
JPEG Compression Algorithm Using CUDA 
Course Project for ECE 1724 

Pranit Patel, Jeff Wong, Manisha Tatikonda, and Jarek Marczewski 

Department of Computer Engineering 

University of Toronto 

 

Abstract 

The goal of this project was to explore the potential performance improvements that could be 

gained through the use GPU processing techniques within the CUDA architecture for JPEG 

compression algorithm.  The choice of compression algorithms as the focus was based on 

examples of data level parallelism found within the algorithms and a desire to explore the 

effectiveness of cooperative algorithm management between the system CPU and an available 

GPU.   In our project we ported JPEG Compression algorithm in CUDA and achieved upto 61% 

performance. 

1. Introduction 

The advent of modern GPUs for general purpose computing has provided a platform to write 

applications that can run on hundreds of small cores. CUDA (Compute Unified Device 

Architecture) is NVIDIA’s implementation of this parallel architecture on their GPUs and 

provides APIs for programmers to develop parallel applications using the C programming 

language. CUDA provides a software abstraction for the hardware called blocks which are a 

group of threads that can share memory. These blocks are then assigned to the many scalar 

processors that are available with the hardware. Eight scalar processors make up a 

multiprocessor and different models of GPUs contain different multiprocessor counts. 

Video compression applications are essential to satisfy the growth of digital imaging 

applications.  The JPEG standard provides great efficiency for compressing still images.  The 

JPEG coding standard provides compression and coding method for a continuous-tone still 

images.  In the JPEG standard, information that cannot be easily seen with the human eye is 

eliminated to obtain greater compression.  

As explained, JPEG compression is an important and useful technique that can be slow on 

current CPUs. We wanted to investigate ways to parallelize compression specifically on GPUs 

where hundreds of cores are available for computation. By investigating JPEG compression, we 

can characterize which part of algorithm suited to parallelization. In addition, our goal was to not 

only parallelize applications for a new architecture but also to find the strengths and weaknesses 

of that architecture. 



2. JPEG Compression Algorithm  

JPEG image compression is inherently different than sound or file compression in that image 

sizes are typically in the range of megabytes, meaning that the working set will usually fit in the 

device global memory of GPUs.  Whereas larger files usually will require some form of 

streaming of data to and from the GPU, JPEG requires only a few memory copies to and from 

the device, reducing the required GPU memory bandwidth and overhead.  In addition, the 

independent nature of the pixels lends itself to data level parallelism in CUDA.  Because of these 

two factors, we predicted that JPEG compression can take advantage of CUDA’s massive 

parallelism.  To compare performance with our CUDA implementation, we implemented serial 

implementation of JPEG algorithm in CUDA which is optimized for processing the whole image 

rather than processing individual rows.   

2.1   JPEG Algorithm 

In order to find which part of JPEG compression could be parallelized, we investigated the 

algorithm which performed the compression itself [3] and [4]. Figure 1a and Figure 1b shows the 

general progression of the JPEG algorithm. The steps of the algorithm must be performed in a 

sequential manner because the operations in each block depend on the output from the previous 

block. Where the parallelism can be extracted is limited to the operations within each block. 

8 x 8 

blocks

FDCT Quantizer
Entropy 
encoder

Table 
specifications

Table 
specifications

Compressed 
data

 

Figure 1a: DCT-based encoder simplified diagram 

 

 

 

Figure 1b: DCT-based decoder simplified diagram 

The image is loaded into the main memory and the image is broken down into blocks of 8x8 

pixels called Macro blocks   A 2D discrete cosine transform (DCT) is performed on each 8x8 

macro block to separate it into its frequency components. The equation for the DCT is shown in 

(1) 

Compressed 

Image 

Huffman 

Decoder 

De-quantizer IDCT Original 

Image 



(1) 

The result at the top left corner (k1=0, k2=0) is the DC coefficient and the other 63 results of the 

macro blocks are the AC coefficients. As k1 and k2 increase (up to 8 in either direction), the 

result represents higher frequencies in that direction. The higher frequencies end up in the lower 

right corner (higher k1 and k2) and the coefficients there are usually low since most macro blocks 

contain less high frequency information. The purpose of the DCT is to remove the higher 

frequency information since the eye is less sensitive to it. 

