
Neural Networks on GPUs: Restricted Boltzmann
Machines

Daniel L. Ly (994068682), Volodymyr Paprotski (992912919), Danny Yen (992903453)
Department of Electrical and Computer Engineering

University of Toronto
Toronto, ON, Canada M5S 3G4

lyd@eecg.toronto.edu, paprots@gmail.com, danny.yen@utoronto.ca

ABSTRACT
Despite the popularity and success of neural networks in
research, the number of resulting commercial or industrial
applications have been limited. A primary cause of this
lack of adoption is due to the fact that neural networks are
usually implemented as software running on general-purpose
processors. In this paper, we investigate how GPUs can be
used to take advantage of the inherent parallelism in neu-
ral networks to provide a better implementation in terms of
performance. We will focus on the Restricted Boltzmann
machine, a popular type of neural network. The algorithm
is tested on a NVIDIA GTX280 GPU, resulting in a com-
putational speed of 672 million connections-per-second and
a speed-up of 66-fold over an optimized C++ program run-
ning on a 2.83GHz Intel processor.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Base Systems

General Terms
Design, Performance

Keywords
Restricted Boltzmann machines, GPU applications, CUDA,
high-performance computing

1. INTRODUCTION
There is a growing interest for large, high-performance neu-
ral networks. The capabilities of a neural network are highly
dependent on its size; this raises a computational barrier
since the complexity of software implementations grows quad-
ratically with respect to network size. As a result, training
large networks for real-world applications often takes weeks
on general-purpose processors. It should be noted that neu-
ral networks are composed of an interconnected network of
independent processing elements, and thus, are intrinsically
parallel. A GPU implementation can achieve superior per-
formance by taking advantage of this parallelism.

Figure 1: A schematic diagram of a Restricted

Boltzmann Machine with labelled components.

Of the many neural network varieties, our work focuses on
the Restricted Boltzmann Machine (RBM). It is a stochas-
tic and generative network that is capable of capturing and
reproducing the underlying statistical properties of a given
data set. These unique properties have resulted in a vari-
ety of successful applications ranging from recognizing hand-
written digits to reducing the dimensionality of data.

A RBM consists of two layers of processing elements, or
nodes, the visible layer and the hidden layer. The visible
layer is used for input/output access while the hidden layer
acts as a latent representation of the data. The nodes have
binary states. There are connections between every node
in opposite layers and no connections between any nodes in
the same layer. Every connection has an associated weight,
which provides the learning parameters for the RBM.

The following notation system will be used: vi and hj are
the binary states of the ith and jth node in the visible and
hidden layer, respectively; wi,j [k] is the weight between the
ith and jth node for the kth update. The terminology is
summarized in a schematic representation in Fig. 1.

For brevity, matrix expressions are often used to represent
the note states and weights, as shown in Eqs. 1-3.

v = [v0 . . . vi−1] ∈ B
1×i (1)

h = [h0 . . . hj−1] ∈ B
1×j (2)

W[k] =

2

6

4

w0,0[k] · · · w0,j−1[k]
...

. . .
...

wi−1,0[k] · · · wi−1,j−1[k]

3

7

5
∈ R

i×j (3)

The RBM operates and learns via a method called Alternat-
ing Gibbs Sampling (AGS). AGS determines the node states
of one layer given the other layer. The process starts with



an initial data vector in the visible layer, and generates each
layer in an alternating fashion. To differentiate between the
successive AGS cycles, each state will be indexed with a su-
perscript, x. To determine the node states, an intermediate
value, called the partial energy for each layer must be calcu-
lated, Ev and Eh respectively. The AGS computations are
summarized in Eqs. 4-8.

V
x+1 =

8

<

:

V0 , x = 0
f(Ex

v) , x is odd
Vx , x is even

(4)

H
x+1 =



f(Ex
h) , x is even

Hx , x is odd
(5)

E
x
v = (Hx)WT

,∈ R
1×i (6)

E
x
h = (Vx)W,∈ R

1×j (7)

W[k + 1] = W[k] + ǫ
“

(V1)TH
1 − (VX)T(HX)

”

(8)

Where x = {0, . . . , X} and f(·) is a sampled sigmoid prob-
ability distribution applied to each element in the partial
energy vector (Eqs. 9-10).

P(vi = 1) =
1

1 + e−Ei
(9)

P(hj = 1) =
1

1 + e−Ej
(10)

Additional details regarding the operation and learning of
RBMs can be found in [1].

2. RELATED WORK
Due to the parallel nature of neural networks, CUDA pro-
gramming is a very attractive method for performance gain.
Due to the increasing popularity of RBMs, [2] investigates
how to implement large RBMs using graphic processors.
However, since these results have not yet been published,
we cannot compare our implementations.

