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1. Introduction / Motivation

Automated graph drawing remains a difficult placement 
and layout problem.  This problem is difficult in part due 
to the complexity of formulating good algorithms to draw 
graphs  which  are  aesthetically  pleasing  for  human 
visualization.  Graph layout algorithms use a heuristic to 
determine if they are getting closer or farther from being 
aesthetically  pleasing  and  use  an  iterative  method  to 
progress towards the final graph layout solution.

The graphing problem consists of a number of  elements 
(or  graph  nodes)  which  are  interconnected  in  some 
manner.  The connections between elements are referred 
to as edges.  For example, in a family tree – each person 
would be an element and parents would be connected to 
their children through edges.  The goal of the algorithm is 
to take this data and present it to the user in an easy to 
understand way by generating a graphical representation.

Applications  of  graph  drawing  include  VLSI  circuit 
design,  network  relationship  analysis,  cartography,  and 
bioinformatics [1].  The layout algorithm can also be used 
for  a  large  class  of  applications:  from drawing family-
trees to laying out class relationship diagrams in software 
systems.

We  propose  to  develop  a  force-directed  placement 
algorithm  that  will  solve  the  graph  layout  problem  by 
using  an  energy  minimization  technique.   In  this 
approach, the aesthetic quality of the diagram is mapped 
to an energy state, with the algorithm attempting to search 
for a minimum.  

This  work  aims  to  demonstrate  the  performance 
advantage  of  a  GPU  implementation  (using  NVIDIA 
CUDA)  of  a  force-directed  graph  layout  placement 
algorithm as compared to a  CPU implementation.  Our 
GPU  implementation  takes  advantage  of  the  inherent 
parallel  computational  power available in the GPU and 

with  some  additional  memory  bandwidth  optimizations 
for our algorithm, the GPU implementation was able to 
achieve up to a 58x speed-up as compared to the CPU.

2. Related Work

Improved heuristics for graph layout have been developed 
for both force directed placement and simulated annealing 
approaches.   Force  directed  placement  algorithms  for 
graph layout are primarily based on Hooke’s law, but have 
deviated from strict  physical  modelling to  better  match 
the  requirements  of  different  graphing  applications  as 
described by Eades spring-mass  equations [2]  and later 
adapted by Fruchterman and Reingold to emulate particle 
physics in a simulated annealing algorithm [3].

Graph  placement  and  layout  remains  an  active  area  of 
research,  with Frishman and Tal [4]  [5] using GPUs to 
speed-up incremental graph layout to provide results 8x 
faster than a CPU, and proposing different approaches to 
partition the computational work to improve parallelism.  

For  our  work,  we  chose  to  use  the  simpler  heuristics 
proposed  by  Eades  which  lend  themselves  well  to 
parallelization on the GPU.  The focus of our work was to 
demonstrate that a significant runtime advantage could be 
achieved  on  a  GPU  even  for  a  simple  force  directed 
placement  algorithm  by  increasing  parallelism  and 
optimizing memory bandwidth utilization.



3. Algorithm

Two  graph  placement  &  layout  algorithms  were 
considered:  Simulated  Annealing  and  Force-directed 
placement algorithms

Simulated Annealing

In  the  simulated  annealing  model,  element  moves  are 
performed  randomly  while  searching  for  a  minimum 
energy state.  The algorithm evaluates each random move 
by computing a change in the “cost function” or “energy 
state”  of  the  system.   If  the  randomly  selected  move 
reduces the energy state or at worst increases by less then 
a  threshold  temperature  factor  “T”  then  the  move  is 
accepted,  otherwise  it  is  undone  and  another  move  is 
performed.  Over time the temperature factor decreases, 
allowing  only  better  and  better  moves  to  be  accepted. 
This decreasing of the threshold temperature allows the 
algorithm to “escape” local minima in the early stages of 
evaluation, while allowing the algorithm to converge on a 
good solution.  The energy-state (or cost function) in the 
simulated annealing model can use the same model as the 
one used by the force-based placement algorithm.  

