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I. INTRODUCTION 

A speech recognition system can be classified based on two 

factors: (1) whether the system is speaker-dependent or 

speaker-independent, and (2) whether the system works for 

continuous speech or isolated words. Ideally, it should be able 

to recognize each spoken word accurately regardless of the 

speaker, but this type of system does not exist yet. As a result, 

the development of a continuous speaker-independent speech 

recognition system remains an ongoing research goal.  

A speech recognition engine can be used in many different 

applications. For instance, it can help people with learning 

disabilities, who cannot properly map their thoughts into writing, 

by generating a written version of their speech. It can also be 

used in an aircraft to alleviate the pilot’s workload by executing 

the uttered commands.  

All of the practical applications rely on the achievement of 

very high recognition accuracy. Although isolated-word speech 

recognition systems can only recognize one word at a time, they 

tend to be the preferred choice since their performance accuracy 

is higher than that of continuous speech recognizers.  

Speech recognition is carried out in two phases. In the 

training phase, the system memorizes a set of reference 

templates. In the test phase, the system compares a speech signal 

with all of the reference templates and returns the closest one as 

the recognized pattern. It should be noted that performance 

accuracy improves when there are more reference templates to 

compare with. However, the time to find the closest match 

increases exponentially with a larger set of reference templates. 

This time can be reduced by parallelizing computationally 

expensive tasks on a graphics processor unit (GPU). 

 This paper reveals a marked improvement by moving the 

computationally expensive tasks onto a GPU. In fact, the GPU 

implementation is about 5.8 times faster than the CPU one. 

II. RELATED WORKS 

A few studies attempted to implement a speech recognition 

algorithm on a graphics processor unit (GPU). Poli et al. (2007) 

applied the dynamic warp algorithm (DTW) to perform voice 

password identification, and they reported that it is possible to 

obtain an increase in performance by moving the computations 

onto a graphics card [1]. Cardinal et. al (2008) used NVIDIA 

 
 

GeForce 8800 GTX to compute the acoustic likelihoods for 

their speech recognition system, which is based on a finite-state 

transducer (FST) framework. They gathered the average CPU 

and GPU times by computing the acoustic likelihoods 2000 

times, and they reported a performance increase of 33.5% with 

the GPU implementation [2]. Chong et. al (2008) explored the 

opportunities for parallelizing a more complex speech 

recognition algorithm. They implemented a hidden Markov 

model (HMM) based Viterbi search algorithm, which is 

typically suited for a large-vocabulary continuous speech 

recognizer. Their GPU version proved to be 9 times faster than 

their CPU version [3]. 

III. DYNAMIC TIME WARPING 

A. Background 

In general, it can be observed that the time scale of a test 

signal is not perfectly aligned with that of a reference signal. A 

popular choice for determining the similarity between the test 

and reference signals involves the computation of the Euclidean 

distance. However, this method is not always reliable. Consider 

Figure 1 which shows two sequences of data with the same 

overall shape but with different time alignment. Indeed, the 

Euclidean distance does not provide an accurate measure of the 

distance between the i
th

 point of one sequence and the i
th

 point of 

the second sequence. Instead, a nonlinear time warping 

technique needs to be used, as illustrated in Figure 2. An 

example of such a technique includes the dynamic time warping 

(DTW) algorithm which is often used in the speech processing 

community [4].  

 

 
Figure 1: Two sequences from an Australian Sign Language dataset. 

The Euclidean distance produces a dissimilarity measure [4] 

 

Implementing a Speech Recognition System on a 

Graphics Processor Unit (GPU) using CUDA 

Astrid Yi (996864558), Omid Talakoub (994951307) 



 2 

 
Figure 2: Two sequences from an Australian Sign Language dataset. 

A nonlinear time alignment allows for a more sophisticated measure of 

distance [4] 

 

B. Description of the Algorithm 

Dynamic-time warping (DTW) aims at aligning two 

sequences of feature vectors by warping the time axis iteratively. 