Next, there have numerous neural network implementations
of different architectures than RBMs. Researchers from
Soongsil University in Korea used a combination of CUDA
and OpenMP in their attempt to speedup their feedforward
neural network [3]. While they reported 20-fold speedup
with CUDA and OpenMP over CPU-only program, they
also claimed it to also have 5-fold speedup over a GPU-only
implementation. This may be stem from the fact their neu-
ral network required image processing that does not exist
on ours. They claimed that such computation is slower on
the GPU. It would seem that CUDA may not be ideal for
sophisticated processing, but more for massive simple calcu-
lations.

There has also been work on accelerating RBM via FP-
GAs. [4] reports a FPGA implementation for RBMs that
can achieve a computational speed of 1.02 billion connection-
updates-per-second and a speed-up of 35-fold over an op-
timized C program running on a 2.8GHz Intel Processor.
However, their work is limited by the possible network size,
and reported a maximum size of 128 × 128. Furthermore,
there are architecture limitations that are not present in
GPU implementations.

3. CUDA IMPLEMENTATION
After some analysis of the AGS algorithm, three major clas-
sifications of computational kernels were identified: matrix
operations, random number generation and sigmoid trans-
fer function. These three kernels were generated and tested
individually and then integrated at a final stage.

3.1 Matrix Operations
As noted by Eqs. 4-8, the computation required to run an
RBM is dominated by three types of matrix operations: ma-
trix addition, matrix transpose, and matrix multiplication.
Furthermore, since the type of operations is known and lim-
ited, several of the operations could be joined together to
increase performance; for example, Eq. 6 requires both a ma-
trix transpose and a matrix multiply, which can be combined
into a single operation to increase the total computational
throughput.

The library for these matrix operations were inspired by the
NVIDIA CUDA SDK [5]. The SDK provided an optimized
implementation that effectively used the shared memory and
coalesced memory calls to maximize computation through-
put. However, because the application was very specific and
the implementation was designed for a designated GPU, the
libraries were further optimized. For example, the original
matrix multiply required block sizes to be square which did
not utilize the maximum number of threads. This can be
supplemented by extending the kernel such that the block
size could be rectangular. The functionality of the entire
matrix library was verified against a sequential implementa-
tion and extra care was taken to ensure that all the memory
calls were coalesced and there were no bank conflicts.

A short description of each of the implementations for the
matrix operations are provided:

Matrix Addition This operation was used in the calcula-
tion of weight updates (Eq. 8). As a result, it is not
a matrix addition in the strict sense, but rather a ma-
trix addition followed by a scalar multiplication. Each
thread retrieved an element from each of the matri-
ces, and added them together. Since this can be done
element-wise, the implementation was straightforward
and coalescing memory calls was trivial.

Matrix Transpose This operation was used in the calcu-
lation of the energies (Eq. 6) and the weight updates
(Eq. 6). The implementation of the transpose was non-
trivial since the structure of the matrix required clever
use of the GPU architecture. Rather than attempting
to transpose the entire matrix in one shot, the matrix
is divided into submatrices according to the block size.
As a result, each submatrix can be effectively read from
global memory and copied into the shared memory, en-
suring coalescing memory calls. The matrix can then
be transposed and written to the appropriate memory
location of the resulting matrix.

Matrix Multiply This operation was used in the calcu-
lation of the energies (Eqs. 6-7) and the weight up-
dates (Eq. 6). The implementation of the multipli-
cation was non-trivial since the structure of the ma-
trix required clever use of the GPU architecture. Each
thread was responsible from copying a single element



from each matrix in the global memory to shared mem-
ory. Since both submatrices exists in shared memory,
a for loop was used to do the multiply and accumulate
required in matrix calculations. Each thread is respon-
sible for keeping a running tally for the final matrix.
The thread blocks are then moved and this is repeated
until the final values are computed.

3.2 Random Number Generation
Random number are required to generate the node states
(Eq. 9-10). For the random number generator (RNG), a
method called Mersenne Twister (MT) was used. It is based
on the example in the SDK. There are numerous advantages
to using the MT:

• Relies on bitwise operations – each of the stream pro-
cessors on the GPU has fast bitwise operations units
in their ALU, allowing for an effective implementation

• Long period – the period of the MT is (219937 − 1)
which provides a plenty of random numbers

• High dimensional equidistribution – MT provides high
quality random numbers with little autocorrelation.
This is necessary for the neural network to work since
correlated random numbers would greatly affect the
results

• Efficient memory usage – memory read and writes can
be easily coalesced

However, MT is insecure: predictable after N outputs. This
is not a big issue for RBM implementations since it is not be-
ing used for security-critical purposes. Moreover, like most
RNG, it requires an iterative process, which makes it hard
to parallelize. A simple and fast solution to parallelization
is to launch many MT simultaneously, one per thread. Each
MT is completely characterized by 11 parameters.

