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Introduction

Current-generation P2P Content Distribution (BitTorrent)
A large file Is broken into k blocks
N participating peers form a random topology
Neighboring Peers “gossip” the data blocks
Each peer has a buffer map to indicate which block it has
A binary array of size k.
B[x] = 1 means the peer has block x
o Seed: Peers with all data blocks
o Downloader: Peers with a subset of the data blocks.
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P2P Algorithms: RUB & GRF

o Rand Useful Block (RUB): in each round, each peer
selects a random neighbor and transmits a random useful

block.

o Global Rarest First (GRF): in each round, each peer
selects a random neighbor and transmits a random useful
block that is the rarest within the neighborhood

Maintains a global counter for each block

Count[x] = 7 means there are 7 copies of block x in the
network.



Simulating P2P Algorithms
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oSimulation Methods: Synchronized, Unsynchronized

aStarts with one seed, ends with N seeds




RUB Design on GPU

Without Shared Memory
Each thread handles a peer:

Step 1: generate a random number

Step 2: get the random target peer

Step 3: compare data block matrix = count of difference
Step 4: generate another random number

Step 5: compare data block matrix again - data block index
Step 6: transmit the data block to target peer

Step 7: count the seeds
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RUB Design on GPU

With Shared Memory (store the buffer difference)
Each thread handles a peer:

o Step 1: generate a random number
o Step 2: get the random target peer

Step 3: compare data block matrix, save different block index to
SMEM

Step 4: generate another random number
Step 5: get the data block index from SMEM
Step 6: transmit the data block to target peer
Step 7: count the seeds
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‘ RUB Design on GPU

Shared Memory — Bank Conflict Avoidance
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GRF on GPU: Algorithm 1

Each thread handles one sender:
o 1. Choose a random neighbor to upload to

o 2. Compare the buffer difference between the sender and
receiver

o 3. Find the rarest block by checking Count (in global
memory)

o 4. Updating Count
o 5. Updating the receiver buffer

Use a separate kernel to update Count

o This resolves the conflict of two peers transmitting the
same block to the same peer.



GRF on GPU: Algorithm 2

Viewing each thread block as a sender

Each thread handles one block In one sender

o Step 1: Thread 0 in each sender selects a neighbor and
stores receiver in the shared memory

o Step 2: Buffer comparison. Each block in each sender is
compared to the corresponding block in the receiver using
one thread.

o Step 3: Find the block that has the least Count

o Step 4: Thread 0 In each sender transmits the rarest block
to the receiver.



Evaluation — RUB Speedup
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With SMEM: up to 8x speedup
W/o SMEM: up to 4.3x speedup



Evaluation — RUB Speedup
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With SMEM: 2x ~ 4.5x speedup
W/O SMEM: 1.2x ~ 2.7 speedup



Evaluation - GRF

Each thread handles a peer: 7x speedup
Each thread handles a data block: 21x speedup
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Evaluation - GRF

Each thread handles a peer: 8x speedup
Each thread handles a data block: 21x speedup
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Evaluation - GRF Speedup
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Evaluation - GRF Speedup
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Summary

RUB:
o without SMEM: up to 4x speedup
o Shared-memory-based: up to 8x speedup

GREF:
o Each thread handles a peer: up to 8x speedup
o Each thread handles a block: up to 21x speedup



Future Work

RUB

0 Design RUB with “one thread per data block”

o Difficulty: randomly select a thread among a
bunch of parallel threads

GRF
o Handles more data blocks (>512)

o Let each thread handle multiple data blocks of a
sender.



Discussion

Thanks

Any questions?
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