
RECAST: Boosting Tag Line Buffer Coverage in Low-Power High-Level
Caches “for Free”

Abstract

We revisit the idea of using small line buffers in-front of
caches. We propose ReCast, a tiny tag set cache that filters a
significant number of tag probes to the L2 tag array thus
reducing power. The key contribution in ReCast is S-Shift, a
simple indexing function (no logic involved just wires) that
greatly improves the utility of line buffers with no additional
hardware cost. S-Shift can be viewed as a technique for
emulating larger cache blocks and hence exploiting more
spatial locality but without paying the penalties of actually
using a larger L2 cache block. Using several SPEC CPU2000
applications and a model of an aggressive, dynamically-
scheduled, superscalar processor we demonstrate that a
practical ReCast organization can significantly reduce power
in the L2. Specifically, a 64-entry ReCast comprising eight
sub-banks of eight entries each can filter about 50% of all tag
probes for a 1Mbyte L2 cache. A conventional line buffer of
the same size filters only 32% of all tag probes. The resulting
average reduction in L2 tag power is 38% and 85% with
writeback or writethrough L1 caches respectively. This
translates to a reduction of 16% or 52% of the overall L2
power respectively. We also analyze a few representative
applications explaining why S-Shift works well.

1 Introduction
Caches dissipate a significant portion of the total CPU

power. Most of the architectural cache power reduction
techniques were targeted at the L1 caches since they
dissipate most of the power. Very little research has
focused on reducing power dissipation in the L2 or higher
caches.

Reducing the power dissipation of high-level caches is
becoming increasingly important as their power is bound
to increase both in relative and in absolute terms. There
are three reasons why this is the case. First, as a result of
the increasing disparity between processor cycle time and
memory access time, high-level caches are becoming
larger and highly-associative while additional levels of
caching are introduced (the size and associativity of L1
caches are severely limited by timing considerations).
Accordingly, the absolute power dissipated by high-level
caches is bound to increase. The trend towards larger L2
caches is further strengthened by techniques that increase
cache pressure such as SMT and CMP. Second, as power
reduction techniques for the execution core and the L1

caches are perfected, the relative power dissipation of
high-level caches increases substantially. Finally, recent
processor designs aimed at the SMP market incorporate
writethrough L1 data caches greatly increasing the
frequency of L2 accesses and L2’s power dissipation1.

The applicability of most L1 power reduction
techniques has not been demonstrated for the L2 and it is
not trivial since different trade-offs apply. For example,
way-prediction [23] can result in reduced power in the L1
but its usefulness for the L2 will be limited to the tag array
since the tag and data array accesses are serialized. Also,
an increase in latency is more tolerable at the L2 than at
the L1 thus different techniques may be applicable.

In this work we focus on dynamic power optimizations
for the tag arrays (or simply tags) of the L2 or higher
caches. Contrary to the L1, the power of the tags in typical
L2 caches is comparable to that of their data arrays. This is
because the tag and data array accesses are serialized
[1,15] and because the data array can be sub-banked
activating only its necessary parts.

We revisit the idea of using small line buffers in-front
of the tags to reduce the number of probes and thus reduce
power in high-level caches [7,14]. We study ReCast, a tiny
filter placed between the LI and the L2 tags where it
caches a small number of recently accessed L2 tag sets. As
shown in Figure 1, ReCast prevents some L2 tag probes
and thus it reduces power dissipation in the L2 tags. Since
ReCast is placed in-between the L1 and the L2 it increases
L2 latency for certain accesses.

The key question we ask in this work is whether we can
improve the utility of ReCast without hurting performance
and miss rates. Accordingly, our key contribution in this
work is S-Shift, an indexing function that increases the
number of accesses that are filtered by ReCast at no
additional hardware cost. S-Shift is very simple but at the
same time extremely effective. It can be viewed as a
technique that emulates having larger L2 cache blocks but
without the penalties associated with actually using larger
L2 cache blocks. Since S-Shift changes the way we index
the L2 it also impacts L2’s hit rate. We demonstrate that
this trade-off is favorable in virtually all cases.

In addition to S-Shift, our work extends previous work
in several other ways: We consider both writeback and
writethrough L1 caches (such as those found in some
modern processor designs); We consider several practical

Won-Ho Park, Andreas Moshovos
Electrical and Computer Engineering

University of Toronto
{wonho, moshovos}@eecg.toronto.edu

Babak Falsafi
Electrical and Computer Engineering

Carnegie Mellon University
babak@cmu.edu

1 Alternatives that do not use writeback caches exist [6].

ReCast organizations where the tag filters are partitioned
alongside each tag array sub-bank; We report the results of
a sensitivity analysis demonstrating that ReCast is a robust
technique that can be potentially useful for higher level
caches such as the L3; Finally, we consider the effects of
out-of-order speculative execution and take into account a
more diverse set of applications and input data sets.

