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Motivation

Autonomous Robot Navigation.
Get from stereo images

to a 3D motion estimate and terrain model
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Algorithm

Scale Invariant Feature Transform (SIFT) finds
scale-invariant keypoints and creates a rotation-invariant
descriptor vector (like a fingerprint) to uniquely identify
the feature.

Speeded Up Robust Features (SURF) does the same thing
but is much faster as it approximates the operations.
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Algorithm

Compute integral image

IΣ (x , y) =

i≤x∑

i=0

j≤y∑

j=0

I (i , j)

Illustration of an area lookup using an integral image.
Source: Bay et al.
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Algorithm

Compute integral image (GPU)

Transpose and convert the image to normalized floats

Compute the scans for all rows (columns) of the image
(CUDPP library)

Transpose the column-scanned image back

Scan all the rows of the column-scanned image

(a) Input test image. (b) CPU RMS error: 0.0397 (c) GPU RMS error: 0.0066
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Algorithm

Compute interest point operator
Goal: Find interest points at different sizes in the image
Two different kernels employed:

Determinant of Hessian operator
Center surround extrema

Tried to reverse engineer SURF fast hessian;
However, CenSurE kernel produces better results

lecting three matched non-colinear features, and then scored

using pixel reprojection errors (1). If the motion estimate

is small and the percentage of inliers is large enough, we

discard the frame, since composing such small motions

increases error. Figure 3 shows a set of points that are tracked

across several key frames.

C. Center Surround Extrema (CenSurE) Features

The biggest difficulty in VO is the data association

problem: correctly identifying which features in successive

frames are the projection of a common scene point. It is

important that the features be stable under changes in lighting

and viewpoint, distinctive, and fast to compute. Typically

corner features such as Harris [11] or the more recent FAST

[19] features are used. Multiscale features such as SIFT

[14] attempt to find the best scale for features, giving even

more viewpoint independence. In natural outdoor scenes,

corner features can be difficult to find. Figure 1 shows Harris

features in a grassy area of the Ft. Carson dataset (see Section

III for a description). Note that there are relatively few

points that are stable across the images, and the maximum

consistent consensus match is only 3 points.

n

Fig. 3. Left: CenSurE features tracked over several frames. Right: CenSurE
kernel of block size n.

The problem seems to be that corner features are small and

vanish across scale or variations of texture in outdoor scenes.

Instead, we use center-surround feature, either a dark area

surround by a light one, or vice versa. This feature is given

by the normalized Laplacian of Gaussian (LOG) function:

σ2 ∇2G(σ), (3)

where G(σ) is the Gaussian of the image with a scale of σ.
Scale-space extrema of (3) are more stable than Harris or

other gradient features [15].

We calculate the LOG approximately using simple center-

surround Haar wavelets [13] at different scales. Figure 3(b)

shows a generic center-surround wavelet of block size n
that approximates LOG; the value H(x, y) is 1 at the light
squares, and -8 (to account for the different number of light

and dark pixels) at the dark ones. Convolution is done by

multiplication and summing, and then normalized by the area

of the wavelet:

(3n)−2 ×
∑

x,y

H(x, y)I(x, y). (4)

which approximates the normalized LOG. These features

are very simple to compute using integral image techniques

[25], requiring just 7 operations per convolution, regardless

of the wavelet size. We use a set of 6 scales, with block

size n = [1, 3, 5, 7, 9, 11]. The scales cover 3 1/2 octaves,
although the scale differences are not uniform. Once the

center-surround responses are computed at each position and

scale, we find the extrema by comparing each point in the 3D

image-scale space with its 26 neighbors in scale and position.

With CenSurE features, a consensus match can be found for

the outdoor images (Figure 2).

While the basic idea of CenSurE features is similar to

that of SIFT, the implementation is extremely efficient,

comparable to Harris or FAST detection [3]1. We compared

the matching ability of the different features over the 47K

of the Little Bit dataset (see Section III). We tested this in

two ways: the number of failed matches between successive

frames, and the average length of a feature track (Table I

second row). For VO, it is especially important to have low

failure rates in matching successive images, and CenSurE

failed on just 78 images out of the 47K image set (.17%).
The majority of these images were when the cameras were

facing the sky, and almost all of the image was uniform.

We also compared the performance of these features on a

short out-and-back trajectory of 150m (each direction) with

good scene texture and slow motion, so there were no frame

matching failures. Table II compares the loop closure error

in meters (first row) and as percentage (second row) for

different features. Again CenSurE gives the best performance

in terms of the lowest loop closure error.

