
Convolutional Neural Networks for Object Classi�cation in CUDA

Alex Krizhevsky (kriz@cs.toronto.edu)

April 16, 2009

1 Introduction

Here I will present my implementation of a simple convolutional neural network in CUDA. The network takes as input
a 32 × 32 colour image and produces as its output one of ten possible class labels. The convolution operations, which
account for 90% of the time required to train this network, are 125-150x faster on the GPU than on an Intel Core 2 Duo
2.4GHz.

2 Related work

I have not found any other implementations of 2D convolution. The CUDA SDK has an implementation for the separable
case, but that is quite di�erent. I am interested in non-separable �lters. I have heard from Yann LeCun of NYU (the
primary pusher of convolutional neural nets) that students at UC Irvine have claimed a 100x speedup of convolutional
neural net implementations on the GPU.

3 Neurons

A neuron is simply a function. It takes an input x, computes some function f(x) and outputs it. In my implementation,
I use neurons that compute the logistic function

f(x) =
1

1 + e−x
,

which is plotted in Figure 1. This is by far the most commonly used function. It has the nice property that its output
is e�ectively linear in the input if the size of the input is small. This means that neural networks with small weights
essentially compute a linear function, and gradually increasing the weights allows one to control the degree of nonlinearity.
The degree of nonlinearity controls the �capacity� of the neural network. For example, a network with purely linear
neurons can only compute linear functions.

Figure 1: The logistic function f(x) = 1
1+e−x .[1]

1



Figure 2: A feed-forward neural network with one hidden layer.

4 Feed-forward neural networks

Feed-forward neural networks link together layers of neurons. Every neuron in layer l is connected to every neuron in
layer l + 1, but there are no intra-layer connections. This architecture is depicted in Figure 2. On each connection there
is a real-valued weight. Neuron k in layer l receives as input the value

xl
k = bl

k +
Nl−1∑
i=1

wl−1
ik yl−1

i

where

• bl
k is the bias into neuron k in layer l,

• Nl−1 is the number of neurons in layer l − 1,

• wl−1
ik is the weight between unit i in layer l − 1 and unit k in layer l, and

• yl−1
i is the output of unit i in layer l − 1.

The neuron then computes its output
yl

k = f(xl
k)

where f is any di�erentiable function of the neuron's total input (as mentioned, I use the logistic function). The �neurons�
in the data layer just output the data.

Finally, we come up with a function
E(yL

1 , . . . , yL
NL

)

of the output that we would like the neural net to maximize (this can be seen as just another layer on top of the output
layer), where L is the number of layers in the neural network. E should be di�erentiable so ∂E

∂yL
k

is readily computable.

Training the network consists of clamping the data neurons at the data and updating the parameters (the weights and
biases) in the direction of the gradient. The derivatives can be computed as follows:

∂E

∂wl−1
ik

=
∂E

∂xl
k

yl−1
i

∂E

∂bl
k

=
∂E

∂xl
k

where

∂E

∂xl
k

=
∂E

∂yl
k

∂yl
k

∂xl
k

(1)

∂E

∂yl
k

=


∂E
∂yL

k

if l = L∑Nl+1
i=1

∂E

∂xl+1
i

wl
ki otherwise

2



and ∂E
∂yL

k

is assumed to be readily computable. From this, derivatives with respect to all the weights and biases can be

computed, working down from the top layer. This is known as the backpropagation algorithm. Typically, the gradient is
averaged over a whole batch of images, and then the parameters are updated with this average gradient. This is known
as batch learning.

If the network is to be used for classi�cation, as in my case, the number of outputs is typically set at the number of
possible classes. The output of each output unit then corresponds in some way to the network's belief in some class label
(I will get more speci�c about this in the next section when I describe my network).

5 Convolutional neural networks

In ordinary feed-forward neural networks, every neuron in layer l is connected to every neuron in layer l − 1. This is �ne
if there is no local structure in the activations of the neurons of layer l − 1. But images have just this kind of structure.
Nearby pixels are highly correlated and faraway pixels are weakly correlated. Therefore we would like to encourage the
neural net to focus on extracting local features of the image. Convolutional nets achieve this by connecting each unit in
the hidden layer to only a small local patch of units in the image. In my case, this patch is 8 × 8. A convolutional net
with one hidden unit will apply this 8 × 8 �lter at all 33 × 33 possible locations in the 32 × 32 image (with a 4px-wide
padding of zeros on each edge). The outputs of the hidden layer will then consist of the 33× 33 outputs of this one �lter,
applied all over the image. This is where the convolution comes in.