The rest of this paper is organized as follows: In Section
2 we present ReCast and the S-Shift indexing function. In
Section 3 we present our experimental analysis of ReCast.
We start by explaining our methodology and proceed to
consider the impact of ReCast on L2 power, miss rate and
overall performance. In Section 3.8, we discuss three
representative applications and relate ReCast behavior to
program behavior and structures. In Section 4, we review
related work. We offer concluding remarks in Section 5.

2 ReCast

ReCast builds on the simple and effective technique
where a small number of line buffers are placed in-front of
a much larger and thus much more power demanding
cache. The operation of line buffers has been described
numerous times in previous work, e.g., [7]. The line
buffers collectively form a tagfilter. Figure 2 shows a
direct-mapped tagfilter organization for the L2 tags while
Figure 3 explains how tagfilters impact the L2 cache
access sequence. We will use the terms ReCast, tagfilter
and line buffers interchangeably in the rest of this paper.
Table 1 summarizes the possible combinations of ReCast
and L2 hits and misses along with the corresponding
impact on power and latency.

2.1 Improving Set Locality: S-Shift Indexing
For a small tagfilter to service many L2 tag probes it is

necessary for the L2 tag reference stream to exhibit
reasonably high locality. While most programs exhibit
locality in their memory reference stream, it is not
necessary that this locality will be visible at the L2. This is
because the L2 sees only a fraction of the memory stream
consisting primarily of those references that do not hit in
the L1. In fact, by design the L2 sees those references that
did not have sufficiently locality to be serviced by the L1
or that the L1 failed to satisfy for secondary reasons such
as conflicts. A key observation to be made is that ReCast
requires locality in the L2 set reference stream and not
necessarily in the reference stream.

The main question we ask in this work is whether it is
possible to increase set locality as seen by the L2 further
reducing power. Answering this question requires an

Figure 1: Cache hierarchy with ReCast. Shown in detail is the
ReCast organization where it is distributed along each tag array.

Table 1. Breakdown of ReCast operation and its impact on
L2 power and latency.

ReCast L2 L2 Tag Access Latency Power

Hit Hit No Unchanged/Reduced Reduced

Hit Miss No Unchanged/Reduced Reduced

Miss Hit Yes Increased Increased

Miss Miss Yes Increased Increased

Figure 2: (a) A direct-mapped ReCast. It caches the TAG and
STATUS bits for a few sets of a k-way associative cache.

Figure 3: (a) Conventional Cache Access Sequence: Using the
set portion of the incoming address we first access the tags. We
access all tag ways simultaneously reading all tag and status bit

pairs (step 1). We then compare the stored tags with the tag portion
of the incoming address taking the status information into account

(step 2). If a match is found we access the corresponding data array
using the set portion of the incoming address (step 3). Since we

know which tag matched, we need to activate only one of the data
arrays. If no match is found, we select one of the blocks for

replacement and update the tags accordingly (step 3).
(b) Access Sequence with ReCast: Prior to accessing the tag arrays,
we access the ReCast (step 1). If the set we are looking for is found
in the ReCast (a ReCast hit) we can determine whether the access is
a hit or miss and we do not need to access the tag arrays. Power is
reduced since ReCast is much smaller than the tag array. For the

same reason, overall latency may be lower. If the set is not found in
ReCast (a ReCast miss), then the access proceeds as in the

conventional cache. In this case, power requirements increase as we
accessed the ReCast and the regular tag array. Assuming that the

ReCast and the tags are accessed serially, the cache latency is
increased by ReCast’s latency.

SET TAG1S1 TAGkSk
idx0
idx1

idxj

?

Control
f(SET)SET

b
a

(a)

TAG access TAG Compare DATA access

TIME

ReCast Access ReCast Compare DATA access

TIME

TAG access TAG Compare DATA access

(b)

understanding of what causes set locality. Two main
factors give rise to set locality: program reference
behavior and typical block sizes. L2 blocks are typically
larger than L1 blocks. Programs exhibit spatial locality
which often extends beyond the boundaries of L1 blocks.
L1 conflict misses also give rise to L2 set locality as they
often translate into accesses to the same L2 set. The
aforementioned observations suggest that a
straightforward technique for increasing set locality would
be to increase the L2 block size so that more consecutive
addresses map to the same L2 set. Unfortunately, well
understood trade-offs apply as miss rates tend to increase
beyond a specific L2 block size due to under utilization of
L2 space and because of the overheads of bringing in
extraneous data. An increased L2 miss rate may result in
increased power consumption and reduced performance.

Our solution to increased set locality builds on the
observation that it is possible to make consecutive L1
cache blocks map onto the same L2 set by changing the L2
indexing function. One way for doing so is the S-Shift
indexing function shown in Figure 4(a) where S is a
number of bits, the higher the S the more L1 blocks map
onto the same L2 set. At the top we show how the TAG,
SET and OFFSET indexes are extracted in conventional
cache organizations. S-Shift works by changing the bits
used to calculate the TAG and SET indexes so that a larger
number of consecutive addresses map to the same set
while the L2 block size remains the same. This is done by
rotating right the combined TAG and SET fields. 0-Shift
corresponds to the conventional index function. With 1-
Shift and assuming 32byte L1 blocks and 64byte L2
blocks, four consecutive 32-byte blocks map onto the
same set in L2. With 2-Shift eight such blocks would map
onto the same L2 set. Figures 4(b) and 4(c) show how a
sequential access pattern would map onto a 4-way L2 with
0-Shift and 1-Shift respectively. The desirable effect is
possible with other permutations of the TAG and SET
fields. However, an investigation of this topic is beyond
the scope of this work.