Unfortunately, even with completely different initial states,
MTs with the same parameters cannot be guaranteed to
generate random numbers that are uncorrelated. To rec-
tify this issue, we use a custom library called dcmt0.4. This
library, called upon initialization of RNG, tweaks a few pa-
rameters on a per-thread basis, using the thread ID as a
generator. This initialization is done on the CPU and can
be time consuming depending on the number of MT desired.
To optimize our RNG, we need to adjust 3 values: number
of MTs, blocks, and threads. Number of blocks and threads
multiplies to the number of MTs. Oddly enough, it was not
necessarily the more threads, the better performance.

3.3 Sigmoid Transfer Function
The RBM requires an efficient sigmoid function implementa-
tion (Eq. 9-10). The sigmoid calculation must be performed
for each node in the particular layer being calculated, there-
fore needs to be as efficient as possible.

A sigmoid function, as described in (Eq. 9-10), is plotted in
Fig. 2. Its range is (0,1) and quite obviously needs floating
point numbers for the most precise implementation. The use
of exponential function further complicates the implementa-
tion as most floating point units either does not exist or is

−5 0 5

0.0

0.5

1.0

Partial energy (E
i
, E

j
) →

P
ro

ba
bi

lit
y 

of
 n

od
e 

st
at

e 
→

Sigmoid and threshold curves

 

 

Sigmoid

Threshold

Figure 2: A plot of a sigmoid function.

expensive. As the implementation deals with floating point
numbers, one is left with a design decision whether accept
the possibly more expensive floating points or approximate
with integer fixed point notation.

The first option is relatively simple; implementation details
will be discussed in the next section. The integer approxi-
mation on other hand can quickly devolve into a large prob-
lem with many parameters to choose from. However, such
functions have already been extensively studied on platforms
where floating point numbers are not available natively [6].
There are several algorithms to choose from, ranging in error
and number of computations needed.

3.3.1 Sigmoid Functions implemented for this project
The first and simplest function, referred to as native, uses
the CUDA provided exponential function call:

return 1/(1+__expf(-x));

Note the use of the ’ ’ version of the exp() function. Ac-
cording the the Appendix B.2 from the CUDA Programming
Guide [5], “these functions are the less accurate, but faster
versions” of the non-underscored calls. This most probably
implies that all SPUs will be capable of doing the calcula-
tion. This accuracy loss is certainly acceptable trade to gain
more performance.

The first integer approximation implementation, referred to
as linear, is simply a linear, piecewise approximation. It
contains nine linear pieces. The code assigning the slope
and offset uses is divergent, but still more efficient then it
’collapsed’ counterpart. Slopes are all calculated as shifts.
Input and output was to be floating point numbers, so cast
both ways consumed more clock cycles. This could be im-
proved with tighter implementation of code.

The second integer approximation, referred to as second, is a
second order Taylor polynomial expansion, clamped at [-4.4]
with two pieces about the origin:

y =

(

(x/4+1)2

2
, x < 0

1−(1−x/4)2

2
, x ≥ 0

(11)

Both clamp code and parts of the actual calculation could be



Figure 3: A plot of the sigmoid reconstruction of

the various CUDA implementations.

further optimized in assembly with predicated assignments,
which upon further investigation of PTX assembly, the com-
piler does not do, even with highest optimizations enabled.

Lastly, to reuse and explore the CUDA optimized hardware,
a texture lookup sigmoid was implemented (texture). The
values were precalculated on the CPU and loaded onto the
texture. The result range was normalized to automatically
by GPU to [0,1] and the input was clamped to [-10, 10], also
by the GPU, producing a promising one liner:

return tex1D(tex, x*scale + offset);

The texture address calculation could further be optimized
in assembly to multiply-add – this would require 4 clock
cycles and is not currently done. The advantage of textures,
is that they are cached, interpolated and auto-clamped. As
the access pattern is unknown, cache is very important to
aid optimization.

A plot of the sigmoid reconstruction of these four methods
are shown in Fig. 3.

4. RESULTS
4.1 Platform
The software baseline benchmark was written in C++. It is
compiled with g++ version 4.1.2 with optimization level 3 (-
O3). An Intel Core2 Quad core processor running Debian at
2.83GHz with 4GB of DDR2 RAM is the baseline machine.

The software baseline benchmark was used as a shell with
each of the kernels replaced with their respective CUDA
implementation. The GTX280 NVIDIA graphics card was
used which has 240 processor cores and runs at 1.3GHz with
1GB of memory.

4.2 Metrics
For comparing two different implementations of the same ar-
chitecture, the update period is a simple and effective metric.
The update period is the time it takes for the implementa-
tion to complete a single batch of data. The speed-up will
be measured by the ratio described in Eq. 12, where S is the
speed-up, and Thw and Tsw are the update periods for the
hardware and software implementations, respectively.

