
 1



Abstract—Electric power system is large interconnected

network of generators, transmission and distribution facilities

and electrical loads. Such a huge system is prone to many kinds

of disturbances which may lead to undesirable effects on the

network, such as blackouts or loss of synchronism in generators.

Transient stability analysis examines the dynamic behavior of a

power system for as much as several seconds following a power

disturbance. Computational complexity of transient stability

analysis have kept them from being run in real-time to support

decision making at the time of a disturbance and prevent

cascading failures. Parallel processing is a promising technology

for the speed up of the dynamic simulation required in transient

stability. This project presents the transient stability analysis

performed on the graphics multiprocessors as an emerging

general purpose parallel platform.

The analysis involves solution of extremely large systems of

differential and algebraic equations. Various integration

techniques are available to transform the differential equations

to non-differential, non linear system of equations. However, the

core of the resulting nonlinear equations from any integration

schemes is the solution of a large sparse linear system. It is

proven that direct methods (e.g. LU decomposition) have a poor

performance on the parallel platforms, especially massively

parallel structures such as GPU; therefore, Conjugate Gradient

method is implemented for the linear solver. The fact that CG

methods involve just matrix addition and multiplication propose

speed up anticipation for the whole process.

In order to improve the convergence rate of the conjugate

gradient method, Chebychev Polynomial Preconditionner is

implemented on GPU. The preconditionner effects the condition

number of jacobian matrix and reduce the total number of CG

iterations. Number of iterations before and after preconditioning,

execution time and speed up for CG and preconditionner process

is reported.

Index Terms—Transient stability analysis, Differential

algebraic equation, Iterative linear solver, General purpose

graphics processor.

I. INTRODUCTION

Traditionally, power system transient stability analysis has

A. Asgari Kamiabad is with the Department of Electrical and Computer

Engineering, University of Toronto, Toronto, ON Canada (e-mail:

amirhassan.asgarikamiabad@utoronto.ca).

been performed off-line to understand the system’s ability to

withstand specific disturbance and the systems response

characteristics as system returns to normal operation. To date,

the computational complexity of transient stability problems

have kept them from being run in real-time to support decision

making at the time of disturbance. In order to improve the

performance of the program either faster hardware or more

efficient algorithms can be exploited.

Since most of the previous attempts in order to improve the

efficiency of underlying algorithms were focused on

sequential methods, direct approaches have been studied

tremendously in this field. However, it is proven that

significant portions of the direct approaches do not show

apparent parallelism. Krylof subspace methods are a class of

iterative linear solvers which form an orthogonal basis of the

sequence of successive matrix powers times the initial residual

(the Krylov sequence) and approximate the solution by

minimizing the residual over the subspace formed. [1]

provides simple explanation of the principle Krylov subspace

methods. The robustness and efficiency of these methods has

attracted lots of attentions during past few years. [2] to [7] are

similar attempts to use Krylof methods in order to perform

power system analysis on parallel platforms. In [8], Gopal,

Niebur, et al. use Cg language to perform power system

analysis based on Gauss Jacobi method on graphic cards.

 This project implements conjugate gradient method on

GPU using CUDA to solve the sparse linear system resulted

from Newton linearization. It also computes a preconditionner

matrix on GPU to improve the conjugate gradient efficiency.

This process is evaluated against CPU version and speed up is

reported for various matrix sizes.

II. ALGORITHMS & GPU IMPLEMENTATION

A. Chebychev Preconditioning

The iterative methods such as conjugate gradient are

guaranteed to converge in N (matrix size) iterations. N is

usually a large number (around 10k) and conjugate gradient

method suffers from slow rate of convergence. A

preconditionner matrix is an approximation to the inverse of

Final Project Report

Transient Stability of Power System

(Programming Massively Parallel Graphics

Multiprocessors Using CUDA)

Amirhassan Asgari Kamiabad, Student Number: 996620802

 2

the coefficient matrix, A. The prefect preconditionner is the

exact inverse of coefficient matrix, however calculating the

exact inverse is expensive process.