The quantization step divides the DCT transform by a quantization table so that the higher 

frequency coefficients become 0. The quantization table is defined by the compression 

percentage and has higher values at higher frequencies. The resulting matrix usually has a lot of 

zeros towards the right and bottom (higher k1 and k2).   

At this point, all the lossy compression has occurred, meaning that high frequency components 

have been removed. The final step is to encode the data in a lossless fashion to conserve the most 

space. This involves two steps. First, zig-zag reordering reorders each macro blocks from the top 

left to the bottom right in a zig-zag fashion so that the 0’s end up at the end of the stream. This 

way, all the repeated zeros can be cut. The final step is to use Huffman encoding to encode the 

whole picture by replacing the statistically higher occurring bits with the smallest symbols. This 

can be done with a standard Huffman table or can be generated based on the image statistics.  

Once the image is compressed we can get the decompressed image by reversing all encoder 

steps.  First we apply Huffman decoding in-order to revert Huffman encoding.  After that we de-

quantized the Huffman decoding matrix by multiplying quantization table.  And final step in 

Decoding is applying Inverse Discrete Cosine Transform (IDCT).  Upon applying IDCT, we get 

the image which is as close to original image. 

3. Related Work 

3.1 DCT/IDCT 

Because DCT is the main component of MPEG and other video compression, there are many 

related researches in accelerating DCT with multi-processors or vector DSP to meet real-time 

performance requirement.   Because DCT is a block-based computation, DCT is a good match to 

the multi-processor environment.  In article [5], the author uses Stream SIMD (SSE) Extensions 

instructions in order to utilize the Single Instruction Multiple Data (SIMD) unit inside of the 

CPU to accelerate DCT computation.  The SIMD unit allows single instructions to execute on 

multiple data.  Although, the SIMD unit in CPU has much less number of parallel processing 

units comparing to GPU, but because of the high CPU clock frequency, it is still able to achieve 

reasonable performance. 



In paper [6], the authors use DirectX 9.0 language to implement shader program to compute 

DCT on GPU.  Before general purpose computation language such CUDA and OpenCL are 

available, shader program is the most common method to execute user defined computation on 

GPU.  However, shader program is difficult to write because shader program is designed to work 

with graphics applications.  To perform general purpose computating, input data are stored as 

texture in GPU memory, and the computation is applied as a transform to the texture.  In this 

paper, the authors are able achieve 1.5x performance gain with shader program compares to CPU 

with SSE implementation. 

3.2 Huffman Coding 

Encoding methods, including Huffman, were quite popular in research in mid to late 90s and it 

resurfaced in 2003 for parallel computing.  Earlier papers were mainly concerned with ASIC or 

FPGA implementation of effective shift-register approach [7] and [8], or efficient comparators 

[8].   [8] suffers the problems on pre-defined Huffman Encoding, and can not be used in the 

generic case.  It seems that decoding with Decoding Tree (one input bit at a time) is favourable 

to decoding with a table (one output char per cycle).  Unfortunately, structures described in those 

early do not scale well and are not ideal for CUDA due to the same asynchronous input to output 

problem. 

Klein and Wiseman[9] had a novel approach where they utilized self-correcting Huffman 

property.  Variable length codes have a tendency to self correct when starting point is wrong.  

Decoding will always find a matching symbol, but it can wrong length, this leads to stumbling 

unto symbol boundary.  This self correction is not very deterministic.  Problem is in how to 

detect where the self correction did took place and then synchronize it.  Self correcting property 

shows promise.  If for example it could be mathematically proven that self correction is 

guaranteed over N input bits, it could mean that each thread would need to decode 2N with 1N 

overlap.  Positions for output characters in the start, middle, and end of thread would need to be 

stored for comparison. This would reduce the wasted treads to 1 out of 2.  Applied almost 

directly to CUDA that should result in at least 3x improvement in the straight forward 

implementation (IFF memory conflicts can be resolved). 