In the case of a speech recognition system, a feature vector is 

derived from a spoken word, and it can have several different 

representations such as the discrete Fourier transform (DFT) 

coefficients and the cepstral coefficients, which are obtained 

from the inverse DFT of the logarithm of the magnitude of the 

DFT coefficients. This paper resorts to the use of 

Mel-frequency cepstral coefficients (MFCCs), which represent 

coefficients of the short-term power spectrum of a sound. Figure 

3 shows how these coefficients can be derived. First, the Fourier 

transform of a windowed signal is taken. Then, the powers of the 

spectrum are mapped onto the mel scale by using overlapping 

triangular windows. The logarithms of these powers are 

computed at each mel frequency, and the corresponding discrete 

cosine transform (DCT) is obtained. Finally, the high-frequency 

components of the resulting signals are discarded since they do 

not provide relevant speech information [5]. 

 

 
Figure 3: Typical derivation of MFCCs 

 

 After obtaining the MFCCs, the smallest warping path must 

be found in order to recognize a word while satisfying the given 

boundary, continuity, and global constraints. Boundary 

conditions specify the starting and end points of the warping 

path while the continuity ones determine the allowable steps in 

the warping path, and the global conditions define the search 

region used in finding the optimal path.  

IV. IMPLEMENTATION OF THE SPEECH RECOGNITION SYSTEM 

The initial development of the speech recognition system was 

completed in MATLAB. This implementation was 

subsequently converted to a pure C++ program in order to 

remove the dependency on MATLAB.  The C++ version of the 

speech recognition system was then used as a reference to create 

the GPU CUDA based implementation. 

Figure 4 gives an overview of the algorithm with regards to 

how it was implemented in the C++ program.  The first step 

involves loading the sound data from the reference files as well 

as the test file. A set of MFCCs is generated for each file loaded. 

To generate the MFCCs, the sound data is first segmented into 

overlapping frames.  For each frame, its associated coefficients 

are computed. Once all these computations have completed, the 

test sound data is compared with the references to generate a 

cost using DTW for each reference. The costs are subsequently 

sorted in ascending order, and the reference associated with the 

lowest cost is the recognized word. 
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Figure 4: Overview of the speech recognition algorithm 

 

Figure 5 shows how parallelization can be done on a GPU. 

Indeed, the availability of many processing cores along with the 

CUDA runtime allow for the simultaneous execution of all the 

data frames.  This cannot easily be done on a CPU due to the 

limited number of execution units and the need to explicitly 

launch a thread of execution for each core. As a result, each 

frame tends to execute sequentially on a CPU.  

 

 
 
Figure 5: Data flow diagram on the GPU for calculating MFCCs 

A. MFCC Generation 

To generate the MFCCs, the speech signal to be recognized 

must be partitioned into a set of overlapping frames. Each frame 

is processed in the same manner to generate a set of coefficients.  

As each frame receives the exact same processing, this presents 

a good way to approach the implementation for the generation 

of the coefficients. 

Each processing step on the speech signal frames can be 

considered as a transformation between the input data and the 

desired output. In CUDA, the terminology usually associated 

with the code which performs such a transformation is a kernel.  

When launching a CUDA kernel, a set of parameters is specified 

to determine the number of instances that the kernel will execute. 

If the GPU does not have the necessary resources to run all the 

desired instances of the kernel concurrently, the CUDA runtime 

will attempt to schedule a series of kernel invocations in the 

most efficient way possible. Using the provided scheduling in 

the CUDA runtime, it is possible to launch a kernel so that there 

will be a running instance for every frame of the speech signal. 

If the GPU does not have the necessary processing units to do 

this simultaneously, the necessary scheduling required is 

performed automatically. 

There are several steps required in the calculation of the 

coefficients, each of which is implemented in the form of a 

CUDA kernel. In order to do this, there are six kernels required: 

infinite impulse response (IIR) filter, scale a vector by a 
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constant, scale a vector element by element using a second 

vector to contain the scaling values, a fast Fourier transform 

(FFT), a mel scale filter, and a discrete cosine transform (DCT). 

