
Help Conquer Cancer: Using GPUs to Accelerate
Protein Crystallography Image Analysis

Roy Bryant, Adin Scannell, Olga Irzak
Department of Computer Science, University of Toronto

Christian A. Cumbaa
Ontario Cancer Institute

1. Introduction
As part of the greater effort to find a cure for cancer, Igor Jurisica’s
group at the Ontario Cancer Institute (OCI) is running a project
to improve the throughput of protein crystallography [4, 5]. When
proteins crystallize, their structure can be determined by observing
the refraction of X-rays. Unfortunately, it is difficult to predict
under which conditions crystals will form, so proteins are subjected
to many automated experiments at various temperatures, pH levels,
with various buffers, precipitants, etc. in an effort to form crystals.
For a single protein, these automated experiments may involve
hundreds or thousands of different solutions; robots periodically
capture images of each solution over the course of days or weeks.
Currently, the resulting thousands of images (the vast majority of
which have no useful information) must be reviewed by human
experts in order to determine whether crystals have formed. This
process of finding a solution that consistently causes a protein to
crystallize is a serious bottleneck and severely restricts the ability
of scientists to efficiently study protein structure through x-ray
crystallography.

Jurisica’s group at OCI has developed analysis software that
processes a sequence of images to extract textural features [6].
These features are later fed into machine-learning classifiers to
identify experiments that warrant further investigation, i.e. images
where crystals may be present. The ultimate goal is to eliminate
much of the manual human effort required to find a solution which
causes a protein to crystallize. The image analysis software, im-
plemented in C++ by Christian A. Cumbaa, and is currently used
by the Help Conquer Cancer (HCC) project that runs on the spare
cycles of 250,000 home computers through the World Community
Grid [1] using BOINC [2, 3]. This is the same mechanism used by
the well known SETI@home project [7].

We have implemented a CUDA-enabled version of the image
analysis software that runs significantly faster on computers with
CUDA-capable hardware. Speeding up the processing of images
is necessary for the project to proceed in a timely fashion. The
HCC project was launched in November 2007, and in the first
year completed 16% of the total work by processing 24.5 million
images in 19,627 CPU years. At the average rate of approximately
7 CPU hours per image, the project is forecast to complete in
February 2015. We hope that our faster version of the software
will significantly reduce the time required to process the images,
and thereby enable cancer researchers to determine the structure of
cancer-related proteins faster.

2. Problem
In this Section, we describe the exact nature of the problem and
the approach of the existing CPU-based version of the software. As
illustrated in Figure 1, images produced in an automated protein
crystallography experiment may depict a variety of experimental

outcomes. Although the vast majority of images will show nothing
of interest, results may include a light phase separation (1(a)),
formation of a protein skin at the oil/water boundary interface
(1(b)), actual crystallization (1(c)), or simultaneous precipitation
and crystallization (1(d)). The automated classification of these
images is not trivial, and as a result the image analysis is a complex
process.

Feature Extraction
Each image is a digital photomicrograph of a circular, physical well
containing the protein and solution that can be easily seen in the
examples shown in Figure 1. Basic feature detection algorithms
are used to identify the location and bounds of this well within
the image, and to define the corresponding region of interest (ROI)
within which the analysis is performed.

Although several basic feature extraction algorithms, such as
edge detection, are run within the ROI of each image, we find
by profiling the image analysis software that the vast majority of
time (over 99%) is spent extracting specific textural features [6].
We limited our CUDA-based efforts to the extraction of these
features only and henceforth limit our discussion to this. In the
evaluation section, we compare CPU- and CUDA-based versions
of the software that have all other capabilities disabled.

Textural Features
The textural analysis aims to identify the presence of crystals by
detecting texture-based features in the image. To do so, it identifies
a set of textural features for a large number of Local Windows
(LW), then aggregates statistics about those. An LW is the circular
region of pixels within a 16-pixel radius, and an LW exists around
every pixel at least 16 away from the edge of the ROI.

Given an LW, each set of textural features is defined by two
parameters: a distance and an angle. Given these parameters, a
grey-level co-occurrence matrix (GLCM) is generated, which is
a histogram of values co-occurring at the specified distance and
angle. For example, if the distance is 1 and the angle is 0 degrees,
then all pairs of pixels with locations (x, y), (x + 1, y) will be
counted on the histogram. If pixel values in a 5 × 1 image are
2, 5, 6, 2, 5 then the GLCM will have values (2, 5) = 2, (5, 6) =
1, (6, 2) = 1 with all other entries 0.

