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Abstract— Managing long verification error traces is one of the
key challenges of automated debugging engines. Today, debuggers
rely on the iterative logic array to model sequential behavior
which drastically limits their application. This work presents
Bounded Model Debugging, an iterative, systematic and practical
methodology to allow debuggers to tackle larger problems than
previously possible. Based on the empirical observation that
errors are excited in temporal proximity of the observed failures,
we present a framework that improves performance by up to
two orders of magnitude and solve 2.7× more problems than a
conventional debugger.

I. INTRODUCTION

Over the past decade, the cost and time of VLSI verification
and debugging has increased exponentially. Today, verification
takes up to 70% of the design time with as much as half
of this effort attributed to manual debugging. As a result,
automated and scalable debugging methodologies are needed
to aid engineers to efficiently localize the error sources.

In general, debugging techniques are used to localize the
error source once verification identifies its presence. The
inputs of a debugger are the erroneous circuit, an error trace
composed of an input vector sequence with initial state values
to reproduce the failure, and a corresponding correct output
vector sequence [1]. Operating at the gate-level, module-
level or Register Transfer Level (RTL), all components (gates,
modules, etc.) are suspects that may be responsible for the
failure [1]–[3]. Whether using simulation-based or formal-
based techniques [1], [4], [5], a debugger returns a list of
suspects (i.e., locations) where a fix can be applied either by
an engineer or an automated process to rectify the failure [6].

Although many advancements have been made recently
in the field of design debugging [1]–[3], current techniques
must scale to larger problems to be adopted by the industry.
For example, most modern debuggers operate on sequential
problems by constructing an Iterative Logic Array (ILA) or a
time frame expansion model [4], [7]. In this representation, the
combinational portion (i.e., transition relation) of the circuit is
replicated as many times as there are clock cycles in the error
trace or counter-example. Thus, with large designs and long
error traces, the ILA model can lead to overwhelming memory
requirements and performance degradation.

This problem is exacerbated when dealing with long error
traces from simulation-based (i.e. dynamic) verification. Un-
like counter-examples from equivalence checking or property
checking tools, simulation-based techniques, which account
for over 90% of verification performed [8], are especially
challenging as trace lengths can easily exceed thousands of
clock cycles. As a consequence, dealing with long error traces
is one of the premiere challenges of automated debugging
today.
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In the quest for scalable automated debugging tools, this
paper introduces Bounded Model Debugging (BMD). BMD is
not a stand-alone debugger, but is a systematic methodology
that can help existing debuggers cope effectively with long
traces. At its core, BMD is motivated by the observation that
errors are often excited and observed within close temporal
proximity. In other words, there is a high likelihood that the
cause of a failure is relatively close to the failure point. This
observation is exploited manually in practice by verification
engineers coping with the long traces when devising a divide
and conquer approach.

The BMD methodology begins by constructing a small
debugging problem based on a subsequence of the error trace
containing the first observed failure and some prior clock
cycles. The problem can be solved by existing debugging
algorithms, and analysis of the solutions determines whether
preceding clock cycles must be examined to guarantee com-
pleteness of the solutions. If required, a slightly larger problem
is constructed as the process re-iterates. In this manner, BMD
tackles the computationally intensive debugging problems by
formulating incrementally larger ones in succession as needed.
Furthermore, if resources are exhausted and complete debug-
ging is not feasible, a subset of the solutions can be returned
to the engineer. This work develops theory and performance
enhancing techniques to demonstrate the correctness and effi-
ciency of the methodology.

Experiments validate the motivation and analysis presented
through a large set of problems using OpenCores [9] and real-
life industrial designs. The BMD technique exhibits a run-
time improvement of as much as two orders of magnitude
when compared to a conventional debugging methodology.
Furthermore, it is more robust as it solves more than 93% of
the problems when compared to just 35% using a stand-alone
debugger.

The remaining paper is organized as follows. Section II
motivates this work through an illustration and probabilistic
analysis. Section III sets the groundwork for the basic method-
ology while Section IV presents performance improvements.
Section V contains the experiments and the last section con-
cludes the paper.