But having just one hidden unit is too limiting, even though its �lter is applied all over the image and thus the unit
has over a thousand outputs. We would like to have lots of hidden units that learn di�erent �lters, each applied all over
the image. This scenario is depicted in Figure 3. In the �gure there are F hidden units in total, and each 32 × 32 plate
represents the 32 × 32 outputs produced by one hidden unit by convolving its 8 × 8 �lter with the image and applying
the logistic function. There are 32× 32 outputs instead of 33× 33 because GPUs are more fond of numbers like 32 than
33, and the neural net will not miss those few extra missing outputs at the edges of the image. In a standard neural net,
to get 32 × 32 outputs from the hidden layer, we would need it to have 32 × 32 units in that hidden layer. Here this is
achieved with just one unit. So we can think of convolutional neural nets as ordinary neural nets, but with the constraint
that certain groups of units must share weights (and also that the units be only locally-connected to the image).

Clearly, the outputs of a hidden unit when applied to nearby regions of the image will be similar. Therefore the
values in nearby regions of the same 32 × 32 plate of hidden unit outputs (Figure 3) in the hidden layer are similar. So
convolutional nets often include a subsampling layer right above the convolutional layer, to locally average nearby hidden
unit responses. In my network, the averaging units average 4 × 4 non-overlapping patches of hidden unit outputs. The
averaging layer reduces the size of the plates of hidden unit responses from 32 × 32 to 8 × 8. It can also be argued that
losing some precision as to the exact location of the features in the image is actually advantageous, because it achieves a
greater degree of invariance. It often turns out in vision that the precise location of a feature is not as important as its
approximate location relative to other features.

The averaging units produce a combined total of 8×8×F outputs. From this point on, the network is just an ordinary
fully-connected feed-forward network. The network has 10 outputs because my dataset consists of 60,000 images in 10
classes. The 8× 8× F averaging units are connected to all 10 of the output units. Output unit k computes the function

yk =
exk∑10

j=1 exj

where xk is the total input going into output unit k. Since
∑10

k=1 yk = 1, yk is interpreted as the probability that the
network assigns to class label k. To train the network, I maximize the average log probability of getting the correct
label. To evaluate the network's performance, I show it an image and compare the class to which it assigns the highest
probability with the true label of the image. In my results I simply report the percentage of labels that it got correct.

Convolutional neural nets are actively developed by Yann LeCun's group at New York University, and they have been
shown to achieve state-of-the-art performance in handwritten digit recognition as well as other classi�cation tasks. The
types of networks that achieve such performance are typically more complicated than the one that I have implemented.
Speci�cally, they have more than one layer of convolution. But the principle is the same.

5.1 Training convolutional neural networks

Mathematically, the algorithm for training convolutional neural networks is the same as it is for training ordinary feed-
forward networks. This is because, as mentioned above, a convolutional network can be viewed as a feed-forward network
with weight-sharing constraints. In the next section I will describe in more detail the GPU kernels that need to be
implemented to compute the various derivatives.

3



Figure 3: The architecture of the convolutional neural network that I implemented. The convolutional units compute the
logistic function: f(x) = 1

1+e−x . The output layer is a standard logistic regression classi�er: f(xi) = exiP10
j=1 exj .

Not all the connections are shown, to avoid cluttering the diagram. For simplicity, this diagram does not make it
explicit that the images and �lters are colour. In reality, each image should be thought of as having dimensions 32×32×3
and each �lter 8× 8× 3.

4



(a)

(b)

Figure 4: The layout of (a) the images and (b) the �lters in memory. Note that both images and �lters are stored as �oats
� each pixel consumes 4 bytes of memory. This is because in many applications, the data will have been pre-processed in
some way, or normalized to be in the range 0-1, etc. The �lters too must be �oats because the �lters represent the weights
on the connections of the neural net. One cannot take the derivative with respect to a discrete quantity.

6 Implementation in CUDA

6.1 Image format

The �rst step in training the convolutional net is to convolve the F �lters of the net with the N images that make up a
batch of training cases. I generally used 64 �lters and batches of 128 images, although these values are runtime variables.
Figure 4 makes clear the exact format of the data and �lters.

6.2 Convolution of 8x8 �lters with 32x32 images

The algorithm for doing this convolution is explained in Figure 5. It uses a block size of 8 × 32 = 256. Each block
convolves one image with one �lter, so the grid size is F ×N . The algorithm uses 14 registers and 3264 bytes of shared
memory, so it achieves 100% occupancy. It is 125x faster than the equivalent CPU algorithm on a Core 2 Duo 2.4GHz
when F = 64, N = 128. This convolution takes 13.18ms on the GPU. This is the best algorithm that I have been able to
�nd. I have tried variants in which each thread convolves more than one �lter with the image, but they perform slightly
worse (they also don't achieve 100% occupancy). I have also tried a variant that uses 512 threads per block and loads the
entire image into shared memory at once. It also performed slightly worse because loading was slightly more complicated.

