
ECE1724H S Lecture 102:
Special Topics in

Programming Massively Parallel Graphics Multiprocessors Using CUDA

Force Directed Placement: GPU implementation

Bernice Chan, 990338951
Ivan So, 991731854

Mark Teper, 991603886

1. Introduction / Motivation

Automated graph drawing remains a difficult placement
and layout problem. This problem is difficult in part due
to the complexity of formulating good algorithms to draw
graphs which are aesthetically pleasing for human
visualization. Graph layout algorithms use a heuristic to
determine if they are getting closer or farther from being
aesthetically pleasing and use an iterative method to
progress towards the final graph layout solution.

The graphing problem consists of a number of elements
(or graph nodes) which are interconnected in some
manner. The connections between elements are referred
to as edges. For example, in a family tree – each person
would be an element and parents would be connected to
their children through edges. The goal of the algorithm is
to take this data and present it to the user in an easy to
understand way by generating a graphical representation.

Applications of graph drawing include VLSI circuit
design, network relationship analysis, cartography, and
bioinformatics [1]. The layout algorithm can also be used
for a large class of applications: from drawing family-
trees to laying out class relationship diagrams in software
systems.

We propose to develop a force-directed placement
algorithm that will solve the graph layout problem by
using an energy minimization technique. In this
approach, the aesthetic quality of the diagram is mapped
to an energy state, with the algorithm attempting to search
for a minimum.

This work aims to demonstrate the performance
advantage of a GPU implementation (using NVIDIA
CUDA) of a force-directed graph layout placement
algorithm as compared to a CPU implementation. Our
GPU implementation takes advantage of the inherent
parallel computational power available in the GPU and

with some additional memory bandwidth optimizations
for our algorithm, the GPU implementation was able to
achieve up to a 58x speed-up as compared to the CPU.

2. Related Work

Improved heuristics for graph layout have been developed
for both force directed placement and simulated annealing
approaches. Force directed placement algorithms for
graph layout are primarily based on Hooke’s law, but have
deviated from strict physical modelling to better match
the requirements of different graphing applications as
described by Eades spring-mass equations [2] and later
adapted by Fruchterman and Reingold to emulate particle
physics in a simulated annealing algorithm [3].

Graph placement and layout remains an active area of
research, with Frishman and Tal [4] [5] using GPUs to
speed-up incremental graph layout to provide results 8x
faster than a CPU, and proposing different approaches to
partition the computational work to improve parallelism.

For our work, we chose to use the simpler heuristics
proposed by Eades which lend themselves well to
parallelization on the GPU. The focus of our work was to
demonstrate that a significant runtime advantage could be
achieved on a GPU even for a simple force directed
placement algorithm by increasing parallelism and
optimizing memory bandwidth utilization.

3. Algorithm

Two graph placement & layout algorithms were
considered: Simulated Annealing and Force-directed
placement algorithms

Simulated Annealing

In the simulated annealing model, element moves are
performed randomly while searching for a minimum
energy state. The algorithm evaluates each random move
by computing a change in the “cost function” or “energy
state” of the system. If the randomly selected move
reduces the energy state or at worst increases by less then
a threshold temperature factor “T” then the move is
accepted, otherwise it is undone and another move is
performed. Over time the temperature factor decreases,
allowing only better and better moves to be accepted.
This decreasing of the threshold temperature allows the
algorithm to “escape” local minima in the early stages of
evaluation, while allowing the algorithm to converge on a
good solution. The energy-state (or cost function) in the
simulated annealing model can use the same model as the
one used by the force-based placement algorithm.

Force-based/Force-directed algorithms

In this model, each element in the graph is modelled as a
mass, with edges between graph elements modelled as
springs as shown in Figure 1. Values for the
“gravitational force” and “spring constant” can be varied
to produce different results. Further, additional forces
(electrical charges, logarithmic springs, moments,
damping effects) can be used to alter the aesthetic. The
algorithm takes this model and chooses some arbitrary
initial state. It then iteratively simulates the movement of
each element (or “mass”) by through increments of time
(steps) until the model reaches steady state. On each
iteration, the forces acting on each element in the model
are computed and the element’s “position” and “velocity”
are then adjusted.