)1(bAx 

Chebychev method is an iterative method for

approximating the inverse of a scalar number. In [9], it is

shown that matrix valued Chebychev method can be used as a

preconditionner matrix. This idea is implemented on GPU in

this project. In contrast to more conventional preconditioning

methods, Chebychev method only uses matrix-matrix or

matrix-vector multiplication and addition.

)3(
1

)(
2

01

)2()())(
1

(2)(

M
r

Z
k

T
k

cI
c

A

Z
k

TZ
k

TZZ
k

T









(2) Shows the Kth Chebychev polynomial, Z is the scaled

Jacobian matrix. The first and second Chebychev polynomials

are I (Identity Matrix) and Z. The few first Chebychev

polynomials are added to form the preconditionner matrix.

The figure 1 describes the implementation of this process

on GPU:

 Fig. 1. Chebychev Preconditioning Algorithm on GPU

In 4th line, both matrix and vector are in sparse format, the

algorithm for this multiplication is shown figure 2.

Fig. 2. Matrix Vector Multiplication (both in sparse)

In order to save the dense result in sparse format, a pointer

vector indicates the nonzero elements in the vector. The

pointer vector is scanned to find the number of nonzero

elements and their position in sparse format. The figure 3

illustrates this algorithm.

Fig. 3. Dense to Sparse transformation

B. Conjugate Gradient

Conjugate gradient method has been extensively used to

solve a given set of linear equations instead of direct methods.

This algorithm is shown in figure 4.

Fig. 4. Conjugate Gradient Algorithm on GPU

The main kernels are vector norm calculation, vector inner

product and vector addition. The matrix vector multiplication

is the same as previous section, but the vector is in dense

format, therefore the while-loop can be eliminated. Next parts

present the evaluation of the individual kernels and whole

process.

III. METHODOLOGY

A. Chebychev Preconditioning

λ is an Eigen-value of matrix A, if there exists a nonzero

vector x such that Ax = λx. The range of Eigen-value is an

important factor in determining the number of iterations in CG

algorithm until convergence. If Eigen-values are concentrated

in a short range (e.g. [0-1]) the CG converges in few (e.g. less

than 20) iterations. The real matrices in power system has very

large range of Eigen-values (e.g [1- 3000]). A good

preconditionner should reduce the range of Eigen-values of

coefficient matrix. The histogram of Eigen-values will be the

best metrics for evaluating preconditionner efficiency. In

order to show the effect of preconditioning, sparse matrices of

various sizes from real applications are imported to the

1-Load the Jacobian matrix to GPU and Build Z matrix

2-For k = 1 to r Do:

3- For J = 1 to N Do:

4- Multiply Jth column of T(k-1) by Z

5- Subtract Jth column of T(k-2)

6- Update Jth column of T(k) and M

7- Save dense updates in sparse

8- EndDo

9- Change matrix pointers

10-EndDo

11-Save Preconditionner matrix

One thread per row: Multiply each element in the row

for (int jj = row_start; jj < row_end; jj++)

Find corresponding element:

 while (kk < col_end) && (indice[jj]>=vec1_indice[kk])

if found, perform the multiplication

if (indice[jj] == vec1_indice[kk])

sum += data[jj] * vec1_data[kk];

Save the result of multiplication in dense format:
0 0 0 A 0 0 B C 0 0 0 0 0 D 0

If thread holds zero, write zero, otherwise write 1:
0 0 0 1 0 0 1 1 0 0 0 0 0 1 0

Perform scan over the pointer vector:
0 0 0 1 1 1 2 3 3 3 3 3 3 4 4

if (ptr[tid] - ptr[tid-1]){

 data[ptr[tid] -1] = data[tid];

 indice[ptr[tid] -1] = tid;}

Sparse data:

A B C D

Sparse Pointer:

4 7 8 14

1-Set initial values and calculate residual r0=b-Ax0

2-While not converged Do:

3- Multiply residual by preconditionner z = M*r

4- Compute inner product of (r,z) = ρi

5- β = ρi/ ρi-1 and p = z + βp

6- Compute α = ρi/(p,A*p)

7- Update solution x += αp

8- Update residual r -= αp

9- Compute norm of residual

11-If norm of residual is small: Converged

 3

program and range of Eigen-values before and after

preconditioning are reported. The effect on total number of

iterations in CG method is also reported.