S =
Tsw

Thw
(12)

However, an absolute measure of performance is also desir-
able. Although it is unable to account for the differences

Figure 4: The computational time for each of the

kernels.

in neural network architectures, a common metric for com-
putational performance is the number of Connections per
Seconds (CPS) that an implementation can compute [7] –
described by Eq. 13, where n is the layer size count and T

is the update period.

CPS =
n2

T
(13)

For the software program, the function gettimeofday() in the
standard C time.h library is used to time stamp the software
implementation at the beginning and end of every batch.

The error in weights was not measured since two different
random number generators were used for each implementa-
tion, which would result in divergent weight updates making
their comparison impossible.

4.3 Analysis
To make our comparison of GPU vs. CPU, we devised a
RBM with the following properties:

• 512 nodes in visible layer

• 512 nodes in hidden layer

• 256k single-precision floating point weights

In our testing (Fig. 4-5), we had discovered CUDA imple-
mentation best CPU implementation for every component
and fully integrated RBM. First, we will analyze the per-
formance of individual components. The matrix operations
provided varying levels of speedup with the matrix multiply
providing the greatest performance. For the random number
generator, increased performance is achieved by generating
more numbers – this should be expected since the overhead
of running dcmt0.4 is amortized over a greater portion.

As for the sigmoid functions, the CUDA expf() was the
best performer, though only slightly outperforming the in-
teger approximations. It is also the most precise out of the
four implemented versions. Note that this function is in it-
self an approximation and not calculated by a FPU directly,
as specified by Appendix B.2 of the CUDA Manual.



Figure 5: A speedup for each of the kernels.

Both integer implementations were essentially the same, with
the decision coming from what is preferred: smaller error
or larger range. It is not entirely fair to compare them to

expf(), as the later was optimized at assembly level. Sig-
nificant performance improvements could be gained if these
two functions were written in assembly themselves. Of inter-
est, note that all operation can be easily and cheaply imple-
mented and optimized in hardware; CUDA cannot achieve
such custom integration.

Lastly, the texture implementation is the slowest. The error
is negligible for our application. The performance loss is
attributed to the memory access time. Nevertheless, while
textures were slower in this context, their performance is
still comparable.

For our integration code, we chose to use the pure floating
point implementation.

It is worth to note that, while component-wise speedup was
up to thousands of times faster than CPU implementations,
the RBM only gained approximately 66-fold speedup, re-
sulting in a computational speed of 672MCUPS. It showed
that significant overhead had gone into the memory copies
and synchronization of threads.

We also took a look at the scalability of GPU designs (Fig. 6).
The computational time of the same CUDA program, at half
the dimensions, showed 1.67 times speedup. While, by dou-
bling the dimensions (quadruple the size), the computational
time had increased five folds. This led us to believe that our
CUDA implementation may not be capable of being effi-
ciently scaled. However, we cannot rule out the fact we had
coded our program for above listed properties for compari-
son purposes. Thus, it is entirely possible that our program
can be further optimized for more dynamic dimensions.

5. CONCLUSIONS
This project showed that CUDA implementations can be
well suited for neural network applications. The implemen-
tation was built around the design of three computational
kernels: matrix operations, random number generators and
sigmoid functions. Each of these kernels provided significant
performance benefit. A speed up of 66-fold that achieved a
computational speedup of 672MCUPS for a network size of

Figure 6: The computational time vs network size.

512 × 512 is significant and comparable to other work done
in this field. However, further analysis suggests that this
GPU implementation might not be infinitely scalable.

6. REFERENCES
[1] Y. Freund and D. Haussler, “Unsupervised Learning of

Distributions on Binary Vectors Using Two Layer
Networks,” Neural Information Processing Systems
Conference (NIPS), pp. 912–919, 1992.

[2] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale
Deep Unsupervised Learning using Graphics
Processors,” Proceedings of the Twenth-Sixth
International Conference on Machine Learning, 2009.
To appear.

[3] H. H. Jang, A. J. Park, and K. C. Jung, “Neural
Network Implementation Using CUDA and OpenMP,”
Computing: Techniques and Applications, pp. 155–161,
2008.

[4] D. Ly and P. Chow, “A High-Performance FPGA
Architecture for Restricted Boltzmann Machines,” ACM
International Symposium on FPGAs, pp. 73–82, 2009.

[5] NVIDIA, “CUDA Programming Guide v2.0,” 2008.
[6] M. Tommiska, “Efficient digital implementation of the

sigmoid function for reprogrammable logic,” IEE
Proceedings – Computers and Digital Techniques,
pp. 403–411, 2003.

[7] Y. Liao, “Neural Networks in Hardware: A Survey,”
tech. rep., Santa Cruz, CA, USA, 2001.