Figure 1: Spring-Mass System

The relationship between the force exerted by the spring
and the distance that the spring is stretched is described
by Hooke’s Law [6] in Equation 1.

F = -kx (Eq. 1)

where F is the restoring force of the object, k is the spring
constant, and x is the distance the spring has been
extended / compressed from its equilibrium position.

Combined with the damping force (friction) and the
acceleration of the object, the new position of an object
can be calculated [7].

Force = Fspring + Fdamping = - kx – bv (Eq. 2)

where b is damping constant and v is velocity.

x’’ = -kx – bx’ (Eq. 3)

where x is acceleration, x is position of object, and x’ is
the velocity of the object.

4. Implementation

4.1. Overview
The force-directed placement algorithm described in
Section 3 was implemented for the CPU and GPU. The
same framework was used for both implementations to
process input graph files specified in Graphviz DOT
format [8], and store the node and edge information in a
two-dimensional array. The placement algorithms for
CPU and GPU implementations are run, and the
framework writes out the graph information (including
placement information) to a DOT file format.

The outer loop of our implemented algorithm is shown in
Figure 2.

Read_input_graph()

Do {

Calculate_forces()

update_velocity()

update_position()

Calculate_kinetic_energy()

} While (kinetic energy > stable
threshold);

Write_output_graph()

Figure 2: Force-Directed Placement Pseudocode

Calculate Forces: To determine the overall force vector
for each node, the force vectors (repulsive and attractive)
of all of the other nodes acting upon that node are added
together. The complexity of this function is O(n2)

Update Velocities: For each node, the velocity in the x
and y direction is calculated based on the force applied to
the node for the current timestep, and a damping factor is
applied. The complexity of this function is O(n).
Update Position: For each node, the position of the node
is updated by adjusting the initial position of the node
based on the velocity and timestep. The complexity of
this function is O(n).
Calculate Kinetic Energy: The kinetic energy of the
system is calculated by summing the square of the
velocities in the x and y directions. The complexity of
this function is O(n).

In our implementation, we do not strictly emulate a
physical system, but rather use a modified set of equations
formulated by Eades [2] that considers repulsive forces
between all nodes, but only attractive forces between
connected nodes.

4.2. CPU Implementation
The CPU implementation of the algorithm is done as a
serial application (no multi-threading). The algorithm is
implemented as described in Section 4.1.

4.3. GPU Implementation (Basic)
As previously described, the framework processes the
input graph and stores the data in a 2-dimensional array.
To prepare the data for the GPU implementation, it is
transferred into a 1-dimensional array for easier data
access during computation.

Our initial implementation began with 2 kernel functions:
One kernel to compute forces & update positions and one
kernel to calculate the kinetic energy of the system. In
this implementation, each thread is responsible for
calculating the forces, velocities, and updating the
position for one node. Thus, the parallelism of this
implementation is limited by the number of nodes in the
graph, and the complexity of the calculation. The work
per thread is shown in Figure 3.

Figure 3: Basic Implementation (one thread per node)

4.4. GPU Implementation (Increased Parallelism)

The first set of optimizations performed for the GPU
implementation were done to re-distribute the work,
increase parallelism, and reduce the synchronization
overhead of multiple kernel invocations.

4.4.1 Optimization #1: Increasing Parallelism
As described in section 4.1, the Calculate Forces function
has a complexity of O(n2) since an evaluation of all forces
between each pair of nodes must be done. In the basic
implementation, the parallelism available in the GPU
system is not fully exploited. Although the computation
for each node is done in parallel, the computation of all of
the forces acting on each node is done serially. We
increased the parallelism of the GPU implementation to
NxN threads (where N is the number of nodes in the
system) by having each thread compute the force between
one pair of nodes. The work done by each thread is
shown in Figure 4.

Figure 4: One thread per pairwise node calculation

4.4.2 Optimization #2: Reducing Functional Units
In the basic version of the GPU implementation, the
REPULSIVE and ATTRACTIVE force constants are
multiplied when determining the force of one node acting
upon another. We instead keep these two forces separate
and only multiply these constants after all of the force
vectors have been summed for each of the repulsive and
attractive forces respectively. This reduces the number of
functional units that are required during the force
computation which is the most expensive: O(n2).