The execution time for each kernel is reported for detailed

study of algorithm. A similar code for preconditionner and CG

is developed in Matlab in order to compute the speed-up over

sequential version.

The matrices for evaluation are sparse matrices in SCR

(sparse compressed row) from real applications. The matrices

and right hand side vector are taken from Matrix Market

website [12].

IV. EVALUATION

All the GPU experiments are performed on

ug75.eecg.toronto.edu running GTX280/1G NVIDIA card and

a quad core Intel Core2 duo processor with 4G of memory.

The CPU code is implemented in MATLAB and performed on

Intel Core2 Quad Q9450 running at 2200MHZ with 4GB of

memory with 6MB L2 cash.

Figure 5 shows the effect of preconditioning on IEEE-57

test system. The first figure shows the range of Eigen-values

for the original matrix. The next figure is the same matrix with

scaled elements (it is multiplied by its main diagonal) and the

last one is both scaled and preconditioned. The result from

GPU is verified by CPU version of the algorithm. The

preconditioned matrix has considerably smaller range of

Eigen-values (figure 5 – c) which guarantee the effectiveness

of the Chebychev preconditioning technique.

Table 1 shows the specification of the matrices used for the

rest of evaluation. These matrices and the right hand side

vectors are available on Matrix Market website [12]. The

condition number shows whether the system is well-

conditioned or ill-conditioned. A well-conditioned system has

smaller condition number (k < 10) and an ill-conditioned

matrix has larger condition number (k > 1000). If the

condition number is higher, the CG takes more iteration to

converge.
TABLE I

TEST MATRICES PROPERTIES

Matrix name Matrix size Total

Nonzero

Condition

Number

E05R 236 5856 6e+04

E20R 4241 131556 5.45e+10

E30R 9661 306335 3.47e+11

Figure 6 present the various kernel execution times for the

test matrices. For smaller size matrices, the overhead of kernel

initialization and data transfer limit the efficiency. The Dot

Product kernel has to load two vectors from global memory.

The global memory access time shows its effect on the

execution time when the matrix size is increased considerably.

Preconditioning effect on total number of iterations is

shown in figure 7. Different graphs show various matrix sizes.

The horizontal axis shows the total number of iterations spent

in Chebychev algorithm (r). When r = 0, the coefficient matrix

is not preconditioned.

a. Without preconditioning

b. With scaling

c. With scaling and preconditioning

Fig. 5. The effect of preconditioning on IEEE-57 test system

 4

Fig. 6. Main kernels execution time for various input matrix size

Fig. 6. Main kernels execution time for various input matrix size

Table II summarizes the result for preconditionner and CG

for various matrix sizes. The 8x speed up in whole process is

achieved for the largest matrix size. The execution time is

comparable with the most optimized serial codes available for

solving linear systems. This result proves the GPU’s potential

for reducing the computation time of transient stability

process. However, transient stability process consists of

several sequential parts and large data access and storage

which limit the overall speed up.

This project uses sparse matrices which usually appear in

real simulation. Dealing with sparse matrices adds more levels

of complexity to the implementation, in particular on GPU

platform. This process promises higher speed up in similar

engineering applications which need solution of linear

systems but use dense matrices. Another factor which may

result in shorter execution time is branching factor. This factor

puts a limit on number of nonzero in each row of the sparse

matrix. This may reduce the generality of the process but will

result in much simpler code and reduction in execution time.

The algorithms provided in this project do not consider the

branching factor and perform under any condition. The

specific system configurations will be studied in future works.

