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Abstract—Electric power system is large interconnected 

network of generators, transmission and distribution facilities 

and electrical loads. Such a huge system is prone to many kinds 

of disturbances which may lead to undesirable effects on the 

network, such as blackouts or loss of synchronism in generators. 

Transient stability analysis examines the dynamic behavior of a 

power system for as much as several seconds following a power 

disturbance. Computational complexity of transient stability 

analysis have kept them from being run in real-time to support 

decision making at the time of a disturbance and prevent 

cascading failures. Parallel processing is a promising technology 

for the speed up of the dynamic simulation required in transient 

stability. This project presents the transient stability analysis 

performed on the graphics multiprocessors as an emerging 

general purpose parallel platform. 

The analysis involves solution of extremely large systems of 

differential and algebraic equations. Various integration 

techniques are available to transform the differential equations 

to non-differential, non linear system of equations. However, the 

core of the resulting nonlinear equations from any integration 

schemes is the solution of a large sparse linear system. It is 

proven that direct methods (e.g. LU decomposition) have a poor 

performance on the parallel platforms, especially massively 

parallel structures such as GPU; therefore, Conjugate Gradient 

method is implemented for the linear solver. The fact that CG 

methods involve just matrix addition and multiplication propose 

speed up anticipation for the whole process.  

In order to improve the convergence rate of the conjugate 

gradient method, Chebychev Polynomial Preconditionner is 

implemented on GPU. The preconditionner effects the condition 

number of jacobian matrix and reduce the total number of CG 

iterations. Number of iterations before and after preconditioning, 

execution time and speed up for CG and preconditionner process 

is reported.    

 
Index Terms—Transient stability analysis, Differential 

algebraic equation, Iterative linear solver, General purpose 

graphics processor. 

I.  INTRODUCTION 

Traditionally, power system transient stability analysis has 
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been performed off-line to understand the system’s ability to 

withstand specific disturbance and the systems response 

characteristics as system returns to normal operation. To date, 

the computational complexity of transient stability problems 

have kept them from being run in real-time to support decision 

making at the time of disturbance. In order to improve the 

performance of the program either faster hardware or more 

efficient algorithms can be exploited.  

Since most of the previous attempts in order to improve the 

efficiency of underlying algorithms were focused on 

sequential methods, direct approaches have been studied 

tremendously in this field. However, it is proven that 

significant portions of the direct approaches do not show 

apparent parallelism. Krylof subspace methods are a class of 

iterative linear solvers which form an orthogonal basis of the 

sequence of successive matrix powers times the initial residual 

(the Krylov sequence) and approximate the solution by 

minimizing the residual over the subspace formed. [1] 

provides simple explanation of the principle Krylov subspace 

methods. The robustness and efficiency of these methods has 

attracted lots of attentions during past few years. [2] to [7] are 

similar attempts to use Krylof methods in order to perform 

power system analysis on parallel platforms. In [8], Gopal, 

Niebur, et al. use Cg language to perform power system 

analysis based on Gauss Jacobi method on graphic cards. 

 This project implements conjugate gradient method on 

GPU using CUDA to solve the sparse linear system resulted 

from Newton linearization. It also computes a preconditionner 

matrix on GPU to improve the conjugate gradient efficiency. 

This process is evaluated against CPU version and speed up is 

reported for various matrix sizes.  

II.  ALGORITHMS & GPU IMPLEMENTATION 

A.  Chebychev Preconditioning 

The iterative methods such as conjugate gradient are 

guaranteed to converge in N (matrix size) iterations. N is 

usually a large number (around 10k) and conjugate gradient 

method suffers from slow rate of convergence. A 

preconditionner matrix is an approximation to the inverse of 
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the coefficient matrix, A. The prefect preconditionner is the 

exact inverse of coefficient matrix, however calculating the 

exact inverse is expensive process.  

)1(bAx   

Chebychev method is an iterative method for 

approximating the inverse of a scalar number. In [9], it is 

shown that matrix valued Chebychev method can be used as a 

preconditionner matrix. This idea is implemented on GPU in 

this project. In contrast to more conventional preconditioning 

methods, Chebychev method only uses matrix-matrix or 

matrix-vector multiplication and addition.   
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(2) Shows the Kth Chebychev polynomial, Z is the scaled 

Jacobian matrix. The first and second Chebychev polynomials 

are I (Identity Matrix) and Z. The few first Chebychev 

polynomials are added to form the preconditionner matrix.  