4.4.3 Optimization #3: Reducing Sync Overhead
In the basic version of the GPU implementation, the
calculations for the forces, velocities, and position
updates are done in one kernel, and the other kernel
computes the kinetic energy. However, before the 2nd

kernel can start running, a thread synchronize operation is
required to ensure all nodes in the system have been
updated before the total kinetic energy of the system can
be calculated. To provide more work to each thread, the
kinetic energy calculation (sum of the x and y velocities
squared) for each node can be done in each thread in the
first kernel (avoid thread synchronization). Then the data
can be transferred back to the host (synchronization only
done once), and a quick summation can be performed for
the N data values (one per node in the system). This
optimization provided increased parallelism (removed one
synchronization barrier), and also improved memory
efficiency (reduces number of times the velocity data that
is in global memory needs to be read from/written to).

4.5. GPU Implementation (Reduced Memory
Bandwidth)
The second set of optimizations performed for the GPU
implementation focused on reducing the memory
bandwidth requirements by improving memory
coalescing, using shared memory, and reducing bank
conflicts.

4.5.1 Optimization #4: Improved Memory Coalescing
There were two optimizations performed to memory
accesses in the GPU kernel. The first optimization
involved combining the float data arrays storing the x and
y data for node positions and calculated velocities of the
nodes. The x and y data arrays were combined to use the
“float2” data type. Although this may incur memory
access latency due to potential bank conflicts (two threads
in a half warp would be accessing the same memory
bank), this allows for improved memory read and write
access by issuing one 64-bit data request, rather than two
separate 32-bit requests for the x and the y values. In our
benchmark measurements, we found that optimization
provided a net overall speed-up for the GPU (results
shown in Section 6).

The second memory access optimization adjusted the data
type for the 2-dimensional array that stored the graph
edge weights. The data values stored in this array were 1
if there was an edge between the two nodes and 0 if there
was no edge. Hence, the data was stored as type “char”.
To potentially reduce bank conflicts and improve memory
access alignment, we tested the use of an “int” for this
data. However, this only showed a negligible speed-up
(results shown in Section 6)

4.5.2 Optimization #5: Local Memory
To reduce the number of requests to global memory, we
adjusted the GPU implementation to copy data values
(that would be accessed multiple times) into local
memory. For the GPU kernel function that performs the
force calculations, the node position and edge weight data
arrays were copied to local memory. The generated
forces were stored in local memory until computation was
complete and then the data written back to global
memory. Similarly, the GPU kernel function that
calculates velocity and the next position of each node was
updated to use local memory for the velocity, position,
and force data arrays.

4.5.3 Optimization #6: Reducing Bank Conflicts
For the GPU implementation that already had increased
parallelization optimizations, the computed forces acting
on each pair of nodes were stored linearly in a row major
array. However, this data layout can incur bank conflicts
when the data is accessed in the subsequent GPU kernel
which performs the velocity and position calculations.
This is because each thread in this second kernel
computes the cumulative force of other nodes in the
system on a particular node. Hence, it is more efficient to
store the data in column major format (so that each thread
can be serviced by a different memory bank
independently) rather than having a 16-way bank conflict
for each data access.

4.5.4 Optimization #7: Reducing Memory Accesses
Optimization #1 increased parallelism by creating one
thread per pair of nodes in order to compute the forces.
This optimization improved performance but also resulted
in increased memory accesses (it was not possible to
cache a “source’ node position per thread). In an attempt
to reduce the memory impact the arrangement of the
threads was changed so that each block processed a 16x16
grid of the NxN space. The blocks would first read in the
32 values that were needed first, and then perform the
computation without reading any more position data.

4.6. Further GPU Optimizations
Once optimization #7 was done, the time spent in the two
kernels per iteration were measured and compared. It was
determined that computing the new velocities and kinetic
energy now accounted for 80% of the total run time.
Additional effort was there for placed in reducing this
runtime.

4.6.1 Optimization #8: Using parallel reductions
The majority of the time spent when updating the velocity
and position data was summing up all the individual
forces computed in the first kernel. To address this
problem, a reduction was used where a block was

allocated for each node. Each block consisted of a warp
of threads which iterated over the data summing it up
before performing the efficient reduction presented in the
CUDA example projects.