I have made some e�ort to make sure that there are no warp-splitting if statements. In the few conditionals that exist,
all threads in the same warp take the same branch (except the initial �lter load). I have checked that removing all loads

5



and their corresponding if statements improves the algorithm's performance by only 2%, so memory bandwidth does not
appear to be a bottleneck. All of the loops have bounds that are known at compile time, so they are unrolled by the
compiler. All global memory accesses are coalesced and there are no bank con�icts in accessing shared memory. I have
also tried to minimize the amount of pointer arithmetic. I got a slight speed improvement by incrementing pointers at
each loop iteration rather than recomputing the index of the array that I want to access.

6.3 Subsampling (averaging) layer

Figure 6 makes clear the goal of this step. We need to go from a 32 × 32 array of �oats to an 8 × 8 array by averaging
every non-overlapping 4× 4 region. Figure 7 describes the algorithm. The algorithm uses blocks of 8× 32 threads so the
grid size is again F ×N . The algorithm has 2-way bank con�icts in one of its steps, but avoids bank con�icts in all other
steps. All global memory accesses are coalesced. The index computations are particularly simple because they only involve
division by powers of 2. Avoiding all bank con�icts requires slightly more complicated index computations which negate
the bene�ts. All of the reduction in this algorithm is performed by threads in the same warp so little synchronization is
necessary. In any case, this step accounts for less than 1% of the time required to train the convolutional net. The kernel
uses 1152 bytes of shared memory and 10 registers, and so it achieves full occupancy. This kernel is 31x faster than its
CPU counterpart when F = 64, N = 128.

6.4 Output and derivative computation

Once we have the averaged outputs of the previous step, computing the outputs of the neural net is a trivial task since
the remaining layers are fully connected. I will not go into detail for lack of space; I will just say that it involves some
calls to CUBLAS. The derivatives with respect to the output units and the averaging units are likewise computed with a
few matrix multiplications.

6.5 Derivatives with respect to convolutional hidden units

Given the derivatives with respect to the outputs of the averaging units, it is conceptually simple to compute the derivatives
with respect to the outputs of the convolutional units. The averaging units simply locally average the convolutional unit
outputs, so the derivative with respect to a given convolutional unit output will be the same as the derivative with respect
to the averaging unit assigned to its region. This means we require a supersampling kernel. This step is essentially the
reverse of the step of step 6.3. Figure 8 depicts the goal of this step.

There is one minor complication � that is that the CUBLAS SGEMM (matrix multiplication) routine outputs its result
in column-major order. Since I used CUBLAS to compute the derivatives with respect to the activities of the averaging
units, I will have to deal with this (because I want the output of the kernel to be in row-major order for the next step).
Figure 9 depicts the format of the input matrix.

Figure 10 explains the implementation of the algorithm. All reads and writes are coalesced and there are no bank
con�icts. When 4 threads read the same value, that value should be broadcast so there should be no bank con�ict there.
This kernel as well achieves 100% occupancy and accounts for less than 1% of the time spent training the convolutional
net. This kernel is 58x faster than its CPU counterpart when F = 64, N = 128.

This kernel computes derivatives with respect to the outputs of the convolutional units. Computing derivatives with
respect to the inputs to the convolutional units is accomplished with a simple vector element-wise multiplication, since
from equation (1) we know

∂E

∂xl
k

=
∂E

∂yl
k

∂yl
k

∂xl
k

=
∂E

∂yl
k

(yl
k)(1− yl

k),

the latter part is due to the fact that yl
k = 1

1+e−xl
k
.

6.6 Derivatives with respect to weights between data and convolutional units

Once we have the derivatives with respect to the inputs to the convolutional units, the �nal step is to compute the
derivatives with respect to the weights between the data units and the convolutional units. For a particular �lter and
image pair, the derivative with respect to weight wik is the average over all applications of the �lter of the derivative with

6



1.

2.

3.

Figure 5: The algorithm for convolving 8 × 8 colour �lters with 32 × 32 colour images with 4px padding of zeros on
the left and top edges and 3px padding on the right and bottom edges. The block size is (y, x) = (8, 32). Each block
convolves one �lter with one image.