II. MOTIVATION

A. Illustrative Example

In combinational circuits, because there are no memory
elements, errors are excited in the same clock cycle that the
failing behavior is observed. In sequential circuits, the situation
can be much more complex since the erroneous behavior may
propagate across many consecutive clock cycles as values get
latched in memory elements until error effects are observed
at a primary output. Hence, when debugging simulation traces
in sequential machines, many clock cycles must be considered
prior to the observation of the failure.
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Fig. 1. Motivating example for BMD

Consider the sequential circuit in Fig. 1(a). Here, assume
that five clock cycles are necessary to observe the first error
at the primary output. The ILA representation of five cycles
shown in Fig. 1(b) is used to demonstrate how errors can be
excited in different time frames to cause the observed failure
without any knowledge of the input stimulus.

Considering gate A, notice that if the error is excited in the
first two cycles, gate A cannot be the error source because
there is no propagation path from A in cycle one or two to the
primary output in cycle five. If it is the case that an error on
gate A is excited in cycle three, this failure cannot be observed
in time frames three or four since the failure is first observed
in time frame five. Similarly, the error may be excited in time
frame four, but a failure cannot be observed in that time frame.
Finally, the error can be both excited and observed in time
frame five. This informal analysis, without knowledge of input
stimulus, provides us with the intuition that the likelihood of
an error source being present in a clock cycle increases as
we approach the cycle where the failure is observed. This
observation is analyzed probabilistically next.

B. Probabilistic Analysis of Error Behavior

BMD is heuristic motivated by the empirical observation
that functional errors are usually excited in temporal proximity
to observation points such as primary outputs. The purpose
of Proposition 1, below, is to probabilistically explain the
intuition developed in the previous section. Note that in order
to simplify the proof, the proposition contains assumptions
that may not be exact in practice and thus the result cannot be
generalized. However, the result can provide insight into the
effectiveness BMD and its empirical findings of Section V.

Proposition 1: Assuming that a single error is excited in
clock cycle 1 and no other errors are excited in any other clock
cycles, let propi be the probability of the error propagating
from cycle i to i + 1 and obsi the probability of observing a
failure in clock cycle i, given that the error has propagated
to that cycle. Also assume that the input vector sequences
are temporally independent and stationary random sequences.
Then, the probability of observing the first failure in clock

cycle d is pd =
d−1

∏
i=1

propi ×
d−1

∏
i=1

(1−obsi)×obsd .

Proof: Let Wi = {an error propagates from cycle i to
cycle i + 1 if it has propagated to cycle i }, and Oi = {a
failure is observable in cycle i if an error has propagated to
cycle i }, and E1 = {an error is excited in clock cycle 1}.
Probability pd can be stated in terms of events Wi, Oi, and
E1:

pd = P

(
d−1\

i=1

Wi ∩
d−1\

i=1

Oi ∩Od

∣∣∣ E1

)
. By applying the identity

P
(
A∩B

∣∣ C
)
= P

(
A
∣∣ C
)
×P

(
B
∣∣ A∩C

)
, we get pd = P

(
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i=1

Wi
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)
×

P

(
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∣∣∣ d−1\

i=1

Wi ∩E1

)
× P

(
Od
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i=1
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d−1\

i=1
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)
. Here, the

events Od and
d−1\

i=1

Oi are conditionally independent of

E1 ∩
d−1\

i=1

Wi. Thus, P

(
Od

∣∣∣ d−1\

i=1

Oi ∩
d−1\

i=1

Wi ∩E1

)
= P

(
Od
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)
.

As a result, pd can be simplified

pd = P

(
d−1\

i=1

Wi

∣∣∣ E1

)
×P

(
d−1\

i=1

Oi

∣∣∣ d−1\

i=1

Wi ∩E1

)
×P

(
Od

∣∣∣ d−1\

i=1

Wi ∩E1

)
.

One of the assumptions made is that input vectors in
successive cycles are all (temporally) independent. Thus, any
Wi is independent of Wj for all cycles i �= j: P

(
Wi ∩Wj

∣∣ E1

)
=

P
(
Wi

∣∣ E1

)
×P

(
Wj

∣∣ E1

)
.