Force-based/Force-directed algorithms

In this model, each element in the graph is modelled as a 
mass,  with  edges  between  graph  elements  modelled  as 
springs  as  shown  in  Figure  1.   Values  for  the 
“gravitational force” and “spring constant” can be varied 
to  produce  different  results.   Further,  additional  forces 
(electrical  charges,  logarithmic  springs,  moments, 
damping effects) can be used to alter the aesthetic.  The 
algorithm takes  this  model  and  chooses  some arbitrary 
initial state.  It then iteratively simulates the movement of 
each element (or “mass”) by through increments of time 
(steps)  until  the  model  reaches  steady  state.   On  each 
iteration, the forces acting on each element in the model 
are computed and the element’s “position” and “velocity” 
are then adjusted.

Figure 1: Spring-Mass System

The relationship between the force exerted by the spring 
and the distance that the spring is stretched is described 
by Hooke’s Law [6] in Equation 1.

F = -kx (Eq. 1)

where F is the restoring force of the object, k is the spring 
constant,  and  x  is  the  distance  the  spring  has  been 
extended / compressed from its equilibrium position.

Combined  with  the  damping  force  (friction)  and  the 
acceleration of the object, the new position of an object 
can be calculated [7].

Force = Fspring + Fdamping = - kx – bv (Eq. 2)

where b is damping constant and v is velocity.

x’’ = -kx – bx’ (Eq. 3)

where x is acceleration, x is position of object, and x’ is 
the velocity of the object.

4. Implementation

4.1.  Overview 
The  force-directed  placement  algorithm  described  in 
Section 3 was implemented for the CPU and GPU.  The 
same framework was used for  both implementations  to 
process  input  graph  files  specified  in  Graphviz  DOT 
format [8], and store the node and edge information in a 
two-dimensional  array.   The  placement  algorithms  for 
CPU  and  GPU  implementations  are  run,  and  the 
framework  writes  out  the  graph  information  (including 
placement information) to a DOT file format.

The outer loop of our implemented algorithm is shown in 
Figure 2.

Read_input_graph()

Do {

Calculate_forces()

update_velocity()

update_position()

Calculate_kinetic_energy()

} While (kinetic energy > stable 
threshold);

Write_output_graph()

Figure 2: Force-Directed Placement Pseudocode



Calculate Forces:  To determine the overall force vector 
for each node, the force vectors (repulsive and attractive) 
of all of the other nodes acting upon that node are added 
together.  The complexity of this function is O(n2)

Update Velocities:  For each node, the velocity in the x 
and y direction is calculated based on the force applied to 
the node for the current timestep, and a damping factor is 
applied.  The complexity of this function is O(n).
Update Position: For each node, the position of the node 
is  updated by adjusting the initial  position of  the node 
based on the velocity and timestep.  The complexity of 
this function is O(n).
Calculate  Kinetic  Energy:  The  kinetic  energy  of  the 
system  is  calculated  by  summing  the  square  of  the 
velocities in the x and y directions.  The complexity of 
this function is O(n).

In our implementation, we do not strictly emulate a 
physical system, but rather use a modified set of equations 
formulated by Eades [2] that considers repulsive forces 
between all nodes, but only attractive forces between 
connected nodes.

4.2. CPU Implementation
The CPU implementation of the algorithm is done as a 
serial application (no multi-threading).  The algorithm is 
implemented as described in Section 4.1.

4.3. GPU Implementation (Basic)
As  previously  described,  the  framework  processes  the 
input graph and stores the data in a 2-dimensional array. 
To  prepare  the  data  for  the  GPU implementation,  it  is 
transferred  into  a  1-dimensional  array  for  easier  data 
access during computation.

Our initial implementation began with 2 kernel functions: 
One kernel to compute forces & update positions and one 
kernel to calculate the kinetic energy of the system.  In 
this  implementation,  each  thread  is  responsible  for 
calculating  the  forces,  velocities,  and  updating  the 
position  for  one  node.   Thus,  the  parallelism  of  this 
implementation is limited by the number of nodes in the 
graph, and the complexity of the calculation.  The work 
per thread is shown in Figure 3.