4.6.2 Optimization #9: Using float4
In an effort to improve memory access efficiency, all the
forces were grouped into a single float4 data structure.
This data structure could be read and written using a
single memory instruction to try to reduce read and write
operations.

5. Methodology
The implemented GPU solution was measured in
comparison to a CPU implementation of the same force-
directed placement algorithm.

5.1 Metrics
There are two metrics that we use to evaluate the quality
of our graph placement algorithm: 1) Run Time and 2)
Quality of Result.

Run Time:
The runtime speed-up of the GPU implementation is
calculated as CPU time / GPU time to achieve the final
fully placed graph result.

Quality of Result:

The quality of result is measured by evaluating the final
kinetic energy of the system (minimal energy state). The
algorithm is deterministic if the same floating point
precision is assumed and the arithmetic operations are
performed in the same order. However, to fully take
advantage of the parallelism available in the GPU, we can
relax the requirement for identical results to comparable
quality of results as appreciable to a human user viewing
the graph output. The quality of results comparison can
be performed by comparing the final result (energy state)
of the CPU and GPU. For correctness testing before
arithmetic operation re-ordering for performance
optimization, the output of the GPU and the CPU can be
verified to be identical. For subsequent tests on smaller
graphs, the graph output can also be visually inspected to
ensure the aesthetic quality of the output is comparable.

5.2 Experimental Procedure
Several large graphs from publicly available sources were
used to compare our CPU and GPU implementations.
Graphs describing the relationships between actors were
generated [10] and graphs describing ISP topology [11]
were used to evaluate our implementation. Larger graphs
were also synthetically constructed, to help demonstrate
the scalability of our GPU implementation, and show the
effect of each optimization. Some of the larger graphs
were too complex for the CPU implementation to finish

running (excessively long run times). For the large
graphs, we also verified that the placement algorithms
included with the Graphviz DOT package also had
difficulties processing these graphs.

All evaluations were performed using the CUDALAB
machines running Debian 4.0. Each machine has an Intel
Core 2 Quad Q9550 2.83GHz quad-core CPU, 4GB of
RAM, and an NVIDIA GTX280 GPU with 1GB of
memory. The runtimes were recorded for the CPU and all
GPU implementations.

6. Evaluation
The CPU implementation and the results from the GPU
implementation (with optimizations) were evaluated using
the procedure described in Section 5. The speed-up
obtained by the GPU implementation vs. the CPU
implementation is shown in Figure 5.

GPU Speed-up vs. CPU

0

10

20

30

40

50

60

70

ac
to

rs
.d

ot
 (n

=1
00

, e
=2

60
)

ac
to

rs
2.

do
t

 (n
=2

32
, e

=6
98

)

ra
nd

32
.d

ot
 (n

=3
2,

 e
=3

1)

ra
nd

64
.d

ot
 (n

=6
4,

 e
=9

3)

ra
nd

12
8.

do
t

 (n
=1

28
, e

=3
88

)

ra
nd

25
6.

do
t

 (n
=2

56
, e

=1
59

9)

ra
nd

51
2.

do
t

 (n
=5

12
, e

=6
48

1)
Benchmark Graphs

Sp
ee

d-
up

 (r
el

at
iv

e
to

 C
PU

)
GPU Best
GPU Basic

Figure 5: GPU Speed-up vs. CPU

By porting the Force-Directed Placement algorithm
directly to the GPU (basic implementation), there is a
slowdown of 55% for the random graph rand32.dot (32
nodes, 31 edges) and an up to 6x speed-up achieved for
the random graph rand256 (256 nodes, 1599 edges). For
two “real” graphs describing relationships between actors,
a 2x speed-up was achieved for actors.dot (100 nodes,
260 edges) and a 2.7x speed-up for actors2.dot (232
nodes, 698 edges).

After optimizing the GPU implementation, there
remained no speed-up for the random graph rand32.dot,
and a 58x speed-up was achieved for rand256.dot. The
two “real” actor graphs achieved 9x for actors.dot and
20.6x speed-up for actors2.dot.

The GPU implementation is unable to provide a net
speed-up for the rand32.dot graph because there are so
few nodes in the graph (limited parallelism to exploit),
and very limited connectivity between the nodes (requires
many iterations to achieve system equilibrium since there
are very few attractive forces).