Features are related to the information content of the GLCM,
and are extracted once each GLCM has been computed. Intuitively,
the GLCM of an image consisting of uniform colours will be heavy
along the diagonal, noisy images will result in noisy GLCMs, and
images containing a distinct texture will generate GLCMs with
significantly more structure hence more information content.

For every distance between one and 25 pixels, statistics are
aggregated for all angles within each LW. Then, the statistics from
each LW across the entire ROI are aggregated into a single set of
values. The statistics of interest are the maximum, mean, minimum



(a) Phase Separation (b) Skin

(c) Crystal (d) Precipitate and Crystal

Figure 1. Several examples of images of protein crystallography experiments.

and ranges of each computed feature value. Thus, for each feature
and distance, we produce a maximum, mean, minimum and range.

Furthermore, the above process is done at multiple quantization
levels. A quantization level corresponds to the width of the GLCM
– it is the granularity at which we consider a pixel value. The
software currently uses three quantization levels: 64, 32, and 16.
For example, at a quantization level of 64, pixel values (at 8-bit
grey levels) are divided by 4 before being added to the histogram,
which is of size 64× 64.

Ultimately, this algorithm considers approximately 1,000 differ-
ent size, angle combinations for about 22,000 different LWs within
the image. With three different quantization levels, the software
must generate and process over 66 million GLCMs.

In the CPU-based version, we found that 40% of the time is
spent iterating over the image to calculate GLCMs. This process
is highly optimized, and GLCMs are computed differentially by
adding a new column of pixels and subtracting an old one for each
iterated position. The remaining 60% of the CPU time is primarily
spent extracting features from the GLCMs. These features vary
from simple sums to entropy calculation, but generally involve
traversing all elements of each GLCM.

3. Approach
Our approach to porting this algorithm to CUDA was shaped by
performance considerations. Initially, we considered porting only
one of the GLCM computation or feature extraction phases. How-
ever, we determined early on that the cost of copying the GLCMs
back and forth between the host and the GPU would be prohibitive.
Additionally, extracting the features from each GLCM individually
would not perform well due to insufficient opportunities for paral-
lelism. We determined that our design must perform both GLCM
computation and feature extraction on the GPU to achieve a signif-
icant performance improvement.

We also determined that we would be unable to perform the
entire analysis within the scope of a single kernel for two rea-
sons: 1) each kernel invocation in CUDA is currently limited to
five seconds, 2) the data required by 13 floating point features for
66 million GLCMs is over 3 gigabytes, more memory than most
CUDA-capable hardware is equipped with. We identified the com-
putation of all 22,000 LWs simultaneously given a distance, angle
combination as a more appropriate parallelizable task. This would
require approximately 1 megabyte of memory to store the results
(imposing the same in transfer overhead) and approximately 3,000



separate kernel invocations. It also allowed us to use a logical map-
ping of blocks within a grid to LWs.

Within each block representing an LW, 64 threads are used.
These threads are first responsible for reading the image within
global memory and computing the GLCM. These same threads
then proceed to extract features from the GLCM. The features
involve parallelizable operations such as summing GLCM rows,
summing the square of values within the GLCM, etc. Finally, the
extracted features are written to global memory. When the entire
grid has finished, all features are copied back to the host memory.

We refactored the existing analysis code to store temporary
statistics as needed and iterated over all possible distance, angle
combinations, invoking our kernel once each time. The image and
masks are copied to GPU memory only once, before the first ker-
nel invocation. Similarly, memory for the results are allocated only
once, however the intermediate results are copied back and inte-
grated into the intermediate statistics after each kernel invocation.

4. Optimizations
In this Section, we briefly discuss some of the optimizations we
introduced to our basic design.

Use of Constant Memory
A masks is used to efficiently clip accesses to the circular LW. Since
the elements of the masks are accessed in a non-linear fashion,
performance is poor when the masks are stored in global memory
because the reads are not coalesced. Storing the masks in constant
memory benefits performance since the LW mask is referenced
very often, and with a size of only 36 pixels square is small enough
to entirely fit within cache of modern CUDA hardware.

Coalescing Global Memory Access
Although the image remains constant and is referenced extensively
by all threads, it is not a good candidate for storage in constant
memory since it is large enough that the frequent access of random
pixels would likely churn the cache and reduce performance. Fur-
thermore, each block reads a slightly different portion of the image
– unlike masks which are shared by all blocks. We instead store the
image in global memory and ensure that the thread access pattern
allows reads to be fully coalesced. In generating the GLCM, each
thread traverses a column of pixels in the LW, and so each half warp
simultaneously accesses 16 consecutive bytes of global memory.