Figure 3: Basic Implementation (one thread per node)

4.4. GPU Implementation (Increased Parallelism)

The first set of optimizations performed for the GPU 
implementation were done to re-distribute the work, 
increase parallelism, and reduce the synchronization 
overhead of multiple kernel invocations.

4.4.1 Optimization #1: Increasing Parallelism
As described in section 4.1, the Calculate Forces function 
has a complexity of O(n2) since an evaluation of all forces 
between each pair of nodes must be done.  In the basic 
implementation,  the  parallelism  available  in  the  GPU 
system is not fully exploited.  Although the computation 
for each node is done in parallel, the computation of all of 
the  forces  acting  on  each  node  is  done  serially.   We 
increased the parallelism of the GPU implementation to 
NxN threads  (where  N  is  the  number  of  nodes  in  the 
system) by having each thread compute the force between 
one  pair  of  nodes.   The  work  done  by  each  thread  is 
shown in Figure 4.

Figure 4: One thread per pairwise node calculation

4.4.2 Optimization #2: Reducing Functional Units
In  the  basic  version  of  the  GPU  implementation,  the 
REPULSIVE  and  ATTRACTIVE  force  constants  are 
multiplied when determining the force of one node acting 
upon another.  We instead keep these two forces separate 
and  only multiply these  constants  after  all  of  the  force 
vectors have been summed for each of the repulsive and 
attractive forces respectively.  This reduces the number of 
functional  units  that  are  required  during  the  force 
computation which is the most expensive: O(n2).



4.4.3 Optimization #3: Reducing Sync Overhead
In  the  basic  version  of  the  GPU  implementation,  the 
calculations  for  the  forces,  velocities,  and  position 
updates  are  done  in  one  kernel,  and  the  other  kernel 
computes  the  kinetic  energy.   However,  before  the  2nd 

kernel can start running, a thread synchronize operation is 
required  to  ensure  all  nodes  in  the  system  have  been 
updated before the total kinetic energy of the system can 
be calculated.  To provide more work to each thread, the 
kinetic energy calculation (sum of the x and y velocities 
squared) for each node can be done in each thread in the 
first kernel (avoid thread synchronization).  Then the data 
can be transferred back to the host (synchronization only 
done once), and a quick summation can be performed for 
the  N data  values  (one  per  node  in  the  system).   This 
optimization provided increased parallelism (removed one 
synchronization  barrier),  and  also  improved  memory 
efficiency (reduces number of times the velocity data that 
is in global memory needs to be read from/written to).

4.5.  GPU  Implementation  (Reduced  Memory 
Bandwidth)
The second set of optimizations performed for the GPU 
implementation  focused  on  reducing  the  memory 
bandwidth  requirements  by  improving  memory 
coalescing,  using  shared  memory,  and  reducing  bank 
conflicts.

4.5.1 Optimization #4: Improved Memory Coalescing
There  were  two  optimizations  performed  to  memory 
accesses  in  the  GPU  kernel.   The  first  optimization 
involved combining the float data arrays storing the x and 
y data for node positions and calculated velocities of the 
nodes.  The x and y data arrays were combined to use the 
“float2”  data  type.   Although  this  may  incur  memory 
access latency due to potential bank conflicts (two threads 
in  a  half  warp  would  be  accessing  the  same  memory 
bank), this allows for improved memory read and write 
access by issuing one 64-bit data request, rather than two 
separate 32-bit requests for the x and the y values.  In our 
benchmark  measurements,  we  found  that  optimization 
provided  a  net  overall  speed-up  for  the  GPU  (results 
shown in Section 6).