[9] proposes methods isolating the starting point as insertion of synchronization codes, or 

padding at block boundaries.  Padding in particular makes it trivial to divide the bit-stream into 

blocks and allows for computation without redundancies, all for cost of few bits at a block 

boundary.  Unfortunately, such methods can not be applied to classic Huffman encoding, as it 

would not be backward compatible.  However this becomes method is incorporated into the new 

JPEG standard, it will make it possible for optimize the algorithm for HardWare. 

JPEG compression has been a new topic on CUDA forums.  One of such forums states that 

NVDIA graphics cards actually have hardware accelerators for JPEG with Huffman, but it is not 

within CUDA programming guide.  General consensus is that Huffman encoding is either CPU 

or ASIC domain. General Purpose Processing accelerators might not be suitable. 



4. Methodology and Implementation 

Our approach in parallelizing the JPEG algorithm was to break the data level parallelism up in 

each block in Figure 1a and Figure 1b and write a kernel for each of the parallel tasks.  Because 

of the hardware limitations for each CUDA block to access shared memory (512 threads,16KB), 

it was important to keep shared data within a block for minimum latency.  Fortunately for JPEG, 

the shared data within each macro block is small and does not approach the 16KB limit. 

The load image I/O step cannot be parallelized in any fashion. In fact, CUDA introduces an 

overhead since the image has to be transferred between the device (GPU) memory and the host 

(CPU) memory.  We further enhancement to minimize the CUDA overhead by loading whole 

image into global device memory once and perform encoding, then bring the result back to host 

memory.   

4.1  DCT and IDCT  

The DCT is a separable transform which means DCT is first applied to the column of the 8x8 

matrix, and then DCT is applied to the rows of the results.  To avoid calculating cosine values on 

the fly, the cosines of different phases are pre-calculated and stores into an 8x8 constant float 

matrix C.  To perform DCT on the column of the macro block M, 8x8 constant matrix is cross 

multiply with the 8x8 macro block as shown in equation (2). 

    C x M = DCT_R      (2) 

Then the second pass of DCT is performed to the row of column DCT result DCT_R as shown in 

equations (2). 

       DCT_R x C
T
 = DCT_2D    (3) 

Two implementation approaches are used to implement DCT.  The first implementation uses 64 

threads for each thread blocks.  In the kernel, each thread loads one pixel from raster.  The read 

is assigned to each thread based on thread X and Y index.  For each half warp, the memory reads 

consecutive locations in the global memory, which allows maximum global memory read 

efficiency.  The read pixel data are then stored in shared memory.  Each thread is responsible for 

calculating one element of the output matrix, which is multiple and accumulated one row of the 

macro block with one column of the constant matrix.  Each thread will write back its result back 

to the global memory. 

The second implementation approach utilizes all 512 threads for each thread block.  The 

processing is nearly identical to the first implementation.   The only difference is that each thread 

block is assigned to process 8 macro blocks.  For IDCT, the calculation is identical to DCT with 

a different set of constant matrix. 



4.2 Quantization 

 

                                                Figure 4.2a.   

The Quantization algorithm consists of a very simple set of calculations. The image is divided 

into strides which equals to the nearest 16
th

 divisor. Then the Quantization matrix is multiplied to 

the image width by width. Quantization matrix below is used as a multiplier/divisor.      

Q[] =   32,  33,  51,  81,  66,  39,  34,  17, 

         33,  36,  48,  47,  28,  23,  12,  12, 

         51,  48,  47,  28,  23,  12,  12,  12, 

  81,  47,  28,  23,  12,  12,  12,  12, 

         66,  28,  23,  12,  12,  12,  12,  12, 

         39,  23,  12,  12,  12,  12,  12,  12, 

         34,  12,  12,  12,  12,  12,  12,  12, 

         17,  12,  12,  12,  12,  12,  12,  12 

 

The first row from 0-7 is divided by the Quantized indices from 0-7 and then the same quantized 

indices are used for the rest of the row till the width of the image. The second row of the image is 

divided with the 2
nd

 row of the quantized matrix 8-15. Again the same indices of the quantized 

matrix are used for the rest of this row. This process continues till the whole image is divided by 

the Quantized matrix as shown in the Figure 4.2a. The division is rounded and to the nearest 

integer and the same corresponding Quantized matrix is multiplied again to the same image 

using the same procedure as above. CPU implementation is straight forward and uses 2 for loops 

one to loop around the height and one to loop around the width. 