Harris FAST SIFT CenSurE
Fail 0.53% 2.3% 2.6% 0.17%
Length 3.0 3.1 3.4 3.8

TABLE I

MATCHING STATISTICS FOR THE LITTLE BIT DATASET

Harris FAST SIFT CenSurE
Err 4.65 12.75 14.77 2.92
% 1.55% 4.25% 4.92% 0.97%

TABLE II

LOOP CLOSURE ERROR FOR DIFFERENT FEATURES

D. Incremental Pose Estimation

The problem of estimating the most recent N frame

poses and the tracked points can be posed as a nonlinear

minimization problem. Measurement equations relate the

points qi and frame poses Cj to the projections qij , according

to (1). They also describe IMU measurements of gravity

normal and yaw angle changes:

gj = hg(Cj) (5)

∆ψj−1,j = h∆ψ(Cj−1, Cj) (6)

The function hg(C) returns the deviation of the frame C in

pitch and roll from gravity normal. h∆ψ(Cj−1, Cj) is just

1For 512x384 images: FAST 8ms, Harris 9ms, CenSurE 15ms, SIFT
138ms.

CenSurE filters
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Algorithm

Compute interest point operator (GPU)

4 kernel calls for all scales

Each thread computes CenSurE kernel at unique position
(pixel) and size.

Integral image queried using tex2D lookup
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Differences between the CPU and GPU interest operator matrices.
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Algorithm

Non-max suppression

Search all images at all sizes to determine which points are
a max/min

Point is a maxima/minima if it is greater than/less than all
26 of its neighbors (3x3x3 cube)

Images are divided into blocks 16x8 pixels, each pixel is
assigned to a thread

Interest point operator values are loaded into shared
memory

Atomic increments are utilized to ensure consistent
indexing of maxima/minima

CPU and GPU implementation produce exactly the same
results
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Algorithm

Sub-pixel interpolation

Once max/min points are found, sub-pixel interpolation is
performed using a quadratic approximation

One block for each interest point is launched

27 threads load nearest neighbors into shared memory

1 thread performs actual interpolation

L(x + ∆x) = L(x) +

(
∂L

∂x

)T

∆x +
1

2
∆xT

(
∂2L

∂x2

)
∆x

Solution of 3x3 system of equation is required - computed
explicitly

Possibly more efficient implementation;
However, not bottleneck of computation
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Algorithm

Compute interest point orientation

Goal: Produce a repeatable orientation for the interest
point.

Evaluate dx , dy , and θ = atan2(dy , dx) at each sample
point.

Weight the wavelet values by a Gaussian with σ = 2s

Find the largest vector [
∑

dx ,
∑

dy ] in a sliding
orientation window of size π

3
That vector defines the orientation φ = atan2(

∑
dy ,
∑

dx)

6s

6s

(a) Lattice Points

−1

−1

1

1

4s

(b) Haar filters

Fig. 4. The setup used to calculate feature orientation. (a) The lattice points
where Haar responses are sampled. (b) The Haar filters used to estimate local
orientation. The gray dot is the lattice point about which the filter is sampled.

that high texture cache pressure evicts the block containing the
first pixel before the adjacent ones are referenced. In contrast,
the R-C texture is computed on a regular grid, making efficient
use of the texture cache. Measurements confirm that the two-
lookup approach requires 33% less time than the three-lookup
approach, greatly outweighing the extra cost of computing the
R-C texture for moderate feature counts. With this approach,
evaluating arbitrarily-sized sub-pixel Haar responses in both
the x and y directions requires just 16 lookups.

D. Orientation Detection

The Haar responses used to find the dominant orientation of
a feature are sampled at the 113 lattice points inside a circle of
radius 6, scaled and offset by the feature scale and location, as
illustrated in Fig. 4. The results are stored in a single texture
row corresponding to that feature. We tested two methods of
generating the lattice point locations from the target rendering
location in the row. The first uses a simple mapping from the
1D column index into a 2D square, followed by Early Z to
mask out the points that lie outside the circle. The second
converts the points inside the circle into a series of scan lines
where each point has the same y coordinate and then renders
one quadrilateral per scan line, using texture coordinates to
specify the x coordinates. This latter method tested to be over
20% faster than using Early Z. Another alternative we did not
test is simply using a 1D lookup texture.

Given the Haar response vectors, the CPU algorithm sorts
them by angle and uses a sliding window to extract the domi-
nant orientation. Sorting on the GPU is notoriously slow, with
even the best parallel algorithms still comparable to a good
serial algorithm on the CPU [15]. Instead we approximate the
sort using a 256-bin histogram. This is constructed with the
Render to Vertex Buffer (R2VB) scattering algorithm proposed
in [16]. Instead of accumulating a count of the vectors that fall
in each bin, we accumulate the vectors themselves using alpha
blending, so there is no loss in angular resolution. The 7 Series
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θ
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(b) Haar filters

Fig. 5. The setup used to calculate a feature vector. (a) The lattice points
where Haar responses are sampled. (b) The Haar filters used to compute the
feature vector values. The responses from the two axis-aligned filters at the
top are rotated to effectively achieve the pair of filters at the bottom.