The second memory access optimization adjusted the data 
type  for  the  2-dimensional  array  that  stored  the  graph 
edge weights.  The data values stored in this array were 1 
if there was an edge between the two nodes and 0 if there 
was no edge.  Hence, the data was stored as type “char”. 
To potentially reduce bank conflicts and improve memory 
access alignment,  we tested the use of an “int” for this 
data.   However,  this only showed a negligible speed-up 
(results shown in Section 6)

4.5.2 Optimization #5: Local Memory
To reduce the number of requests to global memory, we 
adjusted  the  GPU  implementation  to  copy  data  values 
(that  would  be  accessed  multiple  times)  into  local 
memory. For the GPU kernel function that performs the 
force calculations, the node position and edge weight data 
arrays  were  copied  to  local  memory.   The  generated 
forces were stored in local memory until computation was 
complete  and  then  the  data  written  back  to  global 
memory.   Similarly,  the  GPU  kernel  function  that 
calculates velocity and the next position of each node was 
updated to  use local  memory for  the velocity,  position, 
and force data arrays.

4.5.3 Optimization #6: Reducing Bank Conflicts
For the GPU implementation that already had increased 
parallelization optimizations, the computed forces acting 
on each pair of nodes were stored linearly in a row major 
array.  However, this data layout can incur bank conflicts 
when the data is accessed in the subsequent GPU kernel 
which  performs  the  velocity  and  position  calculations. 
This  is  because  each  thread  in  this  second  kernel 
computes  the  cumulative  force  of  other  nodes  in  the 
system on a particular node.  Hence, it is more efficient to 
store the data in column major format (so that each thread 
can  be  serviced  by  a  different  memory  bank 
independently) rather than having a 16-way bank conflict 
for each data access.

4.5.4 Optimization #7: Reducing Memory Accesses
Optimization  #1  increased  parallelism  by  creating  one 
thread per pair of nodes in order to compute the forces. 
This optimization improved performance but also resulted 
in  increased  memory  accesses  (it  was  not  possible  to 
cache a “source’ node position per thread).  In an attempt 
to  reduce  the  memory  impact  the  arrangement  of  the 
threads was changed so that each block processed a 16x16 
grid of the NxN space.  The blocks would first read in the 
32 values  that  were  needed first,  and  then  perform the 
computation without reading any more position data. 

4.6. Further GPU Optimizations
Once optimization #7 was done, the time spent in the two 
kernels per iteration were measured and compared.  It was 
determined that computing the new velocities and kinetic 
energy  now  accounted  for  80%  of  the  total  run  time. 
Additional  effort  was  there  for  placed  in  reducing  this 
runtime.

4.6.1 Optimization #8: Using parallel reductions
The majority of the time spent when updating the velocity 
and  position  data  was  summing  up  all  the  individual 
forces  computed  in  the  first  kernel.   To  address  this 
problem,  a  reduction  was  used  where  a  block  was 



allocated for each node.  Each block consisted of a warp 
of  threads  which  iterated  over  the  data  summing it  up 
before performing the efficient reduction presented in the 
CUDA example projects.

4.6.2 Optimization #9: Using float4
In an effort to improve memory access efficiency, all the 
forces  were grouped  into a  single  float4 data structure. 
This  data  structure  could  be  read  and  written  using  a 
single memory instruction to try to reduce read and write 
operations.

5. Methodology
The  implemented  GPU  solution  was  measured  in 
comparison to a CPU implementation of the same force-
directed placement algorithm.

5.1 Metrics
There are two metrics that we use to evaluate the quality 
of our graph placement algorithm: 1) Run Time and 2) 
Quality of Result.

Run Time:
The  runtime  speed-up  of  the  GPU  implementation  is 
calculated as CPU time / GPU time to achieve the final 
fully placed graph result.

Quality of Result:

The quality of result is measured by evaluating the final 
kinetic energy of the system (minimal energy state).  The 
algorithm  is  deterministic  if  the  same  floating  point 
precision  is  assumed  and  the  arithmetic  operations  are 
performed  in  the  same  order.   However,  to  fully  take 
advantage of the parallelism available in the GPU, we can 
relax the requirement for  identical results to  comparable 
quality of results as appreciable to a human user viewing 
the graph output.  The quality of results comparison can 
be performed by comparing the final result (energy state) 
of  the  CPU  and  GPU.   For  correctness  testing  before 
arithmetic  operation  re-ordering  for  performance 
optimization, the output of the GPU and the CPU can be 
verified to be identical.  For subsequent tests on smaller 
graphs, the graph output can also be visually inspected to 
ensure the aesthetic quality of the output is comparable.