To evaluate the scalability of the GPU implementation,
we increased our benchmark design set by synthetically
generating graphs. The time to process the benchmark
graphs vs. graph size (number of nodes + number edges)
are shown in Figure 6. The CPU run times increase
quadratically with design size, since the calculation of the
forces is of complexity O(n2). For small graph sizes, the
GPU implementation provides moderate to no speed-up,
but provides a significant speed-up for large graph sizes
since there is more work to be parallelized. The GPU
implementation exhibits a linear run time increase (with
very moderate slope) since it is able to increase
parallelism by taking advantage of the processors
available with only a small overhead.

GPU Optimizations
(Time vs. Benchmark Graph Size)

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000

Th
ou

sa
nd

s

Size of Benchmark Graphs
(Number of Nodes + Number of Edges)

Ti
m

e
(m

s)

CPU
GPU Basic
GPU float2 (Memory Coalescing)
GPU (Increased Parallelism)
GPU (Reducing Functional Units & Sync Overhead)
GPU (Local Memory)
GPU data size (Memory Coalescing)
GPU Transpose (Reduce Memory Bank Conflict)
GPU Grid Block (Reducing Memory Accesses)
GPU Force Reduction
GPU float4 (Memory Access Coalescing)

Figure 6: GPU Optimizations (Time vs. Graph Size)

The percentage run time improvement for each
optimization (as compared to the previous optimization)
is shown in Figure 7. The optimizations that provided the
most significant speed-ups (in chronological order based
on application to the GPU implementation) were:

1) Porting directly to the GPU
2) GPU Increased Parallelism
3) GPU Transpose (Reducing Memory Bank

Conflicts)
4) GPU Force Reduction

Several of the memory coalescing optimizations resulted
in no speed-up (or even a slight increase in run time):

1) GPU Data Size (Memory Coalescing)
2) GPU Grid Block (Reducing Memory

Accesses)
3) GPU Float4 (Memory Access Coalescing)

rand32
(n=32,
e=31)

actors
(n=100,
e=260)

actors2
(n=708,
e=698)

rand256
(n=256,
e=1599)

CPU 0% 0% 0% 0%
GPU Basic -55% 97% 171% 538%
GPU float2 (Memory
Coalescing) 5% 5% 5% 5%
GPU (Increased Parallelism) 22% 79% 281% -15%
GPU (Reducing Functional
Units & Sync Overhead) 23% 11% 5% 4%
GPU (Local Memory) 4% 4% 6% 4%
GPU Data Size
(Memory Coalescing) 0% 0% 0% 0%
GPU Transpose (Reduce
Memory Bank Conflict) 6% 13% 18% 73%
GPU Grid Block
(Reducing Memory Accesses) -4% 1% -1% -2%
GPU Force Reduction 31% 83% 46% 469%
GPU Float 4
(Memory Access Coalescing) 2% -1% -10% -3%
Figure 7: GPU Optimizations (% Runtime Improvement)

It is speculated that these optimizations did not provide a
net benefit to improve run time because there was already
sufficient work for each thread that the memory latency
could be hidden. Increased memory coalescing actually
could lead to a worsening of performance in some cases,
since the optimizations increased the possibility of
memory bank access conflicts.

The speed-up contribution from each GPU algorithm
optimization is shown in Figure 8. The initial port of the
CPU algorithm to the GPU achieved a moderate speed-
up, and subsequent optimizations to increase parallelism
and improve memory accesses provided significant
performance improvements.

GPU Optimizations (Speed-up vs. CPU)

1x

59x
41x

21x18x
9x

4x

0.1

1

10

100
ra

nd
32

.d
ot

(n
=3

2,
e=

31
)

ra
nd

64
.d

ot
(n

=6
4,

e=
93

)

ac
to

rs
.d

ot
(n

=1
00

,
e=

26
0)

ra
nd

12
8.

do
t

(n
=1

28
,

e=
38

8)

ac
to

rs
2.

do
t

(n
=7

08
,

e=
69

8)

ra
nd

51
2.

do
t

(n
=5

12
,

e=
64

81
)

ra
nd

25
6.

do
t

(n
=2

56
,

e=
15

99
)