The access pattern for the ROI mask, also stored in global
memory, exactly matches that of the image. The third object stored
in global memory is the array of 13 features extracted from each
GLCM. When the features array is output at the conclusion of the
computation, it is written in parallel by 13 threads, and so all global
memory accesses are coalesced for speed.

In summary, the image and ROI mask are read from global
memory and the extracted features are written to global memory.
The LW mask is stored in constant memory, and all other data are
stored in shared memory.

Use of Shared Memory for GLCMs
GLCMs are accessed frequently and shared within a block, and
so are stored in the shared memory region for performance. Each
GLCM stores up to 4k elements (64 × 64), each with a possible
maximum value of approximately 1,000. Since avoiding bank con-
flicts in shared memory is required for optimal performance, we
chose to store the GLCM as a row major buffer of two-byte in-
tegers. In iterating over the GLCM, each thread traverses a col-
umn with a thread for each element in the row, minimizing bank
conflicts. In cases where the original sequential code iterated over
rows, we exploit the symmetry of GLCMs and perform column-
wise traversal for fewer bank conflicts and better performance.

As with all histograms, access to the GLCM during generation
is driven by the data, which leads to contention issues in a multi-
threaded implementation. The common technique for avoiding con-
tention when building histograms is for threads to store their own
sub-histograms that are later merged. This is impractical for our sit-
uation, since with 4k possible values the sub-GLCMs would need
to be stored in global memory and the storage requirements would
be sufficiently large that the opportunity for parallelism would be
greatly reduced. Instead, we chose to use atomic operations to ad-
dress the issue of contention. Since CUDA’s atomicAdd operates
only on 32-bit integers, we operated on pairs of 16-bit values with
the following transformation:

#define ATOMIC_INC(glcm, index) \
atomicAdd((int*)&(glcm[index & 0xfffe]), \

(0x00000001 << (((index & 1) << 4))))

On-the-fly Normalization
To improve performance by reducing the total number of calcula-
tions, the original sequential code stores a copy of the GLCM with
normalized values. Since the largest GLCMs have 4k elements and
shared memory is a scarce resource, we chose in the CUDA imple-
mentation to normalize the GLCM on the fly. While this increases
the total number of divide operations, it reduces the memory foot-
print thereby allowing greater parallelism which more than offsets
the penalty. Where possible, the normalize operation is pulled out-
side loops for better performance.

Template Use
Most of the shared memory buffers need to be large enough to
hold a row or column of the GLCM. Since shared memory arrays
must be specified at compile time, templates were used to scale
the buffers to match the size of the GLCM to be computed (16,
32 or 64 elements). This improves the performance for small- and
medium-size GLCMs by reducing the footprint in shared memory,
thereby allowing greater concurrent scheduling. By running more
blocks in parallel on an SM, the latency of memory accesses can
be more effectively hidden. For large (64 × 64) GLCMs, we were
unable to reduce the resource footprint to less than half the available
resources, and so in this case only a single block can be run on
an SM at a time. Reducing the resource footprint to allow several
large GLCMs to be processed concurrently is the most promising
opportunity for future optimization.

Similarly, the code often computes arrays of intermediate values
from the GLCM, and often needs to sum these vectors for use in
later calculations. Templates are used to optimize this performance-
critical code, with templates that unroll the code for each of the
common vector lengths: 16, 32, 64 and 128.

5. Evaluation
Since we are porting well-tested, fully-correct and heavily-optimized
C++ code, we use the existing CPU-based version as a gold stan-
dard against which we compare our CUDA-enabled implemen-
tation. We evaluated our CUDA-enabled implementation and the
CPU-based version using a Dell Core 2 Quad 2.6 GHz system with
8 GB of memory, equipped with a nVidia GTX 280. For evalua-
tion, we selected a set of approximately thirty representative images
(four of which are shown in Figure 1) and analyzed them with both
the CPU- and CUDA-based versions of the software. In both ver-
sions, image analysis other than the extraction of textural features
is disabled. The additional runtime required by the disabled code is
on the order of minutes.



Speed Improvements
The primary goal in this project was to speed up the analysis of
images. Analysis using the optimized CPU-based version on our
evaluation system took, on average, 134 minutes per image, and so
the entire test set took just under three full days to run. Using our
CUDA-based version of the software, the average analysis time per
image fell to approximately 6 minutes, with the full analysis time
reduced to approximately 3 hours for the 30-image set. In both the
CPU- and CUDA-based versions, we saw that some images took
slightly longer than others, but the standard deviation was propor-
tional to the mean time to completion. These results are shown in
Figure 2, with error bars representing the standard deviation over
the 30 images.