2.1.1 S-Shift and L2 Miss Rate. The interaction of S-
Shift with the memory reference stream is quite complex
and the L2 miss rate may increase or decrease. In
Sections 3.4 and 3.5 we demonstrate that the hit rate vs.
power savings trade-off is favorable for the 1-Shift
indexing scheme. Here we offer two remarks regarding the
complex trade-offs that apply. First, for programs that
exhibit irregular access patterns there is no noticeable
increase in set pressure with any of the indexing schemes.
This is expected as S-Shift is just a permutation of the
address bits. Second, while for large sequential access
patterns S-Shift results in higher set pressure, there are
two mitigating factors: a) L2’s associativity can often
absorb most of this pressure and b) often such access
patterns result in L2 misses. The trend in L2 design is
towards higher associativities, accordingly, we should
expect that S-Shift indexing would become more attractive
in future designs.

2.1.2 ReCast Updates and Organization. ReCast can
aggregate tag updates the same way a writeback cache
aggregates data updates. In this case, the updated
information is propagated to the L2 tags only when the
corresponding ReCast line is evicted. Since this could
complicate the design of the ReCast and of the cache
controllers we assume a write-through organization. The
write-back and write-through options also apply to other
state that is held within a typical cache, such as the per set
LRU information.

Other ReCast organizations are possible since this is
essentially a tag set cache. For example, we could have a
4-way set associative ReCast. While higher associativity
may allow us to capture a larger fraction of accesses at the
same time it also increases the per access energy
requirements. Accordingly, we must properly balance the
increase in filter rate vs. the per access energy
requirements. Figure 1(a) shows the organization of the
ReCast. The ReCast is partitioned into several banks one
per sub-array of the L2 tag array. This way we avoid
having to ship out the whole tag set from the each tag sub-
array to a unified ReCast (something that would require
extra wires and would impact power and latency).

Figure 4: (a) The S-Shift set index function that aims at increasing
set locality in the L2. We assume 32-bit addresses, 64-byte L1

blocks, 64-byte L2 blocks and 2K L2 sets. We start with the incoming
address from the L1. We take S bits (dark gray) from the least

significant part of the set index and move them to the most
significant part of the address. We shift the remaining part of the

incoming address to fill in the remaining bits. As a result, a number of
consecutive memory blocks (L1 block size) map to the same set in
L2. (b) & (c) How consecutive addresses are mapped onto cache

sets with the conventional indexing scheme (b) and 1-Shift (c). With
conventional indexing addresses first fill up the first way, before

starting to occupy the second and so on. In (c) with 1-Shift,
consecutive addresses fill the rows of two ways simultaneously. With
2-Shift they would have filled the rows of four ways simultaneously.

TAG SET OFF
15 11 6

Incoming Address

Hashed Address

S bits

(a) S-Shift Indexing

(c) Block Allocation with 1-Shift

(b) Block Allocation with 0-Shift

2.1.3 ReCast Latency. In the simplest organization
ReCast is placed in-series with the L2 tags so that a
constant latency penalty is incurred by each access.
However, it may be possible to improve overall L2 latency
on ReCast hits since ReCast’s latency should be smaller
than that of the regular L2 tags. In this organization, rather
than incurring a fixed latency penalty accesses see
different latencies depending on the tag structures
accessed. A potential disadvantage of this method is that it
introduces greater variability in load latencies.

3 Experimental Analysis
In Section 3.1 we present our methodology. In

Section 3.2 we demonstrate that typical programs exhibit
reasonably high L2 set locality. In Section 3.3 we confirm
that even small ReCast filters partitioned along the L2
banks can service many L2 tag accesses. In Section 3.4 we
demonstrate that S-Shift can greatly increase L2 set
locality. In Section 3.5 we demonstrate that ReCast can
significantly reduce L2 power. In Section 3.6 we
summarize the findings of a sensitivity analysis of key
design parameters. In Section 3.7 we show how overall
performance is affected by ReCast. Finally, in Section 3.8
we discuss three representative applications and how they
affected by S-Shift.

3.1 Methodology
We used Simplescalar v3.0 [4] to simulate the processor

detailed in Table 2. We used the following SPEC CPU
2000 benchmarks: 164.gzip, 175.vpr, 176.gcc, 177.mesa,
179.art, 181.mcf, 183.equake, 188.ammp, 197.parser,
255.vortex, 256.bzip2 and 300.twolf. We simulated up to
the first 30 billion committed instructions or to completion
whichever happened first. We compiled all programs for
the PISA architecture using GNU’s gcc v2.7 (flags: -O2 -
funroll-loops -finline-functions).

