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Introduction 

Background 

 The Foreign Exchange (Forex) market offers traders the ability to trade the world’s major 
currencies in a fast-paced, commission-free marketplace.  The market organizes currencies into pairs, 
such that one may be purchased by selling another.  For example, the ‘EUR/USD’ symbol corresponds to 
the Euro/US dollar currency pair whose value is the current exchange rate when converting Euros to US 
dollars.   

Many Forex traders decide to buy/sell specific currency pairs by analyzing charts that show how 
the exchange rate changes in real-time.  This analysis generally involves one or more numerical 
‘indicators’ that are graphed on top of the exchange rates that attempt to show the current market 
trend and predict the future market direction.  For example, in the chart below, the real-time rate data 
(the jagged curve) is overlaid with a simple moving average (SMA) indicator curve that displays the 
average of the most recent 50 values at each point: 

 
Fig. 1 – Simple Moving Average Indicator (Janssen, Langager, & Murphy, 2009) 

 Similarly, many other indicators have been developed that attempt to show trends in the data 
(for example, the Exponential Moving Average indicator applies exponentially decaying weight factors to 
each sample, giving more weight to newer samples and less weight to older ones). 

Chart indicators such as the moving average curve in figure 1 produce buy and sell signals (called 
‘breakout points’) at specific points on the chart.  In figure 1, a breakout point occurs when the moving 
average curve crosses above the exchange rate curve, indicating a potential reversal in the previous 
uptrend – i.e. a ‘sell’ signal, indicated by the black arrow).  Although there are many commercially-
available charting software packages that will calculate and display these indicators, few (if any) attempt 
to determine the optimal parameters to use when calculating a given indicator.  For example, in the case 
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of moving averages, the users themselves must specify how many samples the moving average should 
be based on, producing a different curve and ultimately different buy/sell signals along that curve.  The 
optimal curve is the one that most closely tracks the data fluctuations during the analysis period (i.e. 
produces buy/sell signals that are the most accurate) and therefore produces the highest profit. 

Project Focus and Rationale 

 The focus of this project was therefore to use the GPU to attempt to determine the optimal 
parameters to use when generating a few different technical analysis indicators.  The rationale for a 
GPU-based approach is that if the optimizations were part of a real-time, electronic trading platform, 
the market conditions may change in the time required to have the CPU determine the optimal 
parameters, effectively making the results irrelevant.  For a small number of simple indicators, the CPU 
alone may be ‘fast enough’, but if optimizing across a large number of more complex indicators, the 
need for high performance computations increases. 

Project Results 

 This project found that use of the GPU can considerably reduce the time required to perform 
indicator optimizations, with more complex indicators containing multiple dimensions of optimization 
(such as MACD) benefiting the most from the GPU approach.  The speed improvement for the EMA-S 
and EMA-OC indicators that contain only one dimension of optimization was 8x, while the EMA-D 
indicator (two dimensions of optimization) was 75x, and the MACD indicator (three dimensions of 
optimization) was 133x.  Optimization of the CCI indicator (3 dimensions of optimization) was also 
performed, though these dimensions were found to be independent of each other and could be 
calculated independently, resulting in a very fast CPU implementation and therefore eliminating the 
need to create a corresponding GPU implementation. 

Algorithm Implementation Details 
 This project attempted to implement parameter optimization on the following technical 
indicators over a set of N input data samples: 

Table 1 – Technical Analysis Indicator Descriptions 

Code Indicator Name 
(Breakout Point Identification) 

Optimization Parameters 
(Range of Optimization) 

EMA-S Exponential Moving Average – Single 
(Close price crosses over MA) 

# of samples in MA (2 to N) 

EMA-OC Exponential Moving Average – Single 
(Open and close price cross over MA) 

# of samples in MA (2 to N) 

EMA-D Exponential Moving Average – Single 
(Short and long curves cross) 

Long curve: # of samples in MA, i = (3 to N) 
Short curve: (2 to i) for each long curve 
produced 

MACD Moving Average Convergence/Divergence 
(MACD line crosses signal curve) 

Long curve: # of samples in MA, I = (2 to N) 
Short curve: (2 to i) for each long curve 
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produced 
Signal curve: # of samples in MA (2 to N) 

CCI Commodity Channel Index 
(CCI line crosses upper or lower 
thresholds) 

CCI curve: # of samples in MA (2 to N) 
Upper threshold: 30 to 300 
Lower threshold: -30 to -300 

 

These particular indicators were chosen as they span a range of complexity, from one to three 
dimensions of optimization.  We believed this would give a good indication of the benefit of a GPU-
based approach for the various indicators available.  

