Speeded-Up Speeded-Up Robust Features

Paul Furgale, Chi Hay Tong, Gaetan Kenway

University of Toronto Institute for Aerospace Studies

April 14t" 2009

Furgale, Tong and Kenway, April 14th 2009 1/22

Introduction

Motivation

Algorithm description

e Compute integral image
Compute interest point operator
Find min/max of the interest point operator
Find sub-pixel /sub-scale interest point
Compute interest point orientation
Compute interest point descriptor

Results
Future Work

Furgale, Tong and Kenway, April 14" 2009 2/22

Motivation

Autonomous Robot Navigation.
Get from stereo images

to a 3D motion estimate and terrain model

N
L 4
3 T

Furgale, Tong and Kenway, April 14" 2009 3/22

Algorithm

@ Scale Invariant Feature Transform (SIFT) finds
scale-invariant keypoints and creates a rotation-invariant
descriptor vector (like a fingerprint) to uniquely identify
the feature.

@ Speeded Up Robust Features (SURF) does the same thing
but is much faster as it approximates the operations.

Furgale, Tong and Kenway, April 141" 2009 4/22

Algorithm

Compute integral image

i<x j<y
IZ(Xay):Z /(17.])
i=0 j=0
o
D B
i
A

[llustration of an area lookup using an integral image.
Source: Bay et al.

Furgale, Tong and Kenway, April 14" 2009 5/22

Algorithm

Compute integral image (GPU)

@ Transpose and convert the image to normalized floats

e Compute the scans for all rows (columns) of the image
(CUDPP library)

@ Transpose the column-scanned image back

@ Scan all the rows of the column-scanned image

(@) input test image. (b) cPURMS error: 0.0397 (C) GPU RMS error: 0.0066

Furgale, Tong and Kenway, April 141" 2009 6/22

Algorithm

Compute interest point operator

@ Goal: Find interest points at different sizes in the image
@ Two different kernels employed:
o Determinant of Hessian operator
o Center surround extrema

@ Tried to reverse engineer SURF fast hessian;

However, CenSurE kernel produces better results

Furgale, Tong and Kenway,

n

.

CenSurE filters

April 141" 2009

7/22

Algorithm

Compute interest point operator (GPU)

@ 4 kernel calls for all scales

@ Each thread computes CenSurE kernel at unique position
(pixel) and size.

o Integral image queried using tex2D lookup

x10" Differences between the CPU and GPU interest operator matrices,

Furgale, Tong and Kenway, April 141" 2009 8/22

Algorithm

Non-max suppression

@ Search all images at all sizes to determine which points are
a max/min
o Point is a maxima/minima if it is greater than/less than all
26 of its neighbors (3x3x3 cube)
@ Images are divided into blocks 16x8 pixels, each pixel is
assigned to a thread

@ Interest point operator values are loaded into shared
memory

@ Atomic increments are utilized to ensure consistent
indexing of maxima/minima

@ CPU and GPU implementation produce exactly the same
results

Furgale, Tong and Kenway, April 141" 2009 9/22

Algorithm

Sub-pixel interpolation

Once max/min points are found, sub-pixel interpolation is
performed using a quadratic approximation
One block for each interest point is launched

e 27 threads load nearest neighbors into shared memory

1 thread performs actual interpolation

oL\’ 1, (8L
L(x + Ax) = L(x) + (E)x> Ax + iAx <8x2> Ax

Solution of 3x3 system of equation is required - computed
explicitly

Possibly more efficient implementation;

However, not bottleneck of computation

Furgale, Tong and Kenway, April 141" 2009 10/22

Algorithm

Compute interest point orientation

@ Goal: Produce a repeatable orientation for the interest
point.

o Evaluate dy, dy, and 6 = atan2(d,, dy) at each sample
point.

@ Weight the wavelet values by a Gaussian with ¢ = 2s

e Find the largest vector [Y dy, > d,] in a sliding
orientation window of size %

@ That vector defines the orientation ¢ = atan2(>_ d,, > dx)

Sample points for the Haar wavelets.

Furgale, Tong and Kenway, April 14" 2009 11/22

Algorithm

Compute interest point orientation (GPU)

@ Minimize memory bandwidth by loading sample points into
shared memory

@ Parallel, bitonic sort by angle adapted from the sample
code.

@ Each thread calculates one 5 window.

@ Reduction to find the maximum vector.