We used CACTI [13] to determine the optimal number
of cache sub-arrays for a 0.10um process. To model the
serialized L2 cache access, we optimized the access delay
of the tag and data paths separately and modified the L2
tag array model to appropriately account for bitlines,
wordlines and sense amps. To measure power dissipation
at the architectural level, we used the Wattch
framework [3]. We made several modifications to Wattch
in order to track and model the power of read and write
operations separately, to track invalidations, replacements
and writebacks, to serialize accesses to the tag and data
arrays and to sub-bank the data array. Unless otherwise

noted, the base memory hierarchy consists of split level-
one data (LID) and instruction (L1I) caches and unified
level-two (L2) and level-three (UL3) caches. The L1I and
LID caches are 32 Kbytes each with 32-byte blocks and
are 2-way set-associative. The L2 is 1Mbytes with 64-byte
blocks and is 8-way set-associative. The L2 tags are
partitioned into eight sub-arrays to minimize latency. The
L2 data array is partitioned into 32-byte sub-banks to
minimize its power dissipation. The UL3 is 4-Mbytes with
64-byte sub-banked 128-byte blocks and is 8-way set-
associative. All caches use the LRU replacement policy.

3.2 Set Locality
To measure L2 set locality we simulated fully-

associative tagfilters of four through 128 entries with LRU
replacement. We define filter rate as the probability that
an L2 tag probe finds its set in the tagfilter. The filter rate
is a metric of locality since a hit in a tagfilter of n entries
suggests that the same set has been accessed within the
last n unique L2 sets accessed. The smaller the n the
higher the L2 set locality. The results are shown in
Figure 5. The average filter rates are 25% to 42% for four
through 128 entries respectively. Although the filter rates
vary per program, significant locality can be observed
even with the smaller organizations. For example, a 64
entry tagfilter can reduce the L2 tag accesses by 34%.

3.3 Partitioned ReCast Organizations
Figure 6 shows filter rates with 0-Shift for various

practical ReCast organizations consisting of eight sub-
tagfilters, one per L2 tag sub-array. We use an SxW
naming scheme where S is the number of rows and W is
the associativity of each sub-array. There are 8xSxW
entries in total. Even small ReCasts achieve high filter
rates which are on average 29% through 42% for the 4x1
through 16x2 organizations respectively. In the rest of this
evaluation we will focus on the “4x2” organization since it
offers a favorable size vs. filter rate ratio.

3.4 S-Shift: Locality and Miss Rate
Figures 7(a) and 7(b) report filter rates and the L2 miss

rate respectively with the 4x2 ReCast and for three
indexing schemes: 0-Shift (conventional), 1-Shift and 2-
Shift. The average filter rates are 32%, 50%, and 60% for
0-, 1-, and 2-Shift respectively. Significantly higher filter
rates are achieved with 1- and 2-Shift. Focusing on filter

Table 2. Base processor configuration
 Branch Predictor Fetch Unit

16k GShare +16K bi-modal
16K selector

2 branches per cycle

Up to 8 instr. per cycle
64-entry Fetch Buffer
Non-blocking I-Cache

Issue/Decode/Commit Scheduler
any 8 instr./cycle 128-entry/64-entry LSQ

FU Latencies Main Memory
same as MIPS R10000 Infinite, 100 cycles

Cache Geometries L1D/L1I/L2/UL3 Latencies

See text 3/3/16/30 cycles

Figure 5: Measuring L2 set locality: Shown are the filter rates for
tag set buffers of 4 through 128 entries in power of two steps.

0%

20%

40%

60%

80%

gz
p vp

r
gc

c
mes art mcf eq

k
am

p
pa

s vo
r

bz
p tw

f
AVG

4 8 16 32 64 128

%
 o

f
L

2
ac

ce
ss

es

L2 Set Locality

rate alone we would conclude that 2-Shift is best.
However, in some cases the increase in filter rate comes at
the expense of a significant increase in miss rate. A higher
miss rate implies additional L3 accesses (we do take into
account the power overhead of these accesses in
Section 3.5). Overall, the effect of S-Shift on the miss rate
is varied. On average, the miss rate increases by 7%
(relative not absolute increase) with 1-Shift and by 26%
for the 2-Shift scheme as shown in Figure 7(b). Four
observations are in order: First, increased miss rates are
mainly seen in art and twolf; Second, even in these
applications we later show that overall power is reduced
because the power savings by ReCast are higher than the
power overhead incurred due to additional L3 accesses;
Third, in applications that exhibit irregular access streams
such as gzip and gcc, there is virtually no change in the
miss rate with 1-Shift; Fourth, in some applications the
miss rate decreases with 1-Shift (e.g., ammp and equake).