GPUs cannot perform alpha blending on 32-bit floating point
textures, so this step is limited to 16 bits of precision.

Once the vectors are assigned to histogram bins, we com-
pute a cumulative histogram using Blelloch’s parallel prefix
sum algorithm from Section III-A.2. Additionally, since all
of these vectors have only two components, we can pack
the values from two rows into a single texel and use the
GPU’s four-wide vector operators to process both rows at once.
Armed with this cumulative histogram, we can now compute
the sum over the sliding window with just two or three
lookups. Another up-sweep-like reduction is used to find the
vector sum with the maximum magnitude, and its orientation
is assigned to the corresponding feature. The approximations
made in this approach do not impair the accuracy, yielding an
RMS error of 0.20 degrees compared to the CPU algorithm.

E. Feature Vector Calculation

To construct the feature vectors, axis-aligned Haar responses
are computed on a 20s× 20s grid, as illustrated in Figure 5.
The lattice points of the grid are aligned with the feature
orientation, and the Haar response vector is rotated by this
angle as well. Each row of the output texture is used to store
a single feature vector, with every texel value containing the
four elements of v. Normalization is done on the GPU using
another simple reduction to compute the vector magnitude.

IV. RESULTS

We ran our implementation on a GeForce Go 7950 GTX and
a GeForce 8800 GTX using images provided by Mikolajczyk4

as well as several downscaled versions of the frac.pgm
image included with SiftGPU [4]. Fig. 6 plots the average

4http://www.robots.ox.ac.uk/%7Evgg/research/affine/

Sample points for the Haar wavelets.
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Algorithm

Compute interest point orientation (GPU)
Minimize memory bandwidth by loading sample points into
shared memory
Parallel, bitonic sort by angle adapted from the sample
code.
Each thread calculates one π

3 window.
Reduction to find the maximum vector.
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Histogram of orientation error on 88055 features

Difference between the GPU and CPU orientation
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Algorithm

Compute interest point descriptor
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(b) Haar filters

Fig. 4. The setup used to calculate feature orientation. (a) The lattice points
where Haar responses are sampled. (b) The Haar filters used to estimate local
orientation. The gray dot is the lattice point about which the filter is sampled.

that high texture cache pressure evicts the block containing the
first pixel before the adjacent ones are referenced. In contrast,
the R-C texture is computed on a regular grid, making efficient
use of the texture cache. Measurements confirm that the two-
lookup approach requires 33% less time than the three-lookup
approach, greatly outweighing the extra cost of computing the
R-C texture for moderate feature counts. With this approach,
evaluating arbitrarily-sized sub-pixel Haar responses in both
the x and y directions requires just 16 lookups.

D. Orientation Detection

The Haar responses used to find the dominant orientation of
a feature are sampled at the 113 lattice points inside a circle of
radius 6, scaled and offset by the feature scale and location, as
illustrated in Fig. 4. The results are stored in a single texture
row corresponding to that feature. We tested two methods of
generating the lattice point locations from the target rendering
location in the row. The first uses a simple mapping from the
1D column index into a 2D square, followed by Early Z to
mask out the points that lie outside the circle. The second
converts the points inside the circle into a series of scan lines
where each point has the same y coordinate and then renders
one quadrilateral per scan line, using texture coordinates to
specify the x coordinates. This latter method tested to be over
20% faster than using Early Z. Another alternative we did not
test is simply using a 1D lookup texture.

Given the Haar response vectors, the CPU algorithm sorts
them by angle and uses a sliding window to extract the domi-
nant orientation. Sorting on the GPU is notoriously slow, with
even the best parallel algorithms still comparable to a good
serial algorithm on the CPU [15]. Instead we approximate the
sort using a 256-bin histogram. This is constructed with the
Render to Vertex Buffer (R2VB) scattering algorithm proposed
in [16]. Instead of accumulating a count of the vectors that fall
in each bin, we accumulate the vectors themselves using alpha
blending, so there is no loss in angular resolution. The 7 Series
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Fig. 5. The setup used to calculate a feature vector. (a) The lattice points
where Haar responses are sampled. (b) The Haar filters used to compute the
feature vector values. The responses from the two axis-aligned filters at the
top are rotated to effectively achieve the pair of filters at the bottom.

GPUs cannot perform alpha blending on 32-bit floating point
textures, so this step is limited to 16 bits of precision.

