Expediting Peer-to-Peer
Simulation using GPU

Di Niu, Zhengjun Feng

Apr. 14t 2009

Outline

An Introduction to P2P Content Distribution

Overview of P2P Algorithms and Simulation
GPU Algorithm Design

Performance Evaluation

Summary & Future Work
Discussion

Introduction

Current-generation P2P Content Distribution (BitTorrent)
A large file Is broken into k blocks
N participating peers form a random topology
Neighboring Peers “gossip” the data blocks
Each peer has a buffer map to indicate which block it has
A binary array of size k.
B[x] = 1 means the peer has block x
o Seed: Peers with all data blocks
o Downloader: Peers with a subset of the data blocks.

oL O O O

P2P Algorithms: RUB & GRF

o Rand Useful Block (RUB): in each round, each peer
selects a random neighbor and transmits a random useful

block.

o Global Rarest First (GRF): in each round, each peer
selects a random neighbor and transmits a random useful
block that is the rarest within the neighborhood

Maintains a global counter for each block

Count[x] = 7 means there are 7 copies of block x in the
network.

Simulating P2P Algorithms

0 QAR

t

[f QOL@@C a
MQ@QDO
l uauﬁmﬁ
H..@@@O@O

L

...u

._|.

|
__

—

I
e

E 500000

L

I 000000

G o o 03 o=k w0 W

oSimulation Methods: Synchronized, Unsynchronized

aStarts with one seed, ends with N seeds

RUB Design on GPU

Without Shared Memory
Each thread handles a peer:

Step 1: generate a random number

Step 2: get the random target peer

Step 3: compare data block matrix = count of difference
Step 4: generate another random number

Step 5: compare data block matrix again - data block index
Step 6: transmit the data block to target peer

Step 7: count the seeds

L 0O O O O O O

RUB Design on GPU

With Shared Memory (store the buffer difference)
Each thread handles a peer:

o Step 1: generate a random number
o Step 2: get the random target peer

Step 3: compare data block matrix, save different block index to
SMEM

Step 4: generate another random number
Step 5: get the data block index from SMEM
Step 6: transmit the data block to target peer
Step 7: count the seeds

U

o O O 0O

‘ RUB Design on GPU

Shared Memory — Bank Conflict Avoidance

Q

Q

Q

Block size 64

Data: USHORT
16KB/64=256B
=128 data/thread

(= 64 integers/thread)

To avoid bank conflict;
126 data / thread
(=63 integers/thread)

thread 0

thread 15

bank 0

bank [

thread 14

bank 1

bank 1

thread 13

bank 2

bank 2

thread 12

bank 3

bank 3

bank 4

e Rl e e =

||| =D

bank 4

thread 5

thread 4

bank 11

11

11

thread 3

—_—

bank 12

12

12

bank 13

13

13

bank 14

14

14

bank 15

15

15

GRF on GPU: Algorithm 1

Each thread handles one sender:
o 1. Choose a random neighbor to upload to

o 2. Compare the buffer difference between the sender and
receiver

o 3. Find the rarest block by checking Count (in global
memory)

o 4. Updating Count
o 5. Updating the receiver buffer

Use a separate kernel to update Count

o This resolves the conflict of two peers transmitting the
same block to the same peer.

GRF on GPU: Algorithm 2

Viewing each thread block as a sender

Each thread handles one block In one sender

o Step 1: Thread 0 in each sender selects a neighbor and
stores receiver in the shared memory

o Step 2: Buffer comparison. Each block in each sender is
compared to the corresponding block in the receiver using
one thread.

o Step 3: Find the block that has the least Count

o Step 4: Thread 0 In each sender transmits the rarest block
to the receiver.

Evaluation — RUB Speedup

9
8
g 7 _—
e -~
©
O 4 e — _=— Without SMEM
S pd - "
»n 3
8 , //
./
O I I I I I
256 512 1024 2048 4096 8192
of peers

With SMEM: up to 8x speedup
W/o SMEM: up to 4.3x speedup

Evaluation — RUB Speedup

o
o
S

w A
o
S

o
o
|

—e— With SMEM

—n———8

Speedup (times)

=N
o O
S

o
|

o
o
S

256 512 1024 2048 4096
of data blocks

With SMEM: 2x ~ 4.5x speedup
W/O SMEM: 1.2x ~ 2.7 speedup

Evaluation - GRF

Each thread handles a peer: 7x speedup
Each thread handles a data block: 21x speedup

80

—— CPU time —#— GPU time
70
60 /
50
. /
30 /
20
10 /
0 v-’l/g/:/;’*/T

128 256 512 1024 2048 4096 8192 16384
Peer Number

Evaluation - GRF

Each thread handles a peer: 8x speedup
Each thread handles a data block: 21x speedup

80

70 T{—e—cPU time /
60 —#— GPU time

50 /
o /

30 /

20 //
10
0 #/'/ﬂ./’_*/f

16 32 64 128 256 512
of Data Blocks

Evaluation - GRF Speedup

25.00

—@-— Data block/threac
Peer/thread

20.00

15.00

L, X ® 6 A
oo R P g
N M N A7 «,@(b

of Peers

Data Blocks= 512

For ane thread per block, grid size = # of Peers, blocksize = 512
For ane thread per peer, gridsize = # of Peers/512, blocksize = 512

15

Evaluation - GRF Speedup

Data block/thread Peer/thread

25 00 10.00

20.00 /l 8.00

15.00 e 6.00 //\
10.00 / 4.00

5.00 / 2.00 /

0.00 T// : : : 0.00 : : : :

16 32 64 128 256 512 16 32 64 128 256 512
of Data Blocks

of Data Blocks

Peers = 16384

For data block/thread: grid size = 16384, block size = # of data blocks.
For peer/thread: grid size = # of peers/512, block size = 512.

Summary

RUB:
o without SMEM: up to 4x speedup
o Shared-memory-based: up to 8x speedup

GREF:
o Each thread handles a peer: up to 8x speedup
o Each thread handles a block: up to 21x speedup

Future Work

RUB

0 Design RUB with “one thread per data block”

o Difficulty: randomly select a thread among a
bunch of parallel threads

GRF
o Handles more data blocks (>512)

o Let each thread handle multiple data blocks of a
sender.

Discussion

Thanks

Any questions?

	Expediting Peer-to-Peer Simulation using GPU
	Outline
	Introduction
	P2P Algorithms: RUB & GRF
	Simulating P2P Algorithms
	RUB Design on GPU
	RUB Design on GPU
	RUB Design on GPU
	GRF on GPU: Algorithm 1
	GRF on GPU: Algorithm 2
	Evaluation – RUB Speedup
	Evaluation – RUB Speedup
	Evaluation - GRF
	Evaluation - GRF
	Evaluation - GRF Speedup
	Evaluation - GRF Speedup
	Summary
	Future Work
	Discussion

