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Introduction

Current-generation P2P Content Distribution (BitTorrent)
A large file is broken into k blocks
N participating peers form a random topology
Neighboring Peers “gossip” the data blocks
Each peer has a buffer map to indicate which block it has

A binary array of size k. 
B[x] = 1 means the peer has block x 

Seed: Peers with all data blocks
Downloader: Peers with a subset of the data blocks.



P2P Algorithms: RUB & GRF
Rand Useful Block (RUB): in each round, each peer 
selects a random neighbor and transmits a random useful 
block.
Global Rarest First (GRF): in each round, each peer 
selects a random neighbor and transmits a random useful 
block that is the rarest within the neighborhood

Maintains a global counter for each block
Count[x] = 7 means there are 7 copies of block x in the 
network.



Simulating P2P Algorithms

Simulation Methods: Synchronized, Unsynchronized
Starts with one seed, ends with N seeds



RUB Design on GPU

Without Shared Memory
Each thread handles a peer:

Step 1: generate a random number
Step 2: get the random target peer
Step 3: compare data block matrix count of difference
Step 4: generate another random number
Step 5: compare data block matrix again data block index
Step 6: transmit the data block to target peer
Step 7: count the seeds



RUB Design on GPU
With Shared Memory (store the buffer difference)

Each thread handles a peer:

Step 1: generate a random number
Step 2: get the random target peer
Step 3: compare data block matrix, save different block index to 
SMEM
Step 4: generate another random number
Step 5: get the data block index from SMEM
Step 6: transmit the data block to target peer
Step 7: count the seeds



RUB Design on GPU
Shared Memory – Bank Conflict Avoidance

Block size 64
Data: USHORT
16KB/64=256B
=128 data/thread
(= 64 integers/thread)

To avoid bank conflict:
126 data / thread
(=63 integers/thread)



GRF on GPU: Algorithm 1
Each thread handles one sender:

1. Choose a random neighbor to upload to
2. Compare the buffer difference between the sender and 
receiver
3. Find the rarest block by checking Count (in global 
memory)
4. Updating Count
5. Updating the receiver buffer

Use a separate kernel to update Count
This resolves the conflict of two peers transmitting the 
same block to the same peer.



GRF on GPU: Algorithm 2
Viewing each thread block as a sender
Each thread handles one block in one sender

Step 1: Thread 0 in each sender selects a neighbor and 
stores receiver in the shared memory
Step 2: Buffer comparison. Each block in each sender is 
compared to the corresponding block in the receiver using 
one thread.
Step 3: Find the block that has the least Count
Step 4: Thread 0 in each sender transmits the rarest block 
to the receiver.



Evaluation –
 

RUB Speedup
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With SMEM: up to 8x speedup
W/o SMEM: up to 4.3x speedup
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Evaluation –
 

RUB Speedup
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With SMEM: 2x ~ 4.5x speedup
W/O SMEM: 1.2x ~ 2.7 speedup
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Evaluation -
 

GRF
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Each thread handles a peer: 7x speedup
Each thread handles a data block: 21x speedup
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Evaluation -
 

GRF
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Each thread handles a peer: 8x speedup
Each thread handles a data block: 21x speedup
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Evaluation -
 

GRF
 

Speedup
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Data block/thread

Peer/thread

For one thread per block，grid size ＝ ＃ of Peers，block size = 512 
For one thread per peer，grid size ＝ ＃ of Peers/512，block size = 512 
 

#  Data  Blocks = 512 



Evaluation -
 

GRF
 

Speedup
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Data block/thread
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For data block/thread: grid size = 16384, block size = # of data blocks.
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Summary

RUB:
without SMEM: up to 4x speedup
Shared-memory-based: up to 8x speedup

GRF:
Each thread handles a peer: up to 8x speedup
Each thread handles a block: up to 21x speedup
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Future Work

RUB
Design RUB with “one thread per data block”
Difficulty: randomly select a thread among a 
bunch of parallel threads

GRF
Handles more data blocks (>512)
Let each thread handle multiple data blocks of a 
sender.
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Discussion

Thanks

Any questions?
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