
 1

I. INTRODUCTION

A speech recognition system can be classified based on two

factors: (1) whether the system is speaker-dependent or

speaker-independent, and (2) whether the system works for

continuous speech or isolated words. Ideally, it should be able

to recognize each spoken word accurately regardless of the

speaker, but this type of system does not exist yet. As a result,

the development of a continuous speaker-independent speech

recognition system remains an ongoing research goal.

A speech recognition engine can be used in many different

applications. For instance, it can help people with learning

disabilities, who cannot properly map their thoughts into writing,

by generating a written version of their speech. It can also be

used in an aircraft to alleviate the pilot’s workload by executing

the uttered commands.

All of the practical applications rely on the achievement of

very high recognition accuracy. Although isolated-word speech

recognition systems can only recognize one word at a time, they

tend to be the preferred choice since their performance accuracy

is higher than that of continuous speech recognizers.

Speech recognition is carried out in two phases. In the

training phase, the system memorizes a set of reference

templates. In the test phase, the system compares a speech signal

with all of the reference templates and returns the closest one as

the recognized pattern. It should be noted that performance

accuracy improves when there are more reference templates to

compare with. However, the time to find the closest match

increases exponentially with a larger set of reference templates.

This time can be reduced by parallelizing computationally

expensive tasks on a graphics processor unit (GPU).

 This paper reveals a marked improvement by moving the

computationally expensive tasks onto a GPU. In fact, the GPU

implementation is about 5.8 times faster than the CPU one.

II. RELATED WORKS

A few studies attempted to implement a speech recognition

algorithm on a graphics processor unit (GPU). Poli et al. (2007)

applied the dynamic warp algorithm (DTW) to perform voice

password identification, and they reported that it is possible to

obtain an increase in performance by moving the computations

onto a graphics card [1]. Cardinal et. al (2008) used NVIDIA

GeForce 8800 GTX to compute the acoustic likelihoods for

their speech recognition system, which is based on a finite-state

transducer (FST) framework. They gathered the average CPU

and GPU times by computing the acoustic likelihoods 2000

times, and they reported a performance increase of 33.5% with

the GPU implementation [2]. Chong et. al (2008) explored the

opportunities for parallelizing a more complex speech

recognition algorithm. They implemented a hidden Markov

model (HMM) based Viterbi search algorithm, which is

typically suited for a large-vocabulary continuous speech

recognizer. Their GPU version proved to be 9 times faster than

their CPU version [3].

III. DYNAMIC TIME WARPING

A. Background

In general, it can be observed that the time scale of a test

signal is not perfectly aligned with that of a reference signal. A

popular choice for determining the similarity between the test

and reference signals involves the computation of the Euclidean

distance. However, this method is not always reliable. Consider

Figure 1 which shows two sequences of data with the same

overall shape but with different time alignment. Indeed, the

Euclidean distance does not provide an accurate measure of the

distance between the i
th

 point of one sequence and the i
th

 point of

the second sequence. Instead, a nonlinear time warping

technique needs to be used, as illustrated in Figure 2. An

example of such a technique includes the dynamic time warping

(DTW) algorithm which is often used in the speech processing

community [4].

Figure 1: Two sequences from an Australian Sign Language dataset.

The Euclidean distance produces a dissimilarity measure [4]

Implementing a Speech Recognition System on a

Graphics Processor Unit (GPU) using CUDA

Astrid Yi (996864558), Omid Talakoub (994951307)

 2

Figure 2: Two sequences from an Australian Sign Language dataset.

A nonlinear time alignment allows for a more sophisticated measure of

distance [4]

B. Description of the Algorithm

Dynamic-time warping (DTW) aims at aligning two

sequences of feature vectors by warping the time axis iteratively.

In the case of a speech recognition system, a feature vector is

derived from a spoken word, and it can have several different

representations such as the discrete Fourier transform (DFT)

coefficients and the cepstral coefficients, which are obtained

from the inverse DFT of the logarithm of the magnitude of the

DFT coefficients. This paper resorts to the use of

Mel-frequency cepstral coefficients (MFCCs), which represent

coefficients of the short-term power spectrum of a sound. Figure

3 shows how these coefficients can be derived. First, the Fourier

transform of a windowed signal is taken. Then, the powers of the

spectrum are mapped onto the mel scale by using overlapping

triangular windows. The logarithms of these powers are

computed at each mel frequency, and the corresponding discrete

cosine transform (DCT) is obtained. Finally, the high-frequency

components of the resulting signals are discarded since they do

not provide relevant speech information [5].