Threads are set are to 8x8 and the grid is set up for width of the image divided by 8 and the 

height of the image divided by 8. Each 8x8 thread of the image is multiplied with the 

corresponding index in the quantization matrix. Figure 4.2b below shows how the CUDA threads 

are used. 

Image (pixels) 

Image[0] � Divided by Q[0]                                          Image[width+1] � Divided by Q[8] 

Image[1] � Divided by Q[1]                                          …..  

……….                                                                            Image[width +7] � Divided by Q[15] 

Quantization (8x8) 



  

                               Figure 4.2b CUDA thread assignments for Quantization 

The first CUDA implementation used the exact same logic as the CPU. The threads are 

multiplied and divided to quantize the image but the image is still a part of global memory.  

The second implementation used shared memory. The global image was divided into 8x8 chunks 

and this matrix grid was quantized with the quantized matrix and then copy back to global 

memory. 

The third implementation used shared memory as well but with a small difference when 

compared with the second implementation. The shared memory was loaded with the division of 

the global image and the quantized values and then the shared copy was used to multiply back 

the quantized matrix. 

4.3 Huffman Encode/Decode 

Huffman encoding is a very effective lossless compression.  It utilizes the frequency of 

occurrence of each symbol to generate a variable length encoding.  In the encoding the frequent 

symbols are shorter and less frequent symbols are longer, with the overall effect that the entire 

encoded bitstream is shorter than the original.  For images, this provides between 2x to 4x 

compression for typical images. 

The algorithm for building the encoding follows this algorithm 

 Each symbol is a leaf and a root. 

 While (forrest is not a single node) { 

  Create new node 

  new node is parent node of two least frequent nodes 

  Remove two least frequent nodes from the forest 

  Insert new node into the forest 

 }   

 

Encoding is the last step in JPEG processing.  Encoding can be broken down into few steps: 



1. gathering frequency information 

2. building encoding tree 

3. building encoding table 

4. actual encoding 

 

Encoding Table 

Step 1, gathering frequency information. 

In this step, the goal is to count each symbol in the entire image. At this point the image is just a 

collection of bytes, and hence there are 256.  Individual symbol counters need to be unsigned 

integers, which is large enough for images up to 4GB.  There are various ways to utilize CUDA 

to count symbols.  One way is to run 256 treads. Each thread would count one symbol.  Second 

way is to divide the image into manageable blocks, let’s say 1K each. Each thread would count 

symbols in each block, and in the end add them all up.  The third way is to perform the counting 

at the same time that the image is quantities.    This experiment was not performed in this 

project. 

Step 2, building encoding tree 

In this step, we performed the classic Huffman algorithm on the CPU.  At first glance, there is 

parallelism opportunity to perform sort operation in CUDA.  When the encoding tree is built, the 

first step is to sort it by frequency.  Then two lowest nodes are combined into an intermediate 

node, and that new node is inserted back to the forest. This cycle is repeated until there are no 

nodes left.  Sorting is performed during each iteration.  

What’s not obvious is that during consecutive iterations, sorting operation is most efficient as a 

single iteration of bubble sort, while sorting in CUDA should be performed as RADIX sort. 

There exists opportunity to optimization, however there are only 256 symbols.  This part of 

encoding is too minor to consider for CUDA.  

Step 3.  Building encoding table 



Encoding table can be easily built by traversing up the tree for each symbol.  Each symbol is 

addressed by the original value. It required two pieces of information, encoded symbol and 

encoded symbol length.  This process is straight forward enough that it could be optimized for 

CUDA, but tree traversal would likely result in memory conflicts on every access.  Same 

argument applies as in step 2, there are only 256 symbols.  

Parallel Encoding 

In this experiment the encoding table is used.  The goal is to produce write one encoded symbol 

with one memory access.  Traversing through a tree structure does not seem effective for CUDA.  

The encoding table holds the encoded value in a short.  The assumption is that 256 symbols 

would result in encoding were the least frequent symbol is at most 16 bits long.  This is an 

invalid assumption, as in the worst case that encoding could be 257 bits long.   

