swapping operation. The results are shown

in figures 4 and 5. These graphs show a more

dramatic performance increase in the 1000 block

netlist, but the performance difference

diminishes as netlist size increases as gains are

amortized over the longer absolute run-time.

This demonstrates the fact that no real swappings

were necessary in the base case, so the overhead

of doing the swaps was primarily of constant
time.

0

5000

10000

15000

20000

25000

30000

1000 2000 4000

R
u

n
e

 T
im

e
 (

m
s)

Netlist Size (Blocks)

GPU

Serial

Figure 4: No row-swapping

0

1

2

3

4

5

6

7

8

9

1000 2000 4000

Sp
e

e
d

u
p

Netlist Size (Blocks)

Base

No Row Swaps

Figure 5. No row-swapping (speedup)

0

1

2

3

4

5

6

7

8

9

1000 2000 4000

S
p

e
e

d
u

p

Netlist Size (Blocks)

1

2

4

Figure 6: Number of items per thread

We also measured the effect of increasing the

per-thread workload, as show in figure 6. Not

surprisingly, increasing the number of items each

thread processes slowed the implementation

down rather than sped it up. This demonstrates

the fine-grained breakdown of the problem

combined with some amortized amount of

memory coalescing in retrieving array elements

from global memory.

5.ALGORITHM REDESIGN STUDY
The nature of the algorithm lends itself well

to coalescing, since we are running inherently

linear memory accesses. However, there may

still be sub-optimal global memory access

patterns due to misaligned starting addresses

when operations are performed on an individual
row. Therefore, a promising avenue of future

investigation is to optimize the memory accesses

in order to achieve optimal coalescing, as shown

in figure 7.

0 0 x y z

Figure 7: Half-warp begin address for

coalescing.

Generally, we want every thread to work on one

array element. However, we also want a half-

warp to access locations in a contiguous block of

memory beginning at a “region-sized” boundary.

We would therefore choose that the first half-

warp should actually work on fewer than the
maximum number of elements. This is so that

the next half-warp can begin accessing on a

region-sized boundary. In the case shown, the

two zero elements would mean that the algorithm

should first process node x. If the first element

is on a region boundary, for example, and we are

working with floats, the region size is 128 bytes,

so the first warp would access 30 values instead

of 32.

Since every thread acting on an individual

row must retrieve the pivot value, this is a prime
candidate for use of shared memory. If we

partition the problem so that all threads in a warp

are working on the same row, another promising

avenue of future investigation is to exploit the

shared memory to retrieve the pivot value of

each row. We would achieve this partitioning by

padding the input array so that dummy values

(e.g. zeros) are processed by the extraneous

threads within the last warp working on every

row. We would effectively use the shared

memory broadcast mode, rather than our current

use of global memory.
Using the knowledge that swaps will never

be necessary, we propose an additional extension

to our parallelization algorithm: Pipelined

Elimination.

In this extension, we use synchronization

primitives to ensure that the maximum number

of processing units operate at once. We make

the observation that, after the elimination has

been done on the row below the current pivot,

the new pivot row is ready to use. That is, the

algorithm need not wait for the current pivot to
pass down the matrix. We can assign some

threads to do normalization while other threads

are doing elimination. Futhermore, we do not

need to synchronize after an elimination stage

ends before the next can begin. This

optimization, combined with optimal memory

coalescing, should allow us to achieve near

optimal results.

In a similar manner, we can parallelize the

back-substitution algorithm, which is currently

done serially due to the relatively small amount

of time the algorithm spends performing this
operation. However, the exact formulation for

this is not obvious.

6. CONCLUSION

We have successfully implemented and
parallelized an analytical placer on a GPU. We

used domain-specific knowledge of the input

problem in order to greatly optimize our

algorithm. We then also give a step-by-step

study of how one might create a near optimal

implementation of the algorithm to work on a

GPU, in order to fully exploit the graphics card

capabilities.

7. REFERENCES

[1] N. Viswanathan, C. Chu. “FastPlace:

Efficient Analytical Placement using Cell

Shifting, Iterative Local Refinement and a

Hybrid Net Model,” In Proc. of 2004 ICCAD.

[2] H. Anton, C. Rorres. “Elementary Linear

Algebra: Applications Version,” 8th edition,

John Wiley and Sons, 2000, pg. 468.

[3] “An Easy-to-Use Graphics Interface”
http://www.eecg.toronto.edu/~vaughn/easygl/eas

ygl.html