For the 1-Shift scheme the miss rate increase is mainly
seen in art and twolf (51% and 19% respectively). The
initialization of art uses a poor allocation strategy and as a
result the main algorithm suffers numerous, otherwise
unnecessary cache misses. It is straightforward1 to
improve art’s allocation strategy and then 1-Shift
outperforms 0-Shift both in terms of the miss and the filter
rate (more on this in Section 3.8). The L2 miss rate of
twolf is very low, 0.21%, so a small absolute miss rate
increase, 0.04%, results in a large relative increase. In the
rest of this paper we focus on 1-Shift.

3.5 Power Savings
We report power savings with the 4x2 ReCast using the

1-Shift indexing scheme and the writethrough L2 tag
update policy on ReCast replacements. In calculating the
power savings we take into account any additional power
overheads or savings resulting from changes in the L3
access frequency. We also factor in the power overhead of
the ReCast itself. The results are shown in Figure 8(a) for
a writeback L1D. We report power savings as a percentage
of the original L2 tag array (left, light bar) and of the
overall L2 power (right, dark bar). The latter includes the

power dissipated by the L2 data array also. Compared to
the original tag hierarchy, the ReCast offers 38% savings.
(We note that a writeback ReCast organization resulted in
a 43% average reduction in power.) On average, the new
L2 tag array dissipates 55.7% of the original L2 tag array
power and the ReCast dissipates 6.3% of the original L2
tag array power. These translate into a 16% reduction in
overall L2 power.

In Figure 8(b) we report power savings for a
writethrough L1D cache. In this case, the average power
savings with ReCast are much more pronounced reaching

Figure 6: Filter rates with partitioned ReCast organizations (0-
Shift). The tagfilters consist of eight sub-arrays one per sub-array of
the L2 tags. We use an SxW naming scheme where S is the number

of rows and W is the associativity of each sub-array. The total
number of entries is 8xSxW.

1 Of course, changing application code is rarely an option.

0%

20%

40%

60%

80%

gz
p vp

r
gc

c
mes art mcf eq

k
am

p
pa

s vo
r

bz
p tw

f
AVG

4x1 8x1 16x1 4x2 8x2 16x2

%
 o

f
L

2
ac

ce
ss

es
Filter Rate

Figure 7: Using the alternate indexing schemes 1-Shift and 2-
Shift with the 4x2 ReCast. (a) ReCast filter rates. (b) L2 miss rates.
We use the “4x2” ReCast in these experiments (64 entries in total).

Figure 8: Relative tag (light bars) and overall (dark bars) L2 power
savings compared to the conventional L2 design.

(b) L2 Miss Rate

(a) Filter Rate

%
 o

f
L

2
ac

ce
ss

es
%

 o
f

L
2

ac
ce

ss
es

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

gzp vpr
gcc

mes art
m

cf
eqk

am
p

pas vor
bzp tw

f
AVG

T a g s O v e ra ll L 2

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

gzp
vpr

gcc
m

es
art

m
c f

eqk
am

p
pas

vor
bzp

tw
f

AV
G

Ta g s O v e r a ll L 2

(a) Writeback L1D

(b) Writethrough L1D

%
 o

f
C

o
n

ve
n

ti
o

n
al

L
2

P
o

w
er

%
 o

f
C

o
n

ve
n

ti
o

n
al

L
2

P
o

w
er

85% over the original L2 tag array and 52% in overall L2
power.

3.6 Sensitivity Analysis
We have performed several experiments to determine

how sensitive ReCast’s performance is to various memory
hierarchy parameters. Due to space limitations we do not
present these results in detail. We note that increasing the
L1 size resulted only in a minor decrease in ReCast filter
rate (e.g., less than 2% decrease on the average for 64K L1
caches). Increasing the L1 associativity had virtually no
effect on the filter rate (less than 1% change on the
average). The same was observed when we increased the
L2 size up to 8Mbytes. Increasing the L2 associativity
resulted in a minor increase in the filter rate (about 3% on
the average). We have also experimented with using
ReCast in the L3 and found that there too it offers a
significant reduction in the L3 tag probes. Specifically, we
have found that a 128 entry ReCast appropriately
partitioned for our L3 configuration can filter about 63%
and 70% of all L3 tag probes on the average and for the 0-
Shift and 1-Shift indexing schemes respectively.

3.7 Performance
ReCast being an additional level in the tag hierarchy

impacts L2 latency and hence overall performance. In this
section we study the performance impact of ReCast. As
per the discussion of Section 2.1.3, we consider two
possible ReCast access models fixed and variable. Under
the fixed model, ReCast increases L2 latency by a fixed
number of cycles for all accesses. Under the variable
model, L2 latency varies depending on whether we have a
ReCast hit (decrease) or miss (increase). Given that each
ReCast bank is very small (eight entries) we expect to be
able to complete a ReCast access within a processor cycle.
However, in order to expose the underlying latency vs.
performance trend we report results for various latency
overheads.