Example: 

A - 0 

B -  10 

C - 110 

…. 

Z - 1111…11110 

 

This length assumption is necessary in order to use a table rather then encoding tree.  Encoding 

tree is a table and it needs to have a fixed size of each element.  By adopting Short as a data 

character, it allows us to fix the encodings in 4 data lines, and length information (chars) in 2 

data lines.  Each thread in a halfwarp can access the entire table in max of 4 accesses.  To speed 

it up, the encoding table is moved to shared memory. 

Encoding is divided up to into two phases.  Phase 1 is encoding each byte individually. Phase 2 

is combining the results. 



 

Phase 1.  Each byte is encoded individually by accessing the translation table.  This step is 

extremely fast and it offers 100x speed up. 

Phase 2. is an iterative phase. In the First iteration two symbols are combined, by concatenating 

the second symbol on top of the first one.  In the second two sets of two symbols are combined 

into four, and so on.  This seemed to be the simple algorithm and it showed 10x speed up for 1K 

image.  What was not obvious is that the algorithm, O(n log n) is invalid because it is of higher 

complexity then canonical CPU algorithm – O(n).  This algorithm is n log n because in each 

iteration half of the image data is copied over to new location.   

Other methods were not attempted. 

Parallel Decoding 

Decoding is tricky because the only way to get some speed is to decode at several places at the 

same time.  The problem is that in a variable-length encoding one does not know where to 

symbols start.   

Obvious solution is to start multiple times at different bit offsets.  One of threads must have 

started at a symbol boundary.  One characteristic of variable length is that they are unable to 

detect that decoding is invalid due to wrong starting point.  Decoding will just continue until the 

input bitstream is complete.  Deciding which thread is the correct one will not be known until the 

previous section of the image was decoded.  Combining resulting fragments is a serial process, 

but that can be divided into two parts: determining which segments are valid and coping data.  

Only the first part is serial in nature; copying data can be done in parallel. 



 

In this project, we concentrated on parallel decoding streams.  There were various challenges in 

developing the algorithm. Primary problem is how to avoid memory conflicts when the data 

stream is not regular in length.  In the input each symbol has variable length, which can result in 

a very short or very long decoded stream.  In any Huffman decode table it is a valid solution that 

the most common symbol has 1 bit encoding.  This means that any 64B segment of input data 

can result up to 512B of output data.  With 512B output per thread and multiple redundant 

execution threads, we quickly run out of memory. 

This experiment was treated as proof of concept rather then complete solution. Following 

shortcuts were made.  Each thread would be limited to 128B output.  This can be guaranteed by 

using a encoding with minimal length of 4 bits per symbol.  Another simplification made was to 

assume that maximum symbol length is 8 bits.  The reason for that was to reduce the size of 

encoding table. 

Our decode used following CUDA methods: 

• encoding table into shared memory, symbols and lengths separately 

• 64B input bitstream is moved into shared memory. 

• each thread loops 128, once per output byte. 

� Thread sync on each iteration was attempted. 

• Output bytes are written vertically to avoid collisions. 

• Each 64B input stream is run 8 times 

� Each iteration has different bit offset on first byte. 

• CUDA is programmed to 32 threads per block 



� This means 16 threads use only 2 x shared 64B of input data without 

collisions. And the entire input bitstream for a half-warp fits on one address 

line. 

 

Results of the experiment were not good.  Code was tested on 1kB, 2kB, 4,kB, and 16kB data 

streams, and results were consistent.  CUDA code was 3 times slower then naïve CPU 

implementation.  I expect that there were memory collisions, but I was unable to find the cause. 

One curious observation is that, when decoding table was moved to read only memory, 

performance dropped to 46 times slower then CPU. 

 

5. Evaluation Setup and Methods 

5.1 Image Format 

The images used by the jpeg algorithm are of bitmap format. The bitmap library consists of some 

basic operations format for the bmp images. These are some of the basic operations  

� Calculation of image dimensions 

� Division of image into planes and strides of 16 or 8 

� Conversion of image into grayscale 

� Dumping contents of an array into bmp image and vice versa 

 

OpenGL library in CUDA seems to have a viewing plugin(cudaGLMapBufferObject) for pgm 

formatted images. There is no plugin in OpenGL for bmp, this imposed a challenge to convert 

the image processing library to be based on pgm and this enhancement has not been 

implemented. Current implementation of the JPEG executable takes in only bmp images. 



