Speeded-Up Speeded-Up Robust Features

Paul Furgale, Chi Hay Tong, Gaetan Kenway

University of Toronto Institute for Aerospace Studies

April 14th,2009

Introduction

- Motivation
- Algorithm description
 - Compute integral image
 - Compute interest point operator
 - Find min/max of the interest point operator
 - Find sub-pixel/sub-scale interest point
 - Compute interest point orientation
 - Compute interest point descriptor
- Results
- Future Work

Motivation

Autonomous Robot Navigation.

Get from stereo images

to a 3D motion estimate and terrain model

- Scale Invariant Feature Transform (SIFT) finds scale-invariant keypoints and creates a rotation-invariant descriptor vector (like a fingerprint) to uniquely identify the feature.
- Speeded Up Robust Features (SURF) does the same thing but is much faster as it approximates the operations.

Compute integral image

Compute integral image (GPU)

- Transpose and convert the image to normalized floats
- Compute the scans for all rows (columns) of the image (CUDPP library)
- Transpose the column-scanned image back
- Scan all the rows of the column-scanned image

Compute interest point operator

- Goal: Find interest points at different sizes in the image
- Two different kernels employed:
 - Determinant of Hessian operator
 - Center surround extrema
- Tried to reverse engineer SURF fast hessian;

However, CenSurE kernel produces better results

CenSurE filters

Compute interest point operator (GPU)

- 4 kernel calls for all scales
- Each thread computes CenSurE kernel at unique position (pixel) and size.
- Integral image queried using tex2D lookup

Non-max suppression

- Search all images at all sizes to determine which points are a max/min
 - Point is a maxima/minima if it is greater than/less than all 26 of its neighbors (3x3x3 cube)
- Images are divided into blocks 16x8 pixels, each pixel is assigned to a thread
- Interest point operator values are loaded into shared memory
- Atomic increments are utilized to ensure consistent indexing of maxima/minima
- CPU and GPU implementation produce exactly the same results

Sub-pixel interpolation

- Once max/min points are found, sub-pixel interpolation is performed using a quadratic approximation
- One block for each interest point is launched
 - 27 threads load nearest neighbors into shared memory
- 1 thread performs actual interpolation

$$L(\mathbf{x} + \Delta \mathbf{x}) = L(\mathbf{x}) + \left(\frac{\partial L}{\partial \mathbf{x}}\right)^T \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \left(\frac{\partial^2 L}{\partial \mathbf{x}^2}\right) \Delta \mathbf{x}$$

- Solution of 3x3 system of equation is required computed explicitly
- Possibly more efficient implementation; However, not bottleneck of computation

Compute interest point orientation

- Goal: Produce a repeatable orientation for the interest point.
- Evaluate d_x , d_y , and $\theta = \operatorname{atan2}(d_y, d_x)$ at each sample point.
- Weight the wavelet values by a Gaussian with $\sigma=2s$
- Find the largest vector $[\sum d_x, \sum d_y]$ in a sliding orientation window of size $\frac{\pi}{3}$
- That vector defines the orientation $\phi = \operatorname{atan2}(\sum d_y, \sum d_x)$

Sample points for the Haar wavelets.

Compute interest point orientation (GPU)

- Minimize memory bandwidth by loading sample points into shared memory
- Parallel, bitonic sort by angle adapted from the sample code.
- Each thread calculates one $\frac{\pi}{3}$ window.
- Reduction to find the maximum vector.

Difference between the GPU and CPU orientation

Compute interest point descriptor

- Overlay a $20s \times 20s$ square region
- Subdivide equally region into 4×4 square subregions
- Compute orientation-aligned Haar wavelet responses (filter size 2s) at 5 × 5 regularly spaced sample points
- Weight by Gaussian (σ = 3.3s), sum to form descriptor vector for each subregion:

$$\mathbf{v} = (\sum d_x, \sum d_y, \sum |d_x|, \sum |d_y|)$$

- Concatenate descriptor vectors to form a 64-dimensional vector
- Normalize to form a unit vector

Compute interest point descriptor (GPU)

- Two kernel calls (less shared memory requirements)
- Compute unnormalized descriptors
 - 16 blocks per interest point, 25 threads per block
 - Load interest point parameters (x, y, s, ϕ)
 - Compute trigonometric rotations $(\sin(\phi), \cos(\phi))$
 - Compute sample point locations
 - Load integral image lookups (9)
 - Compute axis-aligned Haar responses (d_x, d_y)
 - Rotate and store the Haar responses
 - Load absolute values $|d_x|$ into another memory block
 - Sum the d_x , $|d_x|$ responses (reduction)
 - Write back unnormalized responses to global memory
 - Repeat for $d_y, |d_y|$

Compute interest point descriptor (GPU)

- Normalize descriptor to form a unit vector
 - 1 block per interest point, 64 threads per block
 - Load and square values of the descriptor
 - Sum (reduce) the squared values
 - Compute the square root of the sum (length)
 - Divide each component by the length and write back to global memory

Results

Timing Results

- Time contribution of each functional block is nearly independent of image size
- Very near linear scaling with image size

Results

Timing Results

Image Size	512x384	640×480	1024×768	1280×1024
Integral Image	35.1%	29.9%	27.3%	28.2%
Interest Point Operator	28.4%	31.0%	32.1%	31.9%
Non-max Supression	36.5%	39.1%	40.6%	39.9%
Interp Extremum	11.4%	10.9%	10.2%	9.9%
Orientation	64.9%	64.7%	64.4%	65.0%
Descriptor	23.7%	24.4%	25.5%	25.1%

Functional block timings split by 1) independant of feature count (top) 2) dependent on feature count (bottom)

Speedup Profile

- Comparing GPU implementation vs. OpenSURF and modified OpenSURF
 - Average over 10 trials for CPU, 1000 trials for GPU
 - Does not include memory initializations
 - Currently using synchronous memory transfers

Image Size	512×384	640×480	1024×768	1280×1024
Feature Count	957	1509	3032	3218
CPU-SURF	961.86ms	1461.65ms	3409.69ms	4153.78ms
OpenSURF	251.27ms	384.95ms	998.29ms	1276.63ms
GPU-SURF	6.75ms	10.83ms	21.10ms	28.00ms
Modified OpenSURF Percent Speedup	14250%	13496%	16160%	14835%
OpenSURF Percent Speedup	3722%	3554%	4731%	4559%

Results

Future Work

- Compute features for both images of a stereo pair and match the features on the GPU.
- Copy the features back to the CPU and track them (in time) while the next pair is being matched.
- Run on our robot.

- Dr. Moshovos
- CUDA Programming Guide
- Emacs

Questions