
Roy Bryant, Adin Scannell, Olga Irzak, Christian A. Cumbaa

Help Conquer Cancer project

 X-ray crystallography reveals protein structure

 crystallizing the protein is difficult
◦ Many thousands of experiments. Few form Crystals.

◦ Automatically filter images with image feature
extraction and machine learning

 over 100 million images to process
◦ world community grid (250,000 PCs)

◦ Will finish in 2015

 Our project: speeding up image processing

Sample Images

Local Region

of Interest

Region of Interest

Sequential Code

 Approx 2 hour run time on very fast PC

 Generate GLCMs
◦ grey level co-occurrence matrices

◦ one for each region of interest (16 pix radius around
every pixel)

◦ 66 million per image takes 40% of execution time

◦ Highly optimized - GLCMs generated incrementally

 Extract features
◦ 60% of execution time

◦ called 66 million times

Naïve GPU Approach - Impractical

 Parallelize feature extraction

◦ kernel would be called 66 million times

◦ Too much data to copy back and forth

 Build on existing histogram CUDA code

◦ each thread stores it's own histogram, then

merges results

◦ works for 64 values, but we need 4K values

Refactoring for the GPU

 Build GLCM and extract features in integrated
kernel
◦ Minimize data copy

 2D grid of blocks
◦ 22k blocks

◦ one per pixel = one per GLCM

◦ 64 threads per block

 Kernel called 3K times
◦ every angle, distance, grey level depth

 Aggregate statistics differently – keep around a lot of
intermediate state

Building the GLCM

 Build histogram from 32 x 32 pixel image

 Image stored in global memory

◦ threads iterate column-wise to coalesce reads

 Store GLCM in shared memory

◦ Initialize column-wise to minimize bank conflicts

◦ Use atomic operations for histogram

 works only on 32bit ints, so cast 2 16-bit integers into 1
32bit and incremented by adding 1 or 216

 Masks stored in constant memory

Extracting Features

 Often sums over rows or columns
◦ Iterate column-wise to avoid bank conflicts

◦ Exploit matrix symmetry to change row to column
iterations

 Used templates to optimize feature extraction
code
◦ Scaled shared memory arrays to match size of GLCM

◦ Wrote tuned, unrolled summation code for each size

 Most calculation on normalized GLCM
◦ Normalize on the fly since no room to store

◦ Pull normalization outside loops where possible

Evaluation

 Test data set included

◦ With / without crystals

◦ With / without precipitate

 Compared to gold standard

◦ GLCM generation

◦ Calculated values of features

◦ Statistical summary of features

Results

 20x execution speedup

◦ 2 hours reduced to 6 minutes

 Still accurate

Runtime Breakdown

Future Steps

 Most features accurate to 5 nines

◦ sqrt() and log() inaccurate for small values

◦ still investigating if sufficient

◦ May need to implement accurate primitives

 Further testing on variety of CUDA hardware

 HCC plans to deploy to World Community

Grid