(1) 3/4 of the threads load the entire �lter into shared memory. Although they do not need all three colour
channels at once, there is a slight advantage to loading them all together, and the shared memory is available.
(2) The threads allocate a 16 × 39 region of shared memory (highlighted) and initialize it with zeros. The threads then
load the 16 × 32 chunk of the (red colour channel of the) image that corresponds to the non-border area. The 8 × 32
threads then compute the 8× 32 dot products with this chunk of the image and store the result in a local variable. Each
thread computes one dot product. This result will later have to be added to the result from the blue and green colour
channels and then written out to global memory.
(3) The threads shift the shared memory window down by 8 pixels and perform the 8 × 32 dot products with the
new image chunk. They repeat the process twice more. Each time, there are 8 × 32 dot products to perform. At the
last step, the window is seen to exceed the size of the padding because there is only 3px of padding at the bottom.
This points out the fact that the threads really only need a 15×39 region of shared memory, but the extra row doesn't hurt.

After the above steps, each thread has 4 local variables with the results of the 4 dot products that the thread
computed. The threads now load the green channel of the image and repeat the above steps for the green channel of the
�lter, adding to the 4 local variables. Then the threads repeat the steps for the blue channel. Finally, each thread writes
its 4 outputs to global memory.

7



Figure 6: The goal of the local averaging kernel: to go from the 32× 32 array of �oats (left) to the 8× 8 array (right) by
averaging the highlighted 4× 4 regions.

Figure 7: The local averaging algorithm. The block size is (y, x) = (8, 32). Each block subsamples one 32 × 32 plate of
hidden unit outputs (pictured left). The threads allocate a 4 × 64 array in shared memory with 8 padding columns, to
avoid bank con�icts later.

The values are summed as pictured. Thread 0 sums the 4 values in the blue column and writes the result to the
corresponding cell in shared memory. Thread 1 sums the yellow column, thread 2 the orange, and thread 3 the
green. The rest of the threads proceed in an analogous fashion. Notice that this produces 2-way bank con�icts since
threads 0 and 2 write to the same bank, as do 1 and 3, 4 and 6, etc. The reads from global memory are of course coalesced.

After this step is complete, the threads in the �rst 8 warps do the remaining reduction by summing out the
columns of the shared memory array, 2 threads per column. So each warp sums out 16 columns. No synchronization is
necessary in this step. At this step there are no bank con�icts because thread i reads from bank (i%2)×8+i/2 (modulo 16).

Once all the �nal values are written to the �rst row of the shared memory array, the �rst two warps divide those
values by 16 and write them out to global memory. This step also has no bank con�icts because thread i accesses bank i
(modulo 16). The writes to global memory are coalesced.

8



Figure 8: The goal of the kernel of step 6.5 for one image and one �lter. We need to supersample the derivatives with
respect to the averaging units (left) by a factor of 4× 4. So each value on the left must get written to 16 locations on the
right.

Figure 9: The layout of the input matrix for step 6.5. These are derivatives with respect to the outputs of the averaging
units. The images are in columns because the CUBLAS SGEMM routine outputs in column-major order.

9



1.

2.

Figure 10: The supersampling algorithm of step 6.5. The block size is 16× 16. The grid size is (y, x) = (64F/16, N/16).
The grid simply partitions the input matrix into 16× 16 chunks (refer to Figure 9 for the input layout).

(1) Each block allocates a 16 × (16 + 1) region of shared memory and reads its chunk of the input matrix into
shared memory, without transposing it. The threads supersample the matrix in the following way: Threads 0, 1, 2, 3 read
the blue value (0, 0) of (1). Threads 4, 5, 6, 7 read the yellow value (1, 0). The rest of the threads proceed analogously.
Note that there are only enough threads to read four of the columns of the shared memory array in this way.
(2) Each thread then writes the value it read to four di�erent rows of the output matrix. The hue in (2) indicates the
thread that is doing the writing. Thread 0 writes the �rst column, thread 1 the second, etc. (Note that the threads that
read the second column of the shared memory array will write to a di�erent image (output matrix) than the ones that read
the �rst column. Only one image is pictured in (2).) The threads repeat (2) three more times, each time processing four
more columns of the shared memory array.

10



Figure 11: The convolution required to compute the derivatives with respect to the weights between the data units and
the convolutional units. This convolution produces 8 × 8 outputs per image-�lter pair. Each image must be convolved
with F �lters, but unlike in the convolution of step 6.2, the F �lters are di�erent for each image.

respect to wik. This amounts to the convolution depicted in Figure 11. The ��lters� now are the 32× 32 derivatives with
respect to hidden unit inputs which we computed in the previous step.