5.2 Experimental Procedure
Several large graphs from publicly available sources were 
used  to  compare  our  CPU  and  GPU  implementations. 
Graphs describing the relationships between actors were 
generated [10]  and graphs describing ISP topology [11] 
were used to evaluate our implementation.  Larger graphs 
were also synthetically constructed, to help demonstrate 
the scalability of our GPU implementation, and show the 
effect  of each optimization.  Some of the larger graphs 
were too complex for the CPU implementation to finish 

running  (excessively  long  run  times).   For  the  large 
graphs,  we  also  verified  that  the  placement  algorithms 
included  with  the  Graphviz  DOT  package  also  had 
difficulties processing these graphs.

All  evaluations  were  performed  using  the  CUDALAB 
machines running Debian 4.0.  Each machine has an Intel 
Core 2 Quad Q9550 2.83GHz quad-core CPU, 4GB of 
RAM,  and  an  NVIDIA  GTX280  GPU  with  1GB  of 
memory.  The runtimes were recorded for the CPU and all 
GPU implementations.

6. Evaluation
The CPU implementation and the results from the GPU 
implementation (with optimizations) were evaluated using 
the  procedure  described  in  Section  5.   The  speed-up 
obtained  by  the  GPU  implementation  vs.  the  CPU 
implementation is shown in Figure 5.

GPU Speed-up vs. CPU
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Figure 5: GPU Speed-up vs. CPU

By  porting  the  Force-Directed  Placement  algorithm 
directly  to  the  GPU (basic  implementation),  there  is  a 
slowdown of 55% for the random graph rand32.dot (32 
nodes, 31 edges) and an up to 6x speed-up achieved for 
the random graph rand256 (256 nodes, 1599 edges).  For 
two “real” graphs describing relationships between actors, 
a  2x  speed-up was  achieved  for  actors.dot  (100 nodes, 
260  edges)  and  a  2.7x  speed-up  for  actors2.dot  (232 
nodes, 698 edges).

After  optimizing  the  GPU  implementation,  there 
remained no speed-up for the random graph rand32.dot, 
and a 58x speed-up was achieved for rand256.dot.  The 
two “real”  actor  graphs  achieved  9x  for  actors.dot  and 
20.6x speed-up for actors2.dot.



The  GPU  implementation  is  unable  to  provide  a  net 
speed-up for  the rand32.dot  graph because there are so 
few nodes in  the graph (limited parallelism to exploit), 
and very limited connectivity between the nodes (requires 
many iterations to achieve system equilibrium since there 
are very few attractive forces).

To evaluate the scalability of the GPU implementation, 
we increased our benchmark design set by synthetically 
generating graphs.   The time to process the benchmark 
graphs vs. graph size (number of nodes + number edges) 
are  shown  in  Figure  6.   The  CPU  run  times  increase 
quadratically with design size, since the calculation of the 
forces is of complexity O(n2).  For small graph sizes, the 
GPU implementation provides moderate to no speed-up, 
but provides a significant speed-up for large graph sizes 
since there is  more work to  be parallelized.   The GPU 
implementation exhibits a linear run time increase (with 
very  moderate  slope)  since  it  is  able  to  increase 
parallelism  by  taking  advantage  of  the  processors 
available with only a small overhead.