Figure 9(a) shows relative performance with the fixed
model. Shown is performance relative to a conventional
L2 with a 15 cycle latency (our base configuration has a
16-cycle L2). We consider penalties of one through six
cycles (reported along the X-axis is the overall L2
latency). Programs form two groups. In the first are mesa,
bzip2, ammp and equake that are mostly insensitive to an
increase in L2 latency. The other applications exhibit a
linear decrease in performance as L2 latency increases.
For most programs this performance decrease is relatively
small (less than 1% for each additional cycle of L2
latency. The only program that is very sensitive to L2
latency is mcf where each additional cycle results in an
about 2% decrease in performance.

Figure 9(b) reports performance under the variable
model. Performance is reported relative to a conventional
L2 with a 16 cycle latency. We consider several options
marked as HL-ML where HL and ML are the L2 latency
decrease and increase respectively on a ReCast hit and
miss respectively. As expected performance degradation is
lower even when we assume that ReCast never reduces

overall L2 latency (0-X configurations). We expect that
the latency overhead of ReCast to be a single processor
cycle on a miss and a latency reduction of one cycles on a
hit. Under these assumptions the overall performance
impact of ReCast is below 0.6% for all applications.

Assuming that it is possible to obtain a 3% reduction in
overall power by reducing frequency and hence
performance by 1%, it follows that overall chip power
should be reduced more than 1.8% for ReCast to be viable.
We have found that this is the case with writethrough L1
caches and only in some cases with writeback L1 caches.
This analysis ignores the numerous power reduction
techniques that have been proposed for other processor
structures. Accordingly, further investigation may
demonstrate that ReCast is viable even with writeback L1
caches.

3.8 1-Shift: Application Analysis
We take a closer look at the memory behavior of art,

ammp and mesa to demonstrate that the 1-Shift indexing
scheme may impact miss and filter rates either way. We
chose these three applications for two main reasons. A key
consideration with S-Shift is whether the increase in tag
set locality in ReCast comes at the expense of a
disproportionate increase in L2 miss rate. Accordingly, we
wanted to study applications that are representative of the
various behaviors we have seen. Specifically, all three
applications benefit greatly in filter rate terms. However,
the L2 miss rate in art increases, it remains practically
unchanged in mesa and it decreases in ammp. The second
consideration in choosing these applications was a
practical one. We chose applications whose memory
accessing behavior could be characterized with reasonable
effort and that could be presented concisely.

3.8.1 Art. Art exhibits the highest relative increase in
miss rate of 51% with the 1-Shift scheme which is a direct
result of a poor memory allocation strategy during the
initialization. It allocates two arrays, tds and bus, in the
heap in such a way that their elements are interleaved.
However, these elements are never accessed at the same
time. Together with another array, flJayer, the two arrays
occupy a heap area of about one megabyte as shown in
Figure 10(a). The core program behavior is to process
either flJayer area (1) and tds (3) or flJayer area (2), and
bus (3). With 0-Shift (the left side in Figure 10(a)), these
actions require mostly eight blocks per set and nine blocks
for some sets. With 1-Shift (the right side in Figure 10(a)),
these actions still require mostly eight blocks per set, but
for some sets 10 blocks are required because two blocks
per set are accessed simultaneously. This situation is
represented as 128 bytes in a dotted circle (two blocks) on
the 1-Shift side. This results in additional conflict misses
with 1-Shift and thus in an increased miss rate from 3.89%
to 5.89%. Applying a straightforward optimization (i.e.,
first allocate all the elements of tds and then all the
elements of bus) alleviates the aforementioned problem.
The particular modification is important even for a
conventional cache (0-Shift) and at the source code level

amounts to defusing a loop body into several separate
loops. We divided the two arrays so that each occupied a
consecutive space in the heap (160KB each). Figure 10(b)
depicts the memory footprint after the modification. Now,
with the 0-Shift scheme (the left side in Figure 10(b)),
processing requires mostly seven blocks per set. With 1-
Shift (the right side in Figure 4.5(B)) processing requires
six blocks for some sets and eight blocks for others
because areas (3) and (4) are not accessed simultaneously.
This modification decreased the L2 miss rate from 3.21%
(with 0-Shift) to 3.05% (with 1-Shift). Of course,
changing an application to better fit our mechanism is not
without cost and in some cases not even feasible. What our
analysis has shown is that art is not written to work well
even with conventional caches. We have also shown that a
cache-aware optimization results in improved behavior
with our mechanism also.

3.8.2 Ammp. In ammp the L2 miss rate decreases with 1-
Shift. Most of the memory references in ammp are
characterized by large strides. Specifically, it accesses the
L2 cache in such a way that only one in every 32 sets (out
of the total 2048 sets) is used heavily while the
intervening sets are rarely touched. With 1-Shift the L2 is
utilized better as now one set in every 16 is heavily used.
The alternate indexing scheme has a positive effect of
spreading out L2 cache accesses into more sets, thereby
reducing conflict misses.