Once the vectors are assigned to histogram bins, we com-
pute a cumulative histogram using Blelloch’s parallel prefix
sum algorithm from Section III-A.2. Additionally, since all
of these vectors have only two components, we can pack
the values from two rows into a single texel and use the
GPU’s four-wide vector operators to process both rows at once.
Armed with this cumulative histogram, we can now compute
the sum over the sliding window with just two or three
lookups. Another up-sweep-like reduction is used to find the
vector sum with the maximum magnitude, and its orientation
is assigned to the corresponding feature. The approximations
made in this approach do not impair the accuracy, yielding an
RMS error of 0.20 degrees compared to the CPU algorithm.

E. Feature Vector Calculation

To construct the feature vectors, axis-aligned Haar responses
are computed on a 20s× 20s grid, as illustrated in Figure 5.
The lattice points of the grid are aligned with the feature
orientation, and the Haar response vector is rotated by this
angle as well. Each row of the output texture is used to store
a single feature vector, with every texel value containing the
four elements of v. Normalization is done on the GPU using
another simple reduction to compute the vector magnitude.

IV. RESULTS

We ran our implementation on a GeForce Go 7950 GTX and
a GeForce 8800 GTX using images provided by Mikolajczyk4

as well as several downscaled versions of the frac.pgm
image included with SiftGPU [4]. Fig. 6 plots the average

4http://www.robots.ox.ac.uk/%7Evgg/research/affine/

Overlay a 20s × 20s square region

Subdivide equally region into 4× 4
square subregions

Compute orientation-aligned Haar
wavelet responses (filter size 2s) at
5× 5 regularly spaced sample points

Weight by Gaussian (σ = 3.3s), sum to
form descriptor vector for each
subregion:
v = (

∑
dx ,
∑

dy ,
∑ |dx | ,

∑ |dy |)
Concatenate descriptor vectors to form
a 64-dimensional vector

Normalize to form a unit vector
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Algorithm

Compute interest point descriptor (GPU)

Two kernel calls (less shared memory requirements)

Compute unnormalized descriptors

16 blocks per interest point, 25 threads per block
Load interest point parameters (x , y , s, φ)
Compute trigonometric rotations (sin (φ) , cos (φ))
Compute sample point locations
Load integral image lookups (9)
Compute axis-aligned Haar responses (dx , dy )
Rotate and store the Haar responses
Load absolute values |dx | into another memory block
Sum the dx , |dx | responses (reduction)
Write back unnormalized responses to global memory
Repeat for dy , |dy |

Furgale,Tong and Kenway, April 14th ,2009 14/22



Algorithm

Compute interest point descriptor (GPU)
Normalize descriptor to form a unit vector

1 block per interest point, 64 threads per block
Load and square values of the descriptor
Sum (reduce) the squared values
Compute the square root of the sum (length)
Divide each component by the length and write back to
global memory
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Histogram of descriptor error on 88055 features
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Results

Timing Results
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Time contribution of each functional block is nearly
independent of image size

Very near linear scaling with image size
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Results

Timing Results

Image Size 512x384 640x480 1024x768 1280x1024
Integral Image 35.1% 29.9% 27.3% 28.2%

Interest Point Operator 28.4% 31.0% 32.1% 31.9%
Non-max Supression 36.5% 39.1% 40.6% 39.9%

Interp Extremum 11.4% 10.9% 10.2% 9.9%
Orientation 64.9% 64.7% 64.4% 65.0%
Descriptor 23.7% 24.4% 25.5% 25.1%

Functional block timings split by 1) independant of feature
count (top) 2) dependent on feature count (bottom)
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Results

Speedup Profile

Comparing GPU implementation vs. OpenSURF and
modified OpenSURF

Average over 10 trials for CPU, 1000 trials for GPU
Does not include memory initializations
Currently using synchronous memory transfers

Image Size 512x384 640x480 1024x768 1280x1024
Feature Count 957 1509 3032 3218

CPU-SURF 961.86ms 1461.65ms 3409.69ms 4153.78ms
OpenSURF 251.27ms 384.95ms 998.29ms 1276.63ms
GPU-SURF 6.75ms 10.83ms 21.10ms 28.00ms

Modified OpenSURF Percent Speedup 14250% 13496% 16160% 14835%
OpenSURF Percent Speedup 3722% 3554% 4731% 4559%
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Results
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Truth GPU−SURF SURF

SURF: 3.73698 Hz GPU-SURF: 9.17844 Hz
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Future Work

Compute features for both images of a stereo pair and
match the features on the GPU.

Copy the features back to the CPU and track them (in
time) while the next pair is being matched.

Run on our robot.
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Questions
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