Indicator Buy/Sell Signal Descriptions 

 The EMA indicator is simply an exponentially-weighted moving average of the last N values and 
produces buy/sell signals as the market data crosses the moving average (MA) curve.  The signal may be 
produced when only the close value crosses the MA (as in EMA-S) or when both the open and close 
prices cross (as in EMA-OC).  The EMA-D indicator uses both a ‘fast’ and ‘slow’ moving average curve 
(‘fast’ means N is relatively small, ‘slow’ means N is relatively large), producing buy/sell signals as these 
curves cross each other.    

The MACD indicator subtracts a pair of fast and slow moving average curves to produce the 
MACD curve that is then smoothed using another moving average to produce the signal line.  Buy/sell 
signals are produced when the MACD and signal lines cross.   

The CCI indicator compares the typical price of the currency to its moving average and divides 
this value by its mean deviation to produce values that oscillate about zero.  Buy/sell signals are 
produced when the CCI crosses a positive or negative threshold above or below zero.   

Methodology 
In order to assess the accuracy of the GPU algorithms as well as the performance gain, identical 

indicator optimization routines were written for the CPU.  The output of the CPU & GPU runs compared 
both the optimal parameter(s) and the optimal profit/loss found to ensure that they matched (accuracy 
check), as well as comparing the total time taken to perform the calculations (to assess performance 
improvement).   

Deviations from Initial Project Plan 

The original project plan included the implementation of the arg max routine (to search the 
array of profit values to find the index of the maximum profit) on the GPU, but it was found that the arg 
max computation time was only a very small fraction of the overall algorithm time (<2%).  We therefore 
felt that there was not enough benefit to implementing this on the GPU and left it as a simple CPU-
based algorithm instead.    
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The original plan also called for implementation of Simple Moving Averages (SMA) and Linear 
Weighted Moving Averages (LWMA). However, we decided to implement the MACD and CCI indicators 
instead, to assess performance on more lengthy computations. 

GPU Implementation 

Overview 

The GPU optimizations were performed using several different sets of open-high-low-close 
(OHLC) data for a specific currency pair over a specific time period.  Each indicator was optimized using a 
separate kernel for that indicator.  These kernels output an overall profit/loss value by obeying each 
breakout point generated by the indicator into an array with the index of the highest value indicating 
which thread (and ultimately which set of input parameters) achieved the best result – this constituted 
the optimization output for each indicator.  

Shared memory loading 

For every indicator, the first step is loading the relevant OHLC data from Gmem into Smem. We 
only load the part we need: usually Close and Spread. Loading is done cooperatively. Because all of this 
data is going to be used by all threads in a block, arithmetic intensity is high, so loading cost is negligible. 

Parameter distribution 

For the EMA indicators (EMA-S, EMA-OC, and EMA-D), every thread evaluates a different 
parameter setting (i.e. an N parameter for EMA-S and EMA-OC, and an Nlong & Nshort parameter pair for 
EMA-D). We ensure that the parameters (or parameter pairs) of every warp are close to each other, so 
that branching is unlikely to diverge. For EMA-S and EMA-OC, we had blocks of just one warp, so that 
there was at least one block for each multiprocessor. For EMA-D, we had blocks of 512, to save on the 
cost of Smem loading.   

For MACD, every block evaluates an Nlong & Nshort parameter pair, optimizing over Nsignal. That 
allows more optimization through pre-computing. 

MACD 

For MACD, our original approach of having each thread evaluate a different parameter triple 
(Nlong, Nshort, and Nsignal) ran into memory problems for the bigger runs, but wasn't efficient anyway. 
MACD computation can be optimized by pre-computing the MACD values for a given Nlong & Nshort pair, 
before running the simulation with various Nsignal values. To allow this, we decided that every block takes 
an Nlong & Nshort pair, and internally optimizes over Nsignal. 

MACD(Nlong, Nshort, i) = EMA(Nshort, i) - EMA(Nlong, i). EMA has to be computed sequentially, so the 
naive implementation of MACD pre-computing has to be done by a single thread. That naive 
implementation took 10% of the total compute time. It is more efficient to pre-compute EMA for all N 
values, using a separate kernel, and to store those EMA sequences in device memory. Then, MACD(Nlong, 
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Nshort, *) can be pre-computed by all threads together, which takes only 1% of the total compute time 
(probably spent mostly waiting for Gmem). 

After the threads of a block finish the simulations for all possible Nsignal values, an argmax is 
needed.  Having a single thread perform this argmax took 10% of the total time. More efficient is to 
have all threads of the first warp calculate argmax over a subset of the values. Afterwards, the first 
thread does the maximization over the 32 partial results. Both of those steps take .6% of the total 
compute time, for a total of 1.2%, i.e. much better than 10%. 