 TABLE II

TEST MATRICES PROPERTIES

Matrix(size) Chebychev CG Total

GPU

Total

CPU

Speed

Up

E05R(236) 033 1.51 1.84 4.67 2.54

E20R(4241) 1.78 23.31 25.09 154.78 6.16

E30R(9661) 5.41 90.8 96.21 756.3 7.86

V. CONCLUSION

The main achievement of this project is the reduction in

computation time of transient stability analysis. This will

optimistically enable the real-time or faster than real-time

simulation of the power system which will have significant

impact on the future design and security of power network.

Almost all of the scientific and engineering problems

require solution of linear system. Direct methods, which are

usually used for solving large linear systems, cannot be

implemented properly on parallel machines; therefore, this

project presents methods which are suitable for parallel

processing and can be implemented on any other parallel

platform. The preconditionner part can be used for most

iterative solver based of Krylov subspace method. It can also

be used when GPU performs as a co-processor for a large

cluster of CPUs solving the main linear system.

Different variations of Krylov subspace methods such as

biconjugate gradient (BiCG), and generalized minimum

residual method (GMRES) appear in various engineering

studies and use the same kernels developed in this project.

The preconditionner algorithm remains the same for these

algorithms. The GMRES method is more general method than

CG and performs well for any matrices without any condition.

The future work will concentrate on GMRES method.

VI. REFERENCES

[1] Shewchuk, Jonathan R.”An Introduction to the Conjugate Gradient

Method without the Agonizing Pain” 2007-10-09.

[2] Decker, I.C.; Falcao, D.M.; Kaszkurewicz, E.” Conjugate gradient

methods for power system dynamic simulation on parallel computers,"
Power Systems, IEEE Transactions on, Volume 11, Issue 3, Aug 1996

Page(s):1218 – 1227.

[3] Khaitan, S.K. and McCalley, J.D. and Qiming Chen" Multifrontal Solver

for Online Power System Time-Domain Simulation," Power Systems,

IEEE Transactions on, vol. 23, pp. 1727-1737, Nov. 2008.

[4] Chaniotis, D.; Pai, M.A., "Iterative solver techniques in the dynamic

simulation of power systems," Power Engineering Society Summer

Meeting, 2000. IEEE , vol.1, no., pp.609-613 vol. 1, 2000

[5] Anupindi, K.; Skjellum, A.; Coddington, P.; Fox, G., "Parallel

differential-algebraic equation solvers for power system transient

stability analysis," Scalable Parallel Libraries Conference, 1993,

Proceedings of the , vol., no., pp.240-244, 6-8 Oct 1993

[6] de Leon, F. "A new preconditioned conjugate gradient power flow,"
Power Systems, IEEE Transactions on, Volume 18, Issue 4, Nov. 2003

Page(s): 1601 – 1609.

[7] Flueck, A.J.; Hsiao-Dong Chiang “Solving the nonlinear power flow

equations with an inexact Newton method using GMRES,” Power

Systems, IEEE Transactions on, Volume 13, Issue 2, May 1998

Page(s):267 – 273.

[8] Gopal, A.; Niebur, D.; Venkatasubramanian, S. “DC Power Flow Based

Contingency Analysis Using Graphics Processing Units,” Volume,

Issue, 1-5 July 2007 Page(s):731 – 736.

[9] Dag, H.; Semlyen, A., "A new preconditioned conjugate gradient power

flow," Power Systems, IEEE Transactions on , vol.18, no.4, pp. 1248-

1255, Nov. 2003.

 5

[10] Yousef Saad, Iterative Methods for Sparse Linear Systems, Second

Edition, Society for Industrial and Applied Mathematics, April 30, 2003.

Technical Reports:
[11] D. P. Koester and S. Ranka and G. C. Fox" Power Systems Transient

Stability- A Grand Computing Challenge,” NPAC Technical Report-

SCCS 549, 31 Aug 1992.

[12] Matrix Market website: http://math.nist.gov/MatrixMarket/