3.8.3 Mesa. Mesa exhibits the highest filter rate amongst
all applications. It allocates a 1280 by 1024 frame buffer
on the heap which it then accesses sequentially. Each
frame buffer element is four bytes hence the frame buffer
is about 5 Mbytes in total. With 32-byte L1D blocks, one
in every eight accesses to the L1D is a miss and hence
goes to the L2. Hence the L2 sees a sequential access
stream over a large region. Using S-Shift does not impact
the miss rate which comprises mostly capacity misses. A
ReCast with 0-Shift filters out half the L2 accesses with
64-byte L2 blocks (50% filter rate). The 1-Shift ReCast
filters out three quarters (75% filter rate) because two
consecutive blocks share the same set.

4 Related Work
The idea of using a small cache to service some of the

requests to a much larger one has been applied in many
contexts in the past. Specifically, line-buffers have been
proposed for increasing L1 bandwidth [19]. The filter
cache is a small cache that is placed in-front of the L1
where it services a large fraction of the L1 accesses [9].
Accesses that miss in the filter cache incur increased
latency. The idea of using small buffers in-front of the tag
and data arrays for the L2 so that power is reduced has
been studied before in [7]. Our work differs primarily in
that it proposes the S-Shift indexing function that results
in a significant increase in filter rate. Furthermore, our
work considers the effects of speculative, out-of-order
execution (which improve the utility of ReCast), it

Figure 9: Relative performance with a ReCast filter. (a) Constant latency penalty. In this model we assume a constant penalty for accessing
the ReCast filter. Reported is performance relative to an L2 latency of 15 cycles. (b) Variable latency penalty depending on whether the access

hits in the ReCast filter. Reported is performance relative to an L2 latency of 16 cycles. Several configurations are shown marked as HL-MS
where HL is the latency decrease when the access hits in ReCast and ML is the increase in latency when the access misses in the ReCast.

88%

89%

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

16
cyc les

17
cyc les

18
cycles

19
cycles

20
cycles

21
cyc les

gz ip

vpr

gcc

mesa

art

mcf

equake

ammp

parser

vortex

bz ip2

tw olf

A V G
94%

95%

96%

97%

98%

99%

100%

0-1 0-2 0-3 0-4 1-1. 1-2. 1-3. 1-4. 2-2. 2-3. 2-4. 3-3. 3-4. 4-4.

gzip

vpr

gcc

mesa

art

mcf

equake

ammp

parser

vortex

bzip2

twolf

AVG

R
el

at
iv

e
P

er
fo

rm
an

ce

R
el

at
iv

e
P

er
fo

rm
an

ce

Latency Decrease on ReCast Hit - Latency Increase on ReCast MissL2 Latency

Figure 10: Art L2 footprint. (a) Original application. (b) After a
straightforward modification to the allocation sequence. See text for

a discussion of the modification.

considers alternate tag array configurations and it takes
into account a more diverse set of applications. Cool-Mem
leverages compiler information to reduce power in the L1
caches including its tag array [20]. Partial tag matches
have also been proposed for reducing complexity [8] or
power [5]. The CAT caches a common prefix for most tags
to reduce area [18]. Conventional cache hierarchies were
designed solely for high performance: reducing access
latencies and miss rates. Many architectural techniques
have been proposed to reduce on-chip cache power
dissipation, e.g., [2, 7, 9, 10, 11, 12, 14, 17, 16, 18, 21, 22,
23]. Reviewing these works is beyond the scope of this
paper. We briefly state that in their majority these
techniques involve partitioning caches vertically and/or
horizontally, possibly using small auxiliary structures that
collect program behavior related information, thereby
activating the smallest chunk of the arrays.

5 Conclusion

We studied ReCast a technique for optimizing power in
the tag arrays of high-level caches. ReCast is a tag set
cache placed between the LI and the L2 tag arrays where it
caches a small number of recently accessed L2 tag sets.
ReCast acts as a filter preventing L2 tag accesses and thus
it reduces power dissipation in the L2 tag array. The key
contribution of this work is S-Shift a simple and effective
indexing scheme that greatly enhances the utility of
ReCast at zero additional cost. We have shown that typical
L2 access patterns exhibit high locality in their set stream
and that practical (i.e., small and partitioned) ReCast
organizations can exploit most of this locality to avoid
accessing the L2 tag array. We demonstrated that a
practical ReCast of 64-entries partitioned into eight sub-
banks of eight entries each and that uses our S-Shift
indexing scheme can filter about 50% of all L2 tag probes
on the average. This translates to a 38% reduction in
power compared to the conventional L2 tag array
organization for a writeback L1 and to an 85% reduction
in power for a writethrough L1. In terms of overall L2
power, we demonstrate an average reduction of 16% and
52% for the writeback and writethrough L1 caches
respectively. The overall impact on performance was
found to be negligible.

Acknowledgements

This research was supported in part by the Semiconductor
Research Corporation under contract 901.001, an NSERC
Discovery Grant, an NSERC Equipment Grant and a Canada
Foundation for Innovation Equipment Grant.