Figure 3: Typical derivation of MFCCs

 After obtaining the MFCCs, the smallest warping path must

be found in order to recognize a word while satisfying the given

boundary, continuity, and global constraints. Boundary

conditions specify the starting and end points of the warping

path while the continuity ones determine the allowable steps in

the warping path, and the global conditions define the search

region used in finding the optimal path.

IV. IMPLEMENTATION OF THE SPEECH RECOGNITION SYSTEM

The initial development of the speech recognition system was

completed in MATLAB. This implementation was

subsequently converted to a pure C++ program in order to

remove the dependency on MATLAB. The C++ version of the

speech recognition system was then used as a reference to create

the GPU CUDA based implementation.

Figure 4 gives an overview of the algorithm with regards to

how it was implemented in the C++ program. The first step

involves loading the sound data from the reference files as well

as the test file. A set of MFCCs is generated for each file loaded.

To generate the MFCCs, the sound data is first segmented into

overlapping frames. For each frame, its associated coefficients

are computed. Once all these computations have completed, the

test sound data is compared with the references to generate a

cost using DTW for each reference. The costs are subsequently

sorted in ascending order, and the reference associated with the

lowest cost is the recognized word.

Load

reference

sound files

Segmentation

and

windowing

Mel Frequency

Cepstral

Coefficients

(MFCC) of the

test sound file

Dynamic

Time

Warping
Load test

sound file

Recognized

Word

MFCC

Find

minimum

cost

Figure 4: Overview of the speech recognition algorithm

Figure 5 shows how parallelization can be done on a GPU.

Indeed, the availability of many processing cores along with the

CUDA runtime allow for the simultaneous execution of all the

data frames. This cannot easily be done on a CPU due to the

limited number of execution units and the need to explicitly

launch a thread of execution for each core. As a result, each

frame tends to execute sequentially on a CPU.

Figure 5: Data flow diagram on the GPU for calculating MFCCs

A. MFCC Generation

To generate the MFCCs, the speech signal to be recognized

must be partitioned into a set of overlapping frames. Each frame

is processed in the same manner to generate a set of coefficients.

As each frame receives the exact same processing, this presents

a good way to approach the implementation for the generation

of the coefficients.

Each processing step on the speech signal frames can be

considered as a transformation between the input data and the

desired output. In CUDA, the terminology usually associated

with the code which performs such a transformation is a kernel.

When launching a CUDA kernel, a set of parameters is specified

to determine the number of instances that the kernel will execute.

If the GPU does not have the necessary resources to run all the

desired instances of the kernel concurrently, the CUDA runtime

will attempt to schedule a series of kernel invocations in the

most efficient way possible. Using the provided scheduling in

the CUDA runtime, it is possible to launch a kernel so that there

will be a running instance for every frame of the speech signal.

If the GPU does not have the necessary processing units to do

this simultaneously, the necessary scheduling required is

performed automatically.

There are several steps required in the calculation of the

coefficients, each of which is implemented in the form of a

CUDA kernel. In order to do this, there are six kernels required:

infinite impulse response (IIR) filter, scale a vector by a

 3

constant, scale a vector element by element using a second

vector to contain the scaling values, a fast Fourier transform

(FFT), a mel scale filter, and a discrete cosine transform (DCT).

Each of these kernels can process all the data frames at once

without the need for multiple explicit invocations. Of these six

kernels, the FFT was provided via the CUFFT library while the

rest had to be written.

B. Target Matrix Generation

The target matrix which is used to compare against all the

references to find a match is created using the previously

generated MFCCs. The matrix itself has as many rows as there

are speech signal frames and three times the number of MFCCs

for columns. The first series of columns of the target matrix are

populated using the MFCCs while the other columns are

populated using the MFCCs which have been transformed by

going through a delta operation. The result of the first delta

operation is placed in the target matrix directly to the right of the

original MFCCs. The result of the first delta is then placed

through the same delta operation again to create a second set of

data which is placed in the remaining matrix entries. This delta

operation was also implemented via a CUDA kernel.