The figure 1 describes the implementation of this process 

on GPU: 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 1. Chebychev Preconditioning Algorithm on GPU 

 

In 4th line, both matrix and vector are in sparse format, the 

algorithm for this multiplication is shown figure 2. 

 

 

 

 

 

 

 

 

 
Fig. 2. Matrix Vector Multiplication (both in sparse) 

 

In order to save the dense result in sparse format, a pointer 

vector indicates the nonzero elements in the vector. The 

pointer vector is scanned to find the number of nonzero 

elements and their position in sparse format. The figure 3 

illustrates this algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Dense to Sparse transformation 

 

B.  Conjugate Gradient 

Conjugate gradient method has been extensively used to 

solve a given set of linear equations instead of direct methods. 

This algorithm is shown in figure 4. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Conjugate Gradient Algorithm on GPU 

 

The main kernels are vector norm calculation, vector inner 

product and vector addition. The matrix vector multiplication 

is the same as previous section, but the vector is in dense 

format, therefore the while-loop can be eliminated. Next parts 

present the evaluation of the individual kernels and whole 

process.  

III.  METHODOLOGY 

A.  Chebychev Preconditioning 

λ is an Eigen-value of matrix A, if there exists a nonzero 

vector x such that Ax = λx. The range of Eigen-value is an 

important factor in determining the number of iterations in CG 

algorithm until convergence. If Eigen-values are concentrated 

in a short range (e.g. [0-1]) the CG converges in few (e.g. less 

than 20) iterations. The real matrices in power system has very 

large range of Eigen-values (e.g [1- 3000]). A good 

preconditionner should reduce the range of Eigen-values of 

coefficient matrix. The histogram of Eigen-values will be the 

best metrics for evaluating preconditionner efficiency. In 

order to show the effect of preconditioning, sparse matrices of 

various sizes from real applications are imported to the 

1-Load the Jacobian matrix to GPU and Build Z matrix 

2-For k = 1 to r Do: 

3-   For J = 1 to N Do: 

4-  Multiply Jth column of T(k-1) by Z 

5-  Subtract Jth column of T(k-2) 

6-   Update Jth column of T(k) and M 

7-  Save dense updates in sparse 

8-   EndDo 

9-   Change matrix pointers 

10-EndDo 

11-Save Preconditionner matrix 

One thread per row: Multiply each element in the row 

for (int jj = row_start; jj < row_end; jj++) 

Find corresponding element: 

 while (kk < col_end) && (indice[jj]>=vec1_indice[kk])  

if found, perform the multiplication  

if (indice[jj] == vec1_indice[kk]) 

sum += data[jj] * vec1_data[kk]; 

Save the result of multiplication in dense format: 
0 0 0 A 0 0 B C 0 0 0 0 0 D 0 

If thread holds zero, write zero, otherwise write 1:  
0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 

Perform scan over the pointer vector: 
0 0 0 1 1 1 2 3 3 3 3 3 3 4 4 

 
if (ptr[tid] - ptr[tid-1]){ 

   data[ptr[tid] -1] = data[tid]; 

   indice[ptr[tid] -1] = tid;} 

Sparse data: 

A B C D 

Sparse Pointer: 

4 7 8 14 

 

 

 

 

1-Set initial values and calculate residual r0=b-Ax0 

2-While not converged Do: 

3-   Multiply residual by preconditionner z = M*r 

4-   Compute inner product of (r,z) = ρi 

5-   β = ρi/ ρi-1 and p = z + βp 

6-   Compute α = ρi/(p,A*p) 

7-   Update solution x += αp 

8-   Update residual r -= αp 

9-   Compute norm of residual 

11-If norm of residual is small: Converged 
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program and range of Eigen-values before and after 

preconditioning are reported. The effect on total number of 

iterations in CG method is also reported. 

The execution time for each kernel is reported for detailed 

study of algorithm. A similar code for preconditionner and CG 

is developed in Matlab in order to compute the speed-up over 

sequential version.  

The matrices for evaluation are sparse matrices in SCR 

(sparse compressed row) from real applications. The matrices 

and right hand side vector are taken from Matrix Market 

website [12]. 

IV.  EVALUATION 

All the GPU experiments are performed on 

ug75.eecg.toronto.edu running GTX280/1G NVIDIA card and 

a quad core Intel Core2 duo processor with 4G of memory. 

The CPU code is implemented in MATLAB and performed on 

Intel Core2 Quad Q9450 running at 2200MHZ with 4GB of 

memory with 6MB L2 cash.  