GPU Optimizations
(Time vs. Benchmark Graph Size)
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Figure 6: GPU Optimizations (Time vs. Graph Size)

The  percentage  run  time  improvement  for  each 
optimization (as compared to the previous optimization) 
is shown in Figure 7.  The optimizations that provided the 
most significant speed-ups (in chronological order based 
on application to the GPU implementation) were:

1) Porting directly to the GPU
2) GPU Increased Parallelism
3) GPU  Transpose  (Reducing  Memory  Bank 

Conflicts)
4) GPU Force Reduction

Several of the memory coalescing optimizations resulted 
in no speed-up (or even a slight increase in run time):

1) GPU Data Size (Memory Coalescing)
2) GPU  Grid  Block  (Reducing  Memory 

Accesses)
3) GPU Float4 (Memory Access Coalescing)

rand32
(n=32,
e=31)

actors
(n=100,
e=260)

actors2
(n=708,
e=698)

rand256
(n=256,
e=1599)

CPU 0% 0% 0% 0%
GPU Basic -55% 97% 171% 538%
GPU float2 (Memory
Coalescing) 5% 5% 5% 5%
GPU (Increased Parallelism) 22% 79% 281% -15%
GPU (Reducing Functional
Units & Sync Overhead) 23% 11% 5% 4%
GPU (Local Memory) 4% 4% 6% 4%
GPU Data Size
(Memory Coalescing) 0% 0% 0% 0%
GPU Transpose (Reduce
Memory Bank Conflict) 6% 13% 18% 73%
GPU Grid Block
(Reducing Memory Accesses) -4% 1% -1% -2%
GPU Force Reduction 31% 83% 46% 469%
GPU Float 4
(Memory Access Coalescing) 2% -1% -10% -3%
Figure 7: GPU Optimizations (% Runtime Improvement)

It is speculated that these optimizations did not provide a 
net benefit to improve run time because there was already 
sufficient work for each thread that the memory latency 
could be hidden.  Increased memory coalescing actually 
could lead to a worsening of performance in some cases, 
since  the  optimizations  increased  the  possibility  of 
memory bank access conflicts.

The  speed-up  contribution  from  each  GPU  algorithm 
optimization is shown in Figure 8.  The initial port of the 
CPU algorithm to the GPU achieved a moderate speed-
up, and subsequent optimizations to increase parallelism 
and  improve  memory  accesses  provided  significant 
performance improvements.



GPU Optimizations (Speed-up vs. CPU)
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Figure 8: GPU Optimizations (Speed-up vs. CPU)

The quality of the resulting output graphs were visually 
compared for the CPU and the GPU implementations.  In 
all cases the output graphs generated by the GPU are very 
similar to those generated by the CPU.  The positions of 
some nodes differ by a few pixels, which is believed to be 
rounding errors of different ALUs in the CPU and GPU. 
Nevertheless,  the  placement  of  each  node  remains  the 
same relative to all other nodes, and it does not affect the 
aesthetic quality.   Figure 9 shows the layout of the ISP 
topology graph (300 nodes, 549 edges) generated by the 
GPU implementation.

Figure 9: Layout of ISP topology graph “top1755.dot”

7. Conclusions
The results of our investigation have shown that a GPU 
implementation of a graph placement & layout algorithm 
can  significantly  improve  the  runtime  and  achieve 
comparable quality to a CPU implementation.  The GPU 
implementation was able to achieve up to a 58x speed-up 
with  no  degradation  in  the  quality  of  graph  placement 
output.  

Future  potential  extensions  for  this  work  could  include 
implementation  of  a  simulated  annealing  algorithm (as 
described in Section 3.  A simulated annealing algorithm 
lends  itself  well  to  a  parallelization  (many prospective 
moves  can  be  evaluated  in  parallel).   However,  it  is 
unclear how long it  may take to converge on a “good” 
solution, and what temperature annealing schedule would 
be appropriate to ensure local minima were avoided.

The  graph  placement  algorithms  included  with  the 
Graphviz tool suite have difficulty supporting moderately 
sized graphs and have a long runtime.  The current GPU 
implementation of the force-directed placement algorithm 
could be ported to interface with the Graphviz tool suite 
(currently supports different CPU placement algorithms), 
so that when a CUDA compatible device is available, it 
would provide a speed-up for the DOT graph processing 
and drawing application.
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