C. Dynamic Time Warping

The implementation of the DTW was simple as the core

optimization was done one the generation of the MFCCs. To

implement the DTW, the code from the C++ implementation

was copied over to a CUDA kernel. This kernel could then

simultaneously compare the target matrix to all the potential

feature matrices.

V. METHODOLOGY

In any speech recognition system, there are two important

metrics to consider: the elapsed time between the input

(acquisition of the speech signal) and output (recognized word),

and the recognition accuracy. For the GPU implementation, the

accuracy desired was equal to that of the CPU version. However,

there were some slight differences (between the GPU and CPU

implementations) due to variations in the FFT algorithm and the

implementation of the floating point hardware. After

comparing the GPU results with the CPU ones, it was found that

these small changes were not significant and did not impact the

recognition accuracy. Thus, it is not worthwhile to pursue a

further discussion on this particular metric.

Since the implementation of the dynamic time warping

algorithm is identical to the original one, no change is expected

in its performance. Therefore, performance results are only

examined for the generation of MFCCs and feature matrices.

CUDA provides a set of utility functions, some of which are

designed to act as a timer. However, these utility functions

cannot be used to since the CPU version of the speech

recognition system does not use CUDA. In order to have

consistent performance measurements between the CPU and

GPU implementations, it is possible to resort to

QueryPerformanceCounter, which is a function from the

Windows API.

Performance results were obtained by gathering the amount

of time it takes to calculate 45 MFCCs and feature matrices. The

calculation of multiple MFCCs and feature matrices helped

remove the impact of any potential startup code on the first

invocation, which would not occur after initializing the

application. The whole process was repeated 5 times, and the

results were averaged.

VI. RESULTS

The performance results of the GPU and CPU

implementations revealed a marked improvement from having

moved the processing onto the GPU. Using the methods

described in section V, the average execution runtime for 45

iterations on the CPU was 8.3044 seconds while the one for the

GPU was 1.4280 seconds. These results translate into a

performance improvement of approximately 5.8.

 From Figure 5, it can be observed that the performance

results could have been improved if the first 3 kernels were

better optimized. Indeed, these kernels are memory bound and

suffer from memory bank conflicts. Due to the project time

constraints, these conflicts were not resolved.

Figure 5: GPU time of each kernel

VII. CONCLUSION

The current GPU implementation of the isolated-word

recognition system demonstrates that it is possible to achieve an

increase in performance by moving some of the computationally

expensive tasks onto the GPU. Nevertheless, this performance

can be further improved by making additional optimizations.

The current implementation of the speech recognizer

allocates memory as a contiguous block, which does not

guarantee an optimal memory bandwidth usage when kernels

are memory bound. In order to address this issue, other CUDA

functions (e.g. cudaMalloc2D) should be used to allocate

memory so that accesses are aligned. Furthermore, it would be

worthwhile to investigate whether the use of the CUBLAS

library could yield additional performance improvements since

this library has some linear algebra functions which could be

applied in the speech recognition program.

REFERENCES

[1] G. Poli, A. L. M. Levada, J. F. Mari, and J. H. Saito, “Voice

Command Recognition with Dynamic Time Warping (DTW)

using Graphics Processor Units (GPU) with Compute Unified

Device Architecture (CUDA),” 19th International Symposium on

Computer Architecture and High Performance Computing, 2007.

[2] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Comeau,

“GPU Accelerated Acoustic Likelihood Computations,”

Interspeech 2008.

[3] J. Chong, Y. Yi, A. Faria, N. R. Satish, and K. Keutzer,

“Data-Parallel Large Vocabulary Continuous Speech

 4

Recognition on Graphics Processors,” Proceedings of the 1st

Annual Workshop on Emerging Applications and Many Core

Architecture (EAMA), June 2008.

[4] S. Chu, E. Keogh, D. Hart, and M. Pazzani, “Iterative deepening

dynamic time warping for time series,” Proceedings of the 2nd

SIAM International Conference on Data Mining, 2003.

[5] M. Xu, L.–Y. Duan, J. Cai, L.-T. Chia, C.-S. Xu, and Q. Tian,

“HMM-Based Audio Keyword Generation,” In Proceedings of

the Pacific Conference on Multimedia, 2004.