Figure 12 describes the algorithm. This kernel is 25% faster than the convolution kernel of section 6.2 even though the
kernels require an identical number of FLOPs. This kernel uses a block size of 8×8×8, 5856 bytes of shared memory, and
16 registers, so it too achieves 100% occupancy. All global memory accesses are coalesced. There are no bank con�icts
due to the one column of padding depicted in Figure 12. There are no warp-splitting if statements. I have checked that
removing all global memory loads and their if statements makes the kernel only 5% faster. Here too I obtained a slight
speedup from incrementing pointers at each loop iteration rather than recomputing indices. As can be discerned from
Figure 12 (bottom), on the second iteration the kernel loads a chunk of the image matrix into shared memory, but 64%
of that chunk is already in shared memory from the previous load. Despite the redundancy, it turns out that this is the
fastest alternative, due to the simplicity fo the code. This kernel is 156x faster than the equivalent CPU kernel when
F = 64, N = 128. This convolution takes 10.54ms on the GPU.

6.7 Other derivatives

Once we have the above derivatives, we need to do a simple reduction to average over all images in the batch. I won't go
into detail here because it's straightforward. The bias derivatives are likewise computed by averaging the derivatives with
respect to the hidden unit inputs.

7 Results

7.1 Testing methodology

I have tested each of my kernels against its CPU equivalent. Each kernel produces a matrix of results. I compared the
maximum absolute di�erence between the matrix produced by the CPU and the matrix produced by the GPU. Observing
that the maximum di�erence was something like 10−5 instilled con�dence that, at the very least, the GPU code was doing
an excellent job of replicating the bugs in the CPU code.

7.2 Experiments

I have trained the convolutional neural net on my dataset of 60,000 images from 10 classes; it takes about 20 minutes to
fully train with 64 convolutional hidden units. It eventually learns to guess the correct class about 58% of the time on
a test set. The best result I have achieved with other methods is about 65%, so the convolutional net is not doing too
badly. A non-convolutional neural net with one hidden layer with 10,000 hidden units gets about 50% of test cases right.

11



Figure 12: The algorithm for performing the convolution of Figure 11.

The block size is 8 × 8 × 8. The x and y dimensions of the thread index indicate which of 64 dot products (see
Figure 11) the thread is to compute. Each block convolves one image with 16 �lters. The z dimension indicates which
two �lters the thread is concerned with. Here, I have drawn just one image and one �lter. The ��lters� are the 32 × 32
derivatives that we computed in step 6.5. The images are the input data. They are colour, but only one colour is shown.
The threads process each colour in turn (it is the outer-most loop).

The threads initialize the shared memory matrix with zeros.
(Top-left) The �rst 11× 32 of 512 threads load an 11× 32 chunk of the image into shared memory.
(Top-centre) The threads load a 4 × 16 chunk of the �lter into shared memory. Each thread computes the length-64
dot product between the �lter and image that it needs to compute here.
(Top-right) The threads shift to the right by 16 pixels the shared memory window on the �lter and add to the dot
product from the previous window.
(Bottom) The threads shift the shared memory window on the image down by 4 pixels and repeat the above steps.
They continue shifting the windows until all chunks of the �lter and image have been processed. Then they write the
output to global memory and repeat all of the above for the next colour.

12



Figure 13: The 64 �lters learned by the convolutional neural net. Each �lter is applied by overlaying it on a 32×32 colour
image and taking the dot product.

Figure 13 shows the 64 �lters that this convolutional net learned. The �lters have 8× 8× 3 weights, and each weight
is connected to a pixel in the image. So we can visualize these �lters as if they were 8× 8 colour images. I initialized the
weights randomly, so this at least con�rms that the network learns some sensible �lters.

8 Possible improvements

I would have liked to have had more time to explore kernels in which each block convolves with multiple �lters. It may
be hard to maintain full occupancy in such kernels, but it may not be needed. I suspect that giving each thread more
work, even at the expense of occupancy, may produce some speedups. Maybe an algorithm of the sort used for step 6.6
could work for step 6.2. The only di�erence would be that the threads would be able to load the entire �lter into shared
memory.

It may also be useful to consider alternative data representations. For example, instead of storing all the red pixel
values, then all the green values, then all the blue values, I could store the red, green, and blue values for each pixel one
after the other. Or, instead of storing the �lters and images in row-major order, I could store one of them in column-major
order. This would make it easy for one thread to compute a whole bunch of convolutions at once since it would be able
to get the nth pixel of a bunch of images in just one global memory transaction.

9 Conclusion

It works! The next step is to build convolutional nets with multiple layers of convolution.

References

[1] Figure from the Wikipedia article http://en.wikipedia.org/wiki/Logistic_function

13