Benchmark Graphs

S
pe

ed
-u

p
(v

s.
 C

P
U

)

GPU float4 (Memory Access Coalescing)
GPU Force Reduction
GPU Grid Block (Reducing Memory Accesses)
GPU Transpose (Reduce Memory Bank Conflict)
GPU data size (Memory Coalescing)
GPU (Local Memory)
GPU (Reducing Functional Units & Sync Overhead)
GPU (Increased Parallelism)
GPU float2 (Memory Coalescing)
GPU Basic
CPU

Figure 8: GPU Optimizations (Speed-up vs. CPU)

The quality of the resulting output graphs were visually
compared for the CPU and the GPU implementations. In
all cases the output graphs generated by the GPU are very
similar to those generated by the CPU. The positions of
some nodes differ by a few pixels, which is believed to be
rounding errors of different ALUs in the CPU and GPU.
Nevertheless, the placement of each node remains the
same relative to all other nodes, and it does not affect the
aesthetic quality. Figure 9 shows the layout of the ISP
topology graph (300 nodes, 549 edges) generated by the
GPU implementation.

Figure 9: Layout of ISP topology graph “top1755.dot”

7. Conclusions
The results of our investigation have shown that a GPU
implementation of a graph placement & layout algorithm
can significantly improve the runtime and achieve
comparable quality to a CPU implementation. The GPU
implementation was able to achieve up to a 58x speed-up
with no degradation in the quality of graph placement
output.

Future potential extensions for this work could include
implementation of a simulated annealing algorithm (as
described in Section 3. A simulated annealing algorithm
lends itself well to a parallelization (many prospective
moves can be evaluated in parallel). However, it is
unclear how long it may take to converge on a “good”
solution, and what temperature annealing schedule would
be appropriate to ensure local minima were avoided.

The graph placement algorithms included with the
Graphviz tool suite have difficulty supporting moderately
sized graphs and have a long runtime. The current GPU
implementation of the force-directed placement algorithm
could be ported to interface with the Graphviz tool suite
(currently supports different CPU placement algorithms),
so that when a CUDA compatible device is available, it
would provide a speed-up for the DOT graph processing
and drawing application.

8. References
[1] “Graph drawing” [Online] Available:
http://en.wikipedia.org/wiki/Graph_drawing

[Accessed: April 5, 2009].

[2] P. Eades, ‘A heuristic for graph drawing’, Congressus Nutnerantiunt,
42, 149–160 (1984).

[3] T. M. J. Fruchterman, E. M. Reingold: Graph drawing by force-
directed placement. Software.

Practice & Experience 21, 11 (1991), 1129.1164. 3, 4

[4] Y. Frishman, A. Tal ‘Online Dynamic Graph Drawing’ IEEE-VGTC
Symposium on Visualization (2007)

[5] Y. Frishman, A. Tal ‘Multi-Level Graph Layout on the GPU’.
Available:
http://www.ee.technion.ac.il/~ayellet/Ps/FrishmanTalInfoVis07.pdf
[Accessed: April 2009]

[6] “Hooke’s Law” [Online] Available:
http://en.wikipedia.org/wiki/Hooke's_law [Accessed April 9, 2008]

[7] ‘MyPhysicsLab – Single Spring’ [Online]
http://www.myphysicslab.com/spring1.html [Accessed April 9th 2009]

[8] GraphViz [Online] Available : http://www.graphviz.org/ [Accessed
March 14th 2009]

[9] Proximity Graphs [Online] Available:
http://www.research.att.com/~volinsky/cgi-bin/prox/prox.pl [Accessed:
April 5th 2009]

[10] Rocketfuel: An ISP Topology Mapping Engine [Online] Available:
http://www.cs.washington.edu/research/networking/rocketfuel/
[Accessed April 9th 2009]

http://www.cs.washington.edu/research/networking/rocketfuel/
http://www.research.att.com/~volinsky/cgi-bin/prox/prox.pl
http://www.graphviz.org/
http://www.myphysicslab.com/spring1.html
http://en.wikipedia.org/wiki/Hooke's_law
http://www.ee.technion.ac.il/~ayellet/Ps/FrishmanTalInfoVis07.pdf
http://en.wikipedia.org/wiki/Graph_drawing