References
[1] B. Bateman, C. Freeman, J. Halbert, K. Hose, and E. Reese. A 450Mhz

512KB Second-Level Cache with a 3.6GB/S Data Bandwidth. In the Proc.
of the IEEE International Solid-State Circuits Conference, 1998.

[2] N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis. Architectural
and compiler support for energy reduction in the memory hierarchy of

high performance processors. In the Proceedings of the International
Symposium on Low Power Electronics and Design, Aug. 1998.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In Proc. of the 27th
Annual International Symposium on Computer Architecture, June 2000.

[4] D. Burger and T.M. Austin. The SimpleScalar Tool Set, Version
2.0.Technical Report UW-CS-97-1342. Computer Sciences Department,
University of Wisconsin-Madison, June 1997.

[5] Y.-J. Chang, S.-J. Ruan and F. Lai, Design and analysis of low-power
cache using two-level filter scheme, IEEE Transactions on VLSI, vol 11,
no. 4, Aug. 2003.

[6] R. Espasa, F. Ardanaz, J. Gago, R. Gramunt, I. Hernandez, T. Juan, J. S.
Emer, S. Felix, G. Lowney, M. Mattina, A. Seznec. Tarantula: A Vector
Extension to the Alpha Architecture. In the Proceedings of the 29th
Annual International Symposium on Computer Architecture, June 2002.

[7] M.B. Kamble and K. Ghose. Reducing Power in Superscalar Processors
using subbanking, multiple line buffers and bit-line segmentation. In the
Proceedings of the International Symposium on Low Power Electronics
and Design, 1999.

[8] R. E. Kessler and R. Jooss and A. Lebeck and M. D. Hill, Inexpensive
implementations of set-associativity. In the Proceedings of the 16th
Annual International Symposium on Computer Architecture, 1989.

[9] J. Kin, M. Gupta, and W. Mangione-Smith. The Filter Cache: An Energy
Efficient Memory Structure. In the Proceedings of the 30th International
Symposium on Microarchitecture, pages 184-193, Nov. 1997.

[10] Uming Ko, Poras T. Balsara, and Ashwini K. Nanda. Energy
Optimization of Multi-Level Processor Cache Architectures. In the Proc.
of the International Symposium on Lower Power Design, Aug. 1995.

[11] H.S. Lee and G.S. Tyson. Region-Based Caching: an energy-delay
efficient memory architecture for embedded processors. In the
Proceedings of the International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, pages pp. 120-127, Nov. 2000.

[12] R. Panwar and D. Rennels. Reducing the frequency of tag compares for
low power I-Cache design. In the Proceedings of the International
Symposium on Low Power Electronics and Design, Aug. 1995.

[13] G. Reinman and N.P. Jouppi. An Integrated Cache Timing and Power
Model. Technical report, COMPAQ Western Research Lab, 1999.

[14] C. Su and A. Despain. Cache Designs for Energy Efficiency. In the
Proceedings of the 28th Annual Hawaii International Conference on
System Sciences, pages 306-315, 1995.

[15] W.J. Bowhill et al. Circuit Implementation of a 300Mhz 64-bit Second
Generation Alpha CPU. Digital Journal vol. 7., 1995.

[16] D. H. Albonesi. Selective cache ways. In the Proceedings of the 32nd
Annual International Symposium on Microarchitecture, Nov. 1999.

[17] U. Ko, P. T. Balsara, and A. K. Nanda. Energy Optimization of Multilevel
Cache Architectures for RISC and CISC Processors. In the Proceedings
of the International Symposium on Low Power Electronics and Design,
Aug. 1998.

[18] H. Wang, T. Sun, and Q. Yang. CAT – caching address tags: A technique
for reducing area cost of on-chip caches. In the Proceedings of the 22nd
Annual International Symposium on Computer Architecture, June 1995.

[19] K. M. Wilson, K. Olukotun, and M. Rosenblum. Increasing cache port
efficiency for dynamic superscalar microprocessors. In the Proceedings
of the 23rd Annual International Symposium on Computer Architecture,
May 1996.

[20] Raksit Ashok, Saurabh Chheda, Csaba Andras Moritz, Cool-Mem:
Combining Statically Speculative Memory Accessing with Selective
Address Translation for Energy Efficiency, In the Proceedings of the 10th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2002

[21] K. Inoue, T. Ishihare and K.Murakami, Way-Predicting Set-Associative
Cache for High Performance and Low Energy Consumption, In the
Proceedings of the International Symposium on Low-Power Electronic
Design, August 1999.

[22] M. Huang, J. Renau, S.-M. Yoo and J. Torellas. L1 Data Cache
Decomposition for Energy Efficiency. In the Proceedings of the
International Symposium on Low-Power Electronics and Design, Aug.
2001.

[23] M.D. Powell, A. Agarwal, T. N. Vijaykumar, B Falsafi and K. Roy,
Reducing Set-Associative Cache Energy via Way-Prediction and
Selective Direct-Mapping, In the Proceedings of the 34th Annual
Symposium on Microarchitecture, Dec. 2001.