Another issue with MACD is the amount of shared memory needed, for each block. We need 
four arrays, each of 1000 or 1043 values for the biggest data sets: macd[], close[], spread[], and profit[].  
Profit[] is used for the result of the trading simulations using the various Nsignal values.  Four float arrays 
of that size, plus a few smaller pieces of data in Smem, is too much (Smem can hold only 4k float values). 
To remedy this problem, we collapsed close[] and spread[] into one array, called price[]. When the 
MACD value is increasing, the only transaction that could possibly result is a BUY. In those cases, 
price=close+spread/2. When MACD decreases, only a SELL is possible, so price=close-spread/2. Thus, 
only three arrays are needed: macd[], profit[], and price[]. Loading only a few values at a time, as it is 
done by the matrix multiplication algorithm, is more complicated, because some threads have to run 
more than one simulation. 

CCI 

After we wrote a simple CPU implementation for CCI, we started thinking about how to run it 
efficiently on a GPU. After discovering that more and more could be pre-computed, we eventually 
realized that a more drastic optimization is possible. The optimal upper cutoff value is independent of 
the lower cutoff value, and vice versa. In other words, the optimal upper cutoff value will be the same 
for a lower cutoff of -100, -200, -90, or really anything else. Thus, the optimal upper cutoff can be 
calculated without considering the lower cutoff value, and thus without a loop over lower cutoff values. 
This reduces the loop nesting level from three (Nsmatp, UpperCutoff, and LowerCutoff), to two (Nsmatp, 
UpperCutoff). In the same way, the optimal lower cutoff value can be calculated without considering the 
upper cutoff values. The profit of the entire trading simulation is then the profit resulting from 
purchases based on the upper cutoff, plus the profit resulting from purchases based on the lower cutoff. 

This optimization resulted in a 250x speedup, without using a GPU. After applying the 
optimization, the resulting run times were all under one second, so it became meaningless to further 
optimize using a GPU. 

 

Evaluation 
 The indicator analysis used daily Open-High-Low-Close (OHLC) data from 2005/01/01 to 
2008/12/31 (1043 samples) for the EUR/USD currency pair.  The first 43 samples were used to prime the 
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moving averages in indicators that involved them while the final 1000 samples were used to perform the 
buy/sell analysis.  All tests were conducted on the ug64.eecg.utoronto.ca machine.   

EMA Indicator Results 

For the EMA indicator, the results of the GPU and CPU analysis of the input data are as follows: 

Table 2 – EMA-S Results 

  Optimal N Max Profit Time (ms) 
CPU 104 $46,990 5.251 

GPU 104 $46,990 0.643 

    Speedup (x): 8.2 
 

Table 3 – EMA-OC Results 

  Optimal N Max Profit Time (ms) 
CPU 290 $35,650 5.512 

GPU 290 $35,650 0.676 

    Speedup (x): 8.2 
 

Table 4 – EMA-D Results 

  Optimal Long N Optimal Short N Max Profit Time (ms) 
CPU 122 49 $47,450 2560.91 

GPU 122 49 $47,450 34.363 

      Speedup (x): 74.5 
 

We can see that both GPU and CPU produced matching results.  Additionally, the GPU achieved 
a speedup of 8x for EMA-S/OC indicators and an impressive 75x for EMA-D compared to the CPU 
implementation.  The optimal EMA curves plotted against the closing price of the input data are shown 
in the graphs that follow. 

 



John Pazzelli - #990981069 
Tijmen Tieleman - #994557742 

 

- 8 - 

 
Fig. 2 – EMA-S Result Curve against Close Data, Optimal N = 104 samples 

 
The EMA-S indicator produces a BUY signal when the close price crosses the moving average 

curve in an upward direction and a SELL signal when the close prices crosses in a downward direction.  In 
the chart above, the optimal 104-sample EMA curve closely tracks the market uptrend and downtrend.  
Critically, the indicator produces a sell signal on August 6, 2008 when the close price crossed below the 
EMA curve, predicting the coming downtrend. 
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Fig. 3 – EMA-OC Result Curve against Close Data, Optimal N = 290 samples 

 
The EMA-OC indicator is identical to EMA-S except that both the open and close prices must 

cross the EMA curve in order for a buy or sell signal to be produced.  The optimal 290-sample EMA curve 
initially takes a sell position (tracking the initial downtrend) followed by a buy signal on April 20th, 2006 
that predicts the coming uptrend. 
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Fig. 4 – EMA-D Result Curve against Close Data, Optimal Nlong = 122 samples, Nshort = 49 samples 

 
 The EMA-D indicator chart produced only two breakout signals, first a BUY when the 49-sample 
EMA crossed the 122-sample in an upward direction on April 8, 2006 and a second SELL signal when the 
cross occurred in the opposite direction on August 22, 2008, also closely tracking the market trend. 