5.2 Image types 

The JPEG processing time largely depends on the sizes of the images used. The following 

images and sizes were used for the evaluation of the JPEG performance for the CPU run and the 

CUDA execution. 

 

Image size 512MB 

 

Image Size 1024x768 
 

Image Size 2048x2048 

 

Figure 5.  Images used for performance evaluation 

5.3 Metrics 

These are the measurements and results taken. 

� Processing time for each stage of the jpeg pipeline is measured. Both time taken by the 

CPU and GPU were measured. These measurements do not include time to copy the 

image from CPU to device space. All times are measured in ms using the CUDA timer 

start/stop routines. DCT/IDCT and quantization also had couple of CUDA optimizations 

and each method was also timed.  

� Processing time for the complete jpeg is measured as a sum of all the execution time of 

the individual stages of the pipeline.  

� Speed is calculated a division of the time image processing takes in CPU verses in GPU. 

� PSNR ratio – PSNR is measured between the CPU processed image and the GPU 

processed image.  This is the peak signal to noise ratio and is calculated by comparing 2 

images pixel by pixel and accumulating the difference. The exact formula used is 

10log10(255*255/(Accumulated difference/Image dimensions)). The larger the value the 

more close the images are.  

� Image comparison – Manually check to make sure images are visibly same as the original 

image and the cpu processed image. 

 

 



 

6. Results 

6.1 DCT &IDCT 

The runtime for two DCT implementation and IDCT are shown in Figure.  

 

 

Figure.  Runtime for DCT and IDCT for different GPU implementation 

For all three results, the runtime does not increase linearly with image size.  The overhead in 

large image could be caused by contention to the shared floating point unit, as the DCT 

computation is floating point intensive.  It is unlikely that non-linearity is resulted from 

limitation in global memory bandwidth as the image size is relatively small compares available 

global memory bandwidth. 

For DCT, the implementation with one macro block per thread block has much better 

performance compares with the eight macro block implementation.  By utilizing more thread 

blocks, it allows more pipelining between thread blocks while thread blocks are waiting for 

pixels data read from global memory. 

For IDCT, the kernel is nearly identical to the DCT 1 macro block implementation.  IDCT has 

better performance because the pixel values are quantized.  Because of the quantization, half of 

the operands are round to the nearest integer which speeds up the floating point multiply for the 

matrix multiplication. 

 



Performanc gain GPU over CPU

0

5

10

15

20

25

30

2048x2048 1024x768 512x512

P
e
rf

o
rm

a
n

c
e
 G

a
in

DCT 1 macro block

DCT 8 macro block

DCT 1 macro block

 

Figure.  Performance gain of GPU over CPU for different DCT and IDCT implementation 

In Figure, it shows the performance gain of GPU over CPU implementation.  Using one macro 

block per thread block, DCT and IDCT both have over 20x performance gain over the CPU 

implementation.  For eight macro blocks per thread block, DCT has only 10x performance gain 

because the lack of pipelining effect between thread blocks. 

6.2 Quantization 

CUDA Programming  

� Method 1 – Exact implementation as in CPU 

� Method 2 – Shared memory to copy 8x8 image 

� Method 3 – Load divided values into shared memory. 

 

 

 

 

 

 

 

Figure 6.2 :  a) the processing time for all 3 CUDA implementation 

b) comparison of each method against CPU vs. GPU 

 

Quantization CPUvs CUDA Performance

0

50

100

150

200

250

300

350

512x512 1024x768 2048x2048 

Resolutions

x
 f

a
s

te
r 

th
a

n
 C

P
U

xCPU - 1

xCPU - 2

xCPU - 3

Quantization CUDA Performance

0

0.5

1

1.5

512x512 1024x768 2048x2048 

Image Resolution

T
im

e
 i
n

 m
s

Method 1 Method 2 Method 3



Figure 6.2a shows the processing time for all the 3 CUDA implementations. Figure 6.2b shows 

how each method performs compared with CPU. The processing time for CPU was divided by 

the time taken by the CUDA implementation for all the different resolution sizes. 