Each of these kernels can process all the data frames at once 

without the need for multiple explicit invocations. Of these six 

kernels, the FFT was provided via the CUFFT library while the 

rest had to be written. 

B. Target Matrix Generation 

The target matrix which is used to compare against all the 

references to find a match is created using the previously 

generated MFCCs.  The matrix itself has as many rows as there 

are speech signal frames and three times the number of MFCCs 

for columns.  The first series of columns of the target matrix are 

populated using the MFCCs while the other columns are 

populated using the MFCCs which have been transformed by 

going through a delta operation.  The result of the first delta 

operation is placed in the target matrix directly to the right of the 

original MFCCs. The result of the first delta is then placed 

through the same delta operation again to create a second set of 

data which is placed in the remaining matrix entries.  This delta 

operation was also implemented via a CUDA kernel. 

C. Dynamic Time Warping 

The implementation of the DTW was simple as the core 

optimization was done one the generation of the MFCCs.  To 

implement the DTW, the code from the C++ implementation 

was copied over to a CUDA kernel.  This kernel could then 

simultaneously compare the target matrix to all the potential 

feature matrices.  

V. METHODOLOGY 

In any speech recognition system, there are two important 

metrics to consider: the elapsed time between the input 

(acquisition of the speech signal) and output (recognized word), 

and the recognition accuracy.  For the GPU implementation, the 

accuracy desired was equal to that of the CPU version. However, 

there were some slight differences (between the GPU and CPU 

implementations) due to variations in the FFT algorithm and the 

implementation of the floating point hardware.  After 

comparing the GPU results with the CPU ones, it was found that 

these small changes were not significant and did not impact the 

recognition accuracy.  Thus, it is not worthwhile to pursue a 

further discussion on this particular metric. 

Since the implementation of the dynamic time warping 

algorithm is identical to the original one, no change is expected 

in its performance.  Therefore, performance results are only 

examined for the generation of MFCCs and feature matrices.  

CUDA provides a set of utility functions, some of which are 

designed to act as a timer.  However, these utility functions 

cannot be used to since the CPU version of the speech 

recognition system does not use CUDA. In order to have 

consistent performance measurements between the CPU and 

GPU implementations, it is possible to resort to 

QueryPerformanceCounter, which is a function from the 

Windows API. 

Performance results were obtained by gathering the amount 

of time it takes to calculate 45 MFCCs and feature matrices. The 

calculation of multiple MFCCs and feature matrices helped 

remove the impact of any potential startup code on the first 

invocation, which would not occur after initializing the 

application. The whole process was repeated 5 times, and the 

results were averaged. 

VI. RESULTS 

The performance results of the GPU and CPU 

implementations revealed a marked improvement from having 

moved the processing onto the GPU.  Using the methods 

described in section V, the average execution runtime for 45 

iterations on the CPU was 8.3044 seconds while the one for the 

GPU was 1.4280 seconds.  These results translate into a 

performance improvement of approximately 5.8. 

 From Figure 5, it can be observed that the performance 

results could have been improved if the first 3 kernels were 

better optimized. Indeed, these kernels are memory bound and 

suffer from memory bank conflicts. Due to the project time 

constraints, these conflicts were not resolved.  

 

 
Figure 5: GPU time of each kernel 

VII. CONCLUSION 

The current GPU implementation of the isolated-word 

recognition system demonstrates that it is possible to achieve an 

increase in performance by moving some of the computationally 

expensive tasks onto the GPU. Nevertheless, this performance 

can be further improved by making additional optimizations.  

The current implementation of the speech recognizer 

allocates memory as a contiguous block, which does not 

guarantee an optimal memory bandwidth usage when kernels 

are memory bound. In order to address this issue, other CUDA 

functions (e.g. cudaMalloc2D) should be used to allocate 

memory so that accesses are aligned. Furthermore, it would be 

worthwhile to investigate whether the use of the CUBLAS 

library could yield additional performance improvements since 

this library has some linear algebra functions which could be 

applied in the speech recognition program.  
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