 

MACD Indicator Results 

 The results for the MACD indicator over the same analysis period are as follows: 

Table 5 – MACD Results 

  Optimal Long N Optimal Short N Optimal Signal N Max Profit Time (ms) 
CPU 121 119 171 $66,550 2395032.75 

GPU 121 119 171 $66,550 18041.26 

        Speedup (x): 132.8 
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Again, the CPU and GPU results match, and the GPU shows a large speed gain of 133x.  The 
benefit of the GPU is much more apparent when optimizing the MACD indicator because of the large 
number of optimizations that were made in the GPU implementation of the indicator algorithm.  The 
optimal MACD and signal curves plotted against the closing price of the input data are shown below: 

 

 
Fig. 5 – MACD Result Curves against Close Data, Optimal Nlong = 121 samples, Nshort = 119 samples, Nsignal = 171 samples 

 

The graph above shows the MACD curve (in blue) plotted against the signal curve (in red), with 
the subtraction of these two plotted as a histogram (in green) on the primary axis (the display of this 
histogram is standard when viewing MACD in technical analysis software but was not used in our 
analysis).  The closing prices (in purple) are plotted on the secondary axis.  A buy signal is produced 
when the MACD curve crosses above the signal curve and a sell signal when the curves cross in the other 
direction.  Only a few such signals were produced, most critically a buy signal on December 30, 2005 and 
a sell signal on June 28, 2008 which were both well timed with the coming uptrend and subsequent 
downtrend of the market close data. 
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CCI Indicator Results 

 The results for the CCI indicator over the same analysis period are as follows: 

Table 6 – CCI Results 

  Optimal N 
Upper 
Threshold 

Lower 
Threshold Max Profit Time (ms) 

CPU 43 38 -127 $46,010 385914.81 

CPU2 (optimized) 43 38 -128 $46,010 2285.39 

        Speedup (x): 168.9 
 

 From the table above, we can see that the initial CPU algorithm and the highly optimized CPU 
algorithms produced nearly identical optimal values, except that the lower threshold value differed by 
one.  However, since the optimal profit values produced by each were the same, the difference in this 
threshold value has no impact on the outcome and can be ignored.  The speedup of the optimized CPU 
implementation versus the original implementation was 169x.  The optimal CCI curve and upper/lower 
thresholds plotted against the closing price of the input data are shown below: 
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Fig. 6 – CCI Result Curve and Upper/Lower Thresholds against Close Data, Optimal N = 43 samples, Upper Threshold = 38, Lower 
Threshold = -127 

 

The graph above shows the CCI curve calculated using a 43-sample moving average (in blue) 
along with the optimal upper threshold value (CCI = 38, shown in red) and lower threshold value (CCI = -
127, shown in green).  The closing prices (in purple) are plotted on the secondary axis.  A buy signal is 
produced when the CCI curve crosses above the upper threshold, and this position is closed when it 
crosses back below this threshold value.  Similarly, a sell signal is produced when the CCI crosses below 
the lower threshold, and this position is closed when it crosses back above this threshold value.  There 
were a large number of buy and sell signals produced using these threshold values with most of the 
profit being produced in the final year of the analysis interval.  Although these values produced the 
optimal profit over the interval, this optimal profit ($46,010) was lower than most other indicators used 
in this project as some of the intermediate signals produced were false positives and would have lead to 
a loss of invesment capital. 
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Conclusions 
Use of the GPU was found to have a significant benefit in the optimization of Forex technical 

analysis indicators.  For simple indicators (EMA-S/EMA-OC) a performance gain of 8x was obtained, but 
for more complex indicators, the benefit was significantly greater – 75x for EMA-D and 133x for MACD.  
If incorporating the optimization of charting indicators as part of a real-time trading platform, use of the 
GPU would be highly recommended at least for more complex indicators.  In the case of MACD for 
example, the time required to perform a full optimization of the input parameters was reduced from 40 
minutes on a CPU to a mere 18 seconds on the GPU. 

A secondary result is that it is important to fully understand the optimization parameters of 
each indicator as even seemingly complex indicators may have efficient CPU implementations.  In the 
case of CCI, for example, we were able to speed up the CPU implementation by 169x after realizing that 
the upper and lower threshold values could be optimized independently. 

This project also found that the GPU is well suited for performing brute-force optimization 
algorithms as the input to each run of the optimization routine in a brute force approach is independent 
of the results of other iterations.  For such applications (technical indicator analysis being one of them), 
it is often realistic to expect a high performance gain using a GPU-based algorithm implementation. 

A logical extension of this work would be to implement more technical analysis indicators and 
combine the results into a real-time trading platform, or to apply a similar brute-force optimization 
approach to problems where trying every combination on a CPU may take many hours or days. 
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