As a result, P

(
d−1\

i=1

Wi

∣∣∣ E1

)
=

d−1

∏
i=1

P
(
Wi

∣∣ E1

)
.

Similarly, by the assumption, any Oi is independent of O j for
all cycles i and j:

P

(
Oi ∩O j

∣∣∣ d−1\

k=1

Wk ∩E1

)
=P

(
Oi

∣∣ d−1\

k=1

Wk ∩E1

)
×P

(
O j

∣∣∣ d−1\

k=1

Wk ∩E1

)
.

As a result, P

(
d−1\

i=1

Oi

∣∣∣ d−1\

i=1

Wi ∩E1

)
=

d−1

∏
i=1

P

(
Oi

∣∣ d−1\

k=1

Wk ∩E1

)
.

Using the above, pd can be simplified to:

pd =
d−1

∏
i=1

P
(
Wi

∣∣ E1

)
×

d−1

∏
i=1

P

(
Oi

∣∣ d−1\

k=1

Wk ∩E1

)
×P

(
Od

∣∣∣ d−1\

i=1

Wi ∩E1

)
.

In the assumptions, prop j and obs j are defined as:

prop j = P
(
Wj

∣∣ E1

)
and obs j = P

(
O j

∣∣∣ j−1\

i=1

Wi ∩E1

)
for some cycle j.

Using these definitions, pd can be presented as

pd =
d−1

∏
i=1

propi ×
d−1

∏
i=1

(1−obsi)×obsd

We can simplify pd by assuming that propi = prop and
obsi = obs that remain constant for all cycles i resulting in
pd = propd−1 × (1− obs)d−1 × obs. This simplified relation-
ship is plotted in Figure 2 for three values of prop = obs =
{0.1,0.5,0.9}. For values at d = 1 we have pd = P(O1|E1) =
obs. The negative exponential relationship is clear as the three
curves are no longer visible when d > 6. Although overly
simplified, the expression for pd aligns with the observations
made in the field as well as the experimental results of
Section V.

III. BOUNDED MODEL DEBUGGING

The Bounded Model Debugging (BMD) methodology pro-
posed in this paper leverages the insight that errors are
more likely to be closer rather than farther from the failure
observation point. Note that we do not propose a debugger
but a complete and systematic technique that can be used
with existing debuggers. BMD allows debugging techniques to
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Fig. 2. Three curves of pd as function of d

find error sources called suspects by considering only a subset
of the error trace. Conceptual analogies can be drawn with
Bounded Model Checking as both techniques incrementally
operate on limited models of the problem to efficiently manage
the available resources [7], [10].

We define a suffix as a subsequence of an error trace that
includes the last clock cycle where the failure is first observed.
Given an error trace of k f clock cycles, the BMD methodology
starts by considering a short suffix ranging from clock cycle
k1 to k f , where k1 is a cycle greater than one but less than
k f . In the remaining of this paper, vBMD refers to the suffix of
the error trace. Note that the suffix not only contains the input
vector sequence but also the expected output vector sequence
and the set of state values for state elements in clock cycle
k1 −1. These values can be captured by simulating the circuit
from clock cycle 1 to k1−1 under the input stimulus sequence.
Using the suffix vBMD, a conventional debugger [1] will solve
for the error suspects using a smaller ILA of size k f −k1 rather
than size k f .

Due to the smaller ILA size, the above procedure can
provide results faster while requiring fewer memory resources.
However, the solution set may be incomplete as some error
sources may be excited in clock cycles prior k1. In this case a
longer suffix starting from cycle k2 < k1 is required to ensure
completeness. The process continues with i BMD iterations
with a suffix starting from cycle ki until all solutions are found.

We can detect whether all solutions are found in any
iteration i by asking the debugger if any memory elements
(i.e. flip-flops or latches) in cycle ki are found as solutions.
Since these solutions point to the initial state of the debugging
problem, we call these initial state suspects. When a debugger
finds any initial state suspects, it indicates that an error may
be excited in cycles prior to ki (since state elements are the
only components that can propagate signal values across clock
cycles) and a longer suffix must be analyzed.