CPU GPU
0

20

40

60

80

100

120

140

160

180

T
im

e
 (

m
in

u
te

s)

Figure 2. Performance of our CUDA-based implementation ver-
sus the optimized CPU-based implementation.

Correctness
Any speedups would not be particularly useful without maintaining
the correctness of the feature extraction. Since we use several
built-in functions (such as log) that the GPU performs at reduced
precision for higher performance, we evaluated the stability of
the final statistics produced by our implementation. We compare
these against those produced by the CPU-based version, which we
assume is correct.

Figure 3 shows a cumulative distribution function of the error of
the CUDA-based results relative to the CPU-based version. For a
value CPU produced by the CPU-based version, and a value GPU
produced by the CUDA-based version, the relative error is defined
by |GPU−CPU

CPU
|. If this error is greater than 1, then B shares no

significant digits with A. If it is less than one but greater than 0.1,

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n

Figure 3. Cumulative distribution of relative error compared to
CPU-based implementation.

then B shares only one significant digit with A. Two significant
digits correspond to a relative error value of 0.01, etc.

We see that over 95% of statistics are correct to over four
significant digits. The larger relative error in the rest of the values
are due to errors propagated from the log and exp functions when
they have real values very close to 0. We do not yet have a reason
to suspect that these will be problematic.

Analysis of Runtime
After evaluating the performance and correctness of our implemen-
tation, we chose to perform fine-grain timing measurements on a set
of reference images. We broke down the time spent by our imple-
mentation in different components, shown in Figure 4.

We observe that the relationship between the GLCM building
and feature extraction components closely mirrors that of the opti-
mized CPU-based implementation, which we profiled but do not
discuss here. Since we feel that the most obvious optimizations
have been applied in both cases, we find that there are no glaring
inefficiencies.

14s

10s

92s

140s

9s

other (C code)
kernel invocation
GLCM construction
feature extraction
memcpy

Figure 4. Breaktime of runtime for CUDA-based analysis of an
image.

We also note that our design does not impose serious overhead
on the CPU, either in terms of copying memory or invoking kernels.



This validates our decision to limit the amount of memory copied
from the CPU and the number of kernel invocations. This is an im-
portant observation: since the software is designed to be deployed
on the World Community Grid, a user may wish to continue to use
their CPU while the analysis is running. They are more likely to
continue using the software if little load is placed on the CPU.

6. Conclusions
We have successfully built and evaluated a CUDA-based version
of the Help Conquer Cancer application. This application extracts
features from images of protein crystallization experiments. Only
a small amount of work is required to integrate this code into the
BOINC client and deploy it onto the World Community Grid.

Our CUDA-based version of the application achieves a signif-
icant speed-up over the optimized CPU-based version. We saw a
mean performance increase of over 22 times on a set of sample im-
ages, without a material reduction in the accuracy of the results. We
believe that although the optimizations we applied were rudimen-
tary, our fundamental design is sound and handily realizes most of
the possible speed-up without excessive complexity.

References
[1] World community grid. http://www.worldcommunitygrid.org/.

[2] David P. Anderson. Public computing: reconnecting people to
science. Conference on shared knowledge and the web, 2003.
http://boinc.berkeley.edu/.

[3] David P. Anderson. Boinc: A system for public-resource computing
and storage. Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, p.4-10, 2004. http://boinc.berkeley.edu/.

[4] Christian A. Cumbaa and Igor Jurisica. Automatic classification and
pattern discovery in high-throughput protein crystallization trials.
Journal of structural and functional genomics, Volume 6, Numbers 2-3,
p. 195-202, 2005.

[5] Christian A. Cumbaa and Igor Jurisica. Crystallization image
analysis on the world community grid. Protein Structure Initiative
”Bottlenecks” Workshop, Bethesda, MD, 2008.

[6] Robert M. Haralick, K. Shanmugam, and Its’hak Dinstein. Textural
features for image classification. IEEE Transactions on Systems, Man,
and Cybernetics. Vol. SMC-3, pp. 610-621, 1973.

[7] Dan Werthimer, Jeff Cobb, Matt Lebofsky, David Anderson,
and Eric Korpela. Seti@home - massively distributed com-
puting for seti. Computing in science and engineering, 2001.
http://setiathome.ssl.berkeley.edu/.


