
Expediting Peer-to-Peer
Simulation using GPU

Di Niu, Zhengjun Feng

Apr. 14th, 2009

Outline

An Introduction to P2P Content Distribution
Overview of P2P Algorithms and Simulation
GPU Algorithm Design
Performance Evaluation
Summary & Future Work
Discussion

Introduction

Current-generation P2P Content Distribution (BitTorrent)
A large file is broken into k blocks
N participating peers form a random topology
Neighboring Peers “gossip” the data blocks
Each peer has a buffer map to indicate which block it has

A binary array of size k.
B[x] = 1 means the peer has block x

Seed: Peers with all data blocks
Downloader: Peers with a subset of the data blocks.

P2P Algorithms: RUB & GRF
Rand Useful Block (RUB): in each round, each peer
selects a random neighbor and transmits a random useful
block.
Global Rarest First (GRF): in each round, each peer
selects a random neighbor and transmits a random useful
block that is the rarest within the neighborhood

Maintains a global counter for each block
Count[x] = 7 means there are 7 copies of block x in the
network.

Simulating P2P Algorithms

Simulation Methods: Synchronized, Unsynchronized
Starts with one seed, ends with N seeds

RUB Design on GPU

Without Shared Memory
Each thread handles a peer:

Step 1: generate a random number
Step 2: get the random target peer
Step 3: compare data block matrix count of difference
Step 4: generate another random number
Step 5: compare data block matrix again data block index
Step 6: transmit the data block to target peer
Step 7: count the seeds

RUB Design on GPU
With Shared Memory (store the buffer difference)

Each thread handles a peer:

Step 1: generate a random number
Step 2: get the random target peer
Step 3: compare data block matrix, save different block index to
SMEM
Step 4: generate another random number
Step 5: get the data block index from SMEM
Step 6: transmit the data block to target peer
Step 7: count the seeds

RUB Design on GPU
Shared Memory – Bank Conflict Avoidance

Block size 64
Data: USHORT
16KB/64=256B
=128 data/thread
(= 64 integers/thread)

To avoid bank conflict:
126 data / thread
(=63 integers/thread)

GRF on GPU: Algorithm 1
Each thread handles one sender:

1. Choose a random neighbor to upload to
2. Compare the buffer difference between the sender and
receiver
3. Find the rarest block by checking Count (in global
memory)
4. Updating Count
5. Updating the receiver buffer

Use a separate kernel to update Count
This resolves the conflict of two peers transmitting the
same block to the same peer.

GRF on GPU: Algorithm 2
Viewing each thread block as a sender
Each thread handles one block in one sender

Step 1: Thread 0 in each sender selects a neighbor and
stores receiver in the shared memory
Step 2: Buffer comparison. Each block in each sender is
compared to the corresponding block in the receiver using
one thread.
Step 3: Find the block that has the least Count
Step 4: Thread 0 in each sender transmits the rarest block
to the receiver.

Evaluation –

RUB Speedup

11

With SMEM: up to 8x speedup
W/o SMEM: up to 4.3x speedup

0
1
2
3
4
5
6
7
8
9

256 512 1024 2048 4096 8192

of peers

G
P

U
S

pe
ed

up
 (t

im
es

)

With SMEM
Without SMEM

Evaluation –

RUB Speedup

12

With SMEM: 2x ~ 4.5x speedup
W/O SMEM: 1.2x ~ 2.7 speedup

0.00

1.00

2.00

3.00

4.00

5.00

256 512 1024 2048 4096

of data blocks

S
pe

ed
up

 (t
im

es
)

With SMEM
Without SMEM

Evaluation -

GRF

13

Each thread handles a peer: 7x speedup
Each thread handles a data block: 21x speedup

0

10

20

30

40

50

60

70

80

128 256 512 1024 2048 4096 8192 16384
Peer Number

CPU time GPU time

Evaluation -

GRF

14

Each thread handles a peer: 8x speedup
Each thread handles a data block: 21x speedup

0

10

20

30

40

50

60

70

80

16 32 64 128 256 512
of Data Blocks

CPU time
GPU time

Evaluation -

GRF

Speedup

15

0.00

5.00

10.00

15.00

20.00

25.00

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

of Peers

Data block/thread

Peer/thread

For one thread per block，grid size ＝ ＃ of Peers，block size = 512
For one thread per peer，grid size ＝ ＃ of Peers/512，block size = 512

Data Blocks = 512

Evaluation -

GRF

Speedup

16

Data block/thread

0.00

5.00

10.00

15.00

20.00

25.00

16 32 64 128 256 512
of Data Blocks

Peer/thread

0.00

2.00

4.00

6.00

8.00

10.00

16 32 64 128 256 512

of Data Blocks

Peer s = 1638 4

For data block/thread: grid size = 16384, block size = # of data blocks.
For peer/thread: grid size = # of peers/512, block size = 512.

Summary

RUB:
without SMEM: up to 4x speedup
Shared-memory-based: up to 8x speedup

GRF:
Each thread handles a peer: up to 8x speedup
Each thread handles a block: up to 21x speedup

17

Future Work

RUB
Design RUB with “one thread per data block”
Difficulty: randomly select a thread among a
bunch of parallel threads

GRF
Handles more data blocks (>512)
Let each thread handle multiple data blocks of a
sender.

18

Discussion

Thanks

Any questions?

19

	Expediting Peer-to-Peer Simulation using GPU
	Outline
	Introduction
	P2P Algorithms: RUB & GRF
	Simulating P2P Algorithms
	RUB Design on GPU
	RUB Design on GPU
	RUB Design on GPU
	GRF on GPU: Algorithm 1
	GRF on GPU: Algorithm 2
	Evaluation – RUB Speedup
	Evaluation – RUB Speedup
	Evaluation - GRF
	Evaluation - GRF
	Evaluation - GRF Speedup
	Evaluation - GRF Speedup
	Summary
	Future Work
	Discussion