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

™ cretaton enor (radians)) !
Difference between the GPU and CPU orientation

Furgale, Tong and Kenway, April 14" 2009 12/22

Algorithm

Compute interest point descriptor

@ Overlay a 20s x 20s square region

@ Subdivide equally region into 4 x 4
square subregions

@ Compute orientation-aligned Haar
wavelet responses (filter size 2s) at
5 x 5 regularly spaced sample points

e Weight by Gaussian (o = 3.3s), sum to
form descriptor vector for each
subregion:
v=(2d> dy, 2 dd, 20 dy])

o Concatenate descriptor vectors to form
a 64-dimensional vector

(a) Lattice Points

@ Normalize to form a unit vector

Furgale, Tong and Kenway, April 141" 2009 13/22

Algorithm

Compute interest point descriptor (GPU)

@ Two kernel calls (less shared memory requirements)
@ Compute unnormalized descriptors

16 blocks per interest point, 25 threads per block
Load interest point parameters (x, y, s, ¢)

Compute trigonometric rotations (sin (¢) , cos (¢))
Compute sample point locations

Load integral image lookups (9)

Compute axis-aligned Haar responses (dy, d,)

Rotate and store the Haar responses

Load absolute values |dy| into another memory block
Sum the dy, |dx| responses (reduction)

Write back unnormalized responses to global memory
Repeat for d,, |d, |

Furgale, Tong and Kenway, April 14" 2009 14/22

Algorithm

Compute interest point descriptor (GPU)

@ Normalize descriptor to form a unit vector

1 block per interest point, 64 threads per block

Load and square values of the descriptor

Sum (reduce) the squared values

Compute the square root of the sum (length)

Divide each component by the length and write back to
global memory

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Furgale, Tong and Kenway, April 141" 2009 15/22

Results

Timing Results

GPU SURF Timings

350
300
250
& 200
7
E
°
E 150
£
100
50
¥ —
0
0 200000 400000 600000 800000 1000000 1200000 1400000
#of Pixels
& Subpixel-Scale Interpolation = Interest Point Operator ¥ Descriptor s Integral Image
= Find Min/Max < Orientation *aTotal

@ Time contribution of each functional block is nearly
independent of image size
@ Very near linear scaling with image size

Furgale, Tong and Kenway, April 14" 2009 16/22

Results

Timing Results

Image Size 512x384 640x480 1024x768 1280x1024
Integral Image 35.1% 29.9% 27.3% 28.2%
Interest Point Operator 28.4% 31.0% 32.1% 31.9%
Non-max Supression 36.5% 39.1% 40.6% 39.9%
Interp Extremum 11.4% 10.9% 10.2% 9.9%
Orientation 64.9% 64.7% 64.4% 65.0%
Descriptor 23.7% 24.4% 25.5% 25.1%

Functional block timings split by 1) independant of feature
count (top) 2) dependent on feature count (bottom)

Furgale, Tong and Kenway,

April 141" 2009

17/22

Results

Speedup Profile

@ Comparing GPU implementation vs. OpenSURF and
modified OpenSURF
o Average over 10 trials for CPU, 1000 trials for GPU

e Does not include memory initializations
e Currently using synchronous memory transfers

Image Size 512x384 640x430 1024x768 1280x1024
Feature Count 957 1509 3032 3218
CPU-SURF 961.86ms 1461.65ms 3409.69ms 4153.78ms
OpenSURF 251.27ms 384.95ms 998.29ms 1276.63ms
GPU-SURF 6.75ms 10.83ms 21.10ms 28.00ms
Modified OpenSURF Percent Speedup 14250% 13496% 16160% 14835%
OpenSURF Percent Speedup 3722% 3554% 4731% 4559%

Furgale, Tong and Kenway, April 14”’,2009

18/22

Results

90 -

0 i i i i i
0 20 40 60 80 100

X (m)

|
SURF: 3.73698 Hz GPU-SURF: 9.17844 Hz

Truth

GPU-SURF = = = SURF |

Furgale, Tong and Kenway, April 14" 2009 19/22

Future Work

o Compute features for both images of a stereo pair and
match the features on the GPU.

@ Copy the features back to the CPU and track them (in
time) while the next pair is being matched.

@ Run on our robot.

Furgale, Tong and Kenway, April 14th 2009 20/22

Acknowledgements

@ Dr. Moshovos
o CUDA Programming Guide

@ Emacs

Furgale, Tong and Kenway, April 14th 2009 21/22

Questions

Furgale, Tong and Kenway, April 14”’,2009 22/22

	Introduction
	Motivation
	Algorithm
	Results
	Future Work
	Acknowledgements
	