Figure 5 shows the effect of preconditioning on IEEE-57 

test system. The first figure shows the range of Eigen-values 

for the original matrix. The next figure is the same matrix with 

scaled elements (it is multiplied by its main diagonal) and the 

last one is both scaled and preconditioned. The result from 

GPU is verified by CPU version of the algorithm. The 

preconditioned matrix has considerably smaller range of 

Eigen-values (figure 5 – c) which guarantee the effectiveness 

of the Chebychev preconditioning technique. 

Table 1 shows the specification of the matrices used for the 

rest of evaluation. These matrices and the right hand side 

vectors are available on Matrix Market website [12]. The 

condition number shows whether the system is well-

conditioned or ill-conditioned. A well-conditioned system has 

smaller condition number (k < 10) and an ill-conditioned 

matrix has larger condition number (k > 1000). If the 

condition number is higher, the CG takes more iteration to 

converge.  
TABLE I 

TEST MATRICES PROPERTIES 

Matrix name Matrix size Total 

Nonzero  

Condition 

Number 

E05R 236 5856 6e+04 

E20R 4241 131556 5.45e+10 

E30R 9661 306335 3.47e+11 

  

Figure 6 present the various kernel execution times for the 

test matrices. For smaller size matrices, the overhead of kernel 

initialization and data transfer limit the efficiency. The Dot 

Product kernel has to load two vectors from global memory. 

The global memory access time shows its effect on the 

execution time when the matrix size is increased considerably. 

Preconditioning effect on total number of iterations is 

shown in figure 7. Different graphs show various matrix sizes. 

The horizontal axis shows the total number of iterations spent 

in Chebychev algorithm (r). When r = 0, the coefficient matrix 

is not preconditioned. 

a. Without preconditioning 

 
b. With scaling 

 
c. With scaling and preconditioning 

 
Fig. 5. The effect of preconditioning on IEEE-57 test system 
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Fig. 6. Main kernels execution time for various input matrix size 

 

 
Fig. 6. Main kernels execution time for various input matrix size 

 

Table II summarizes the result for preconditionner and CG 

for various matrix sizes. The 8x speed up in whole process is 

achieved for the largest matrix size. The execution time is 

comparable with the most optimized serial codes available for 

solving linear systems. This result proves the GPU’s potential 

for reducing the computation time of transient stability 

process. However, transient stability process consists of 

several sequential parts and large data access and storage 

which limit the overall speed up.  

This project uses sparse matrices which usually appear in 

real simulation. Dealing with sparse matrices adds more levels 

of complexity to the implementation, in particular on GPU 

platform. This process promises higher speed up in similar 

engineering applications which need solution of linear 

systems but use dense matrices. Another factor which may 

result in shorter execution time is branching factor. This factor 

puts a limit on number of nonzero in each row of the sparse 

matrix. This may reduce the generality of the process but will 

result in much simpler code and reduction in execution time. 

The algorithms provided in this project do not consider the 

branching factor and perform under any condition. The 

specific system configurations will be studied in future works. 

 

 TABLE II 

TEST MATRICES PROPERTIES 

Matrix(size) Chebychev CG Total 

GPU  

Total 

CPU 

Speed 

Up 

E05R(236) 033 1.51 1.84 4.67 2.54 

E20R(4241) 1.78 23.31 25.09 154.78 6.16 

E30R(9661) 5.41 90.8 96.21 756.3 7.86 

 

V.  CONCLUSION 

The main achievement of this project is the reduction in 

computation time of transient stability analysis. This will 

optimistically enable the real-time or faster than real-time 

simulation of the power system which will have significant 

impact on the future design and security of power network. 

Almost all of the scientific and engineering problems 

require solution of linear system. Direct methods, which are 

usually used for solving large linear systems, cannot be 

implemented properly on parallel machines; therefore, this 

project presents methods which are suitable for parallel 

processing and can be implemented on any other parallel 

platform. The preconditionner part can be used for most 

iterative solver based of Krylov subspace method. It can also 

be used when GPU performs as a co-processor for a large 

cluster of CPUs solving the main linear system.  

Different variations of Krylov subspace methods such as 

biconjugate gradient (BiCG), and generalized minimum 

residual method (GMRES) appear in various engineering 

studies and use the same kernels developed in this project. 

The preconditionner algorithm remains the same for these 

algorithms. The GMRES method is more general method than 

CG and performs well for any matrices without any condition. 

The future work will concentrate on GMRES method.    
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