� Method 2 and Method 3 have similar performance on small image sizes 

� Method 3 might perform better on images bigger that 2048x2048 

� Quantization is ~x70 faster (512MB) for the first method and much more as resolution 

increases. 

� Quantization is ~ x180 faster (512MB) for method2 and 3 and much more as resolution 

increases. 

 

  

Method 

1 

Method 

2 

Method 

3 CPU

xCPU - 

1 

xCPU - 

2 

xCPU - 

3 

512x512 0.102 0.039 0.039 7.37 72.2549 188.9744188.9744

1024x768  0.274 0.085 0.085 22 80.29197 258.8235258.8235

2048x20481.39 0.379 0.36 110 79.13669 290.2375305.5556

Table: Result of Quantization   

 6.3 Overall Results 

In table, it shows the combined runtime result of DCT, quantization and IDCT for 2K x 2K 

images.  By combining 3 stages, CUDA implementation is able to achieve 13 times speed up 

compares to the CPU implementation.  In terms of overhead, CUDA has 64 percent of overhead 

spent for copying data from host memory to GPU memory and back.  Even will the significant 

amount of overhead, GPU is still an optimized platform for parallelizing DCT and Quantization. 

  CPU (ms) % CUDA(ms) % 

DCT 63.17 31.82 2.7 17.85 

Quant 79.01 39.80 0.379 2.50 

IDCT 56.3 28.36 2.26 14.94 

Overhead 0.02 0.01 9.791 64.71 

Total 198.5   15.13   

          

Speedup 13.11963       

 

Table:  Combined Results of DCT, Quantization and IDCT for 2Kx2K images 



7. Conclusion 

It has been shown that JPEG compression algorithms has the potential for significant speedup 

using GPU processing techniques within the CUDA architecture. This speedup can be achieved 

only when writing algorithms and function calls specifically with data level parallelism in mind 

and when the cost of moving data across a narrow memory channel can be amortized by many 

calculation based operations which can be execute in parallel across many vector processors. 

It has also been demonstrated that cooperative algorithm management between the system CPU 

and an available GPU is an effective method for performance improvement when the respective 

strengths of the two chipsets are kept in mind. This was demonstrated in the rewriting of the 

JPEG compression algorithm to perform lossy encoding on the GPU and Huffman encoding and 

decoding on the CPU.   

A further conclusion that can be drawn is that the increased memory bandwidth between the 

system CPU and GPU will lead to more effective utilization of GPUs for performance 

improvement.  This can be further extended as future work in current implementation by 

benchmarking how data can be rearrange and calculated in JPEG.  In the event that GPUs 

become integrated into shared memory processor cores or the memory bandwidth of today’s 

systems increases significantly, the implementations developed will all achieve greater speedups. 

 

8. References 

[1] NVIDIA CUDA SDK Brower, http://www.nvidia.com/object/cuda_get.html 

[2] NVIDIA CUDA SDK Code Samples: 

http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html 

[3] Wallace, G. The JPEG Still Picture Compression Standard. IEEE Transactions on Consumer 

Electronics.  December 1991. 

[4] International Telecommuncation Union. Recommendation T.81 Information Technology – 

Digital Compression And Coding Of Continuous-Tone Still Images – Requirements And 

Guidelines. September 1992. 

[5] C.Y. Yam. Optimizing Video Compression for Intel Digital Security Surveillance 

applications with SIMD and Hyper-threading Technology. Intel Corporation. 2005. 

[6] B. Fang. G. Shen Techniques for Efficient DCT/IDCT Implementation on Generic CPU. May 

2005 

[7] M. Benes,. S. Nowick., A Wolfe,. “A Fast Asynchronous Huffman Decoder for Compressed-

Code Embedded Processors”  , 1998 



[8] M.K. Rudberg,. L. Wanhammer, “ New Approach to High Speed Huffman Decoding“, 1996 

 

[9] S.T. Klein,. Y. Wiseman, “Parallel Huffman Decoding with Applications to JPEG Files“, 

2003 

 

 

 

 

 