Figure 3 helps illustrate the BMD formulation as it presents
an ILA representation for a trace of length k f clock cycles.
Each time frame is labelled and corresponds to the unrolling
of the transition relation in the given clock cycle with inputs
and outputs shown on the top and bottom of the time frames

k fki k1k21

initial state
suspects for

iteration i

iteration 1

iteration 2iteration i

Fig. 3. Illustration of BMD formulation for multiple iterations
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Fig. 4. Two clock cycle example annotated with correct/erroneous values

respectively. For each BMD iteration, a label shows the
subsequence of time frames used. In iteration i, the initial
state suspects are shown as the current states in cycle ki.

A. Impact on Error Cardinality

For most automated debuggers, a parameter maxN is defined
by the user to indicate the maximum number of suspects
sought [1]. Subsequently, for performance enhancement rea-
sons, the engine attempts to find N error locations while
sequentially increasing the value of N = 1,2, . . . ,maxN. The
proposed BMD methodology can impact the error cardinality
maxN used by automated debuggers as follows.

Consider the two-cycle ILA in Figure 4 where the error is
on gate A. In this case, when employing BMD with an initial
suffix of length one and looking for N = 1 errors, only suspect
gate B is found as a solution. More specifically, only the
function of gate B can be changed to rectify the error observed
at the primary output. The erroneous gate A and initial state
suspect C are not returned as solutions since neither one can fix
the failure on its own in the second cycle. As a result, because
C is not contained in the solution set, the suffix length will not
be increased and the method terminates erroneously.

This erroneous behavior is due to the fact that the error from
gate A in the first cycle propagates to two distinct elements
in the second cycle (C and B), whose combined effect result
in the observed error. Thus the debugging problem requires
a cardinality N = 2 with suffix length of one. For example,
if N = 2 with k1 = 2, then the solution {B, C} is returned.
Since C is also an initial state suspect, the suffix length will
be increased and the algorithm will iterate successfully.

The above example shows that the maximum error car-
dinality for BMD may be different than maxN set by the
user. The following theorem presents an upper bound for the
error cardinality mandated to find all initial state suspects and
guarantee completeness. This estimate is refined in Section IV.

Theorem 1: Consider an erroneous circuit with maxN errors
and a trace v where some errors are excited prior to clock cycle
ki. The BMD methodology guarantees to debug cycles prior
to ki if the maximum error cardinality is maxNBMD = NDFF +
maxN, where NDFF is the total number of state elements.

Proof: For any debugging problem where the first failure
is observed in cycle k f , consider the case where maxN errors
are excited both before and after some clock cycle ki. In the
worst case the error effects are latched in all state elements in
clock cycle ki. If BMD is applied using a trace vBMD of length
k f −ki, then error suspects must be found on every maxN gate
as well as every state element. Thus in order to allow BMD
to debug prior cycle to ki, a maximum error cardinality of
maxNBMD = NDFF +maxN must be used.

Under the suffixes of different BMD iterations, the error
cardinality can increase, as shown above, or decrease. At
every iteration the value of N must be reset to 1 regardless
of its value in previous iterations to ensure that the smallest
cardinality solutions are found.
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IV. PERFORMANCE ENHANCEMENTS

The previous section introduced the basic BMD method-
ology while guaranteeing solution completeness. This section
presents several performance enhancing techniques.

A. Reducing the Number of Initial Error Suspects

One improvement relates to the set of initial state suspects.
As stated by Theorem 1, the maximum error cardinality for
a BMD problem can grow according to the number NDFF

of state elements in the circuit. Since the complexity of
the debugging problem grows exponentially with the error
cardinality [1] it becomes important to develop techniques to
reduce the number of initial error suspects.

One way to avoid a large increase in the error cardinality, is
to group all initial suspects together as a single suspect. Since
any solution set with initial state suspects requires increasing
the length of the suffix for future iterations of BMD, there is
no need to distinguish which initial state suspects are found.
This is formalized in the theorem that follows.

Theorem 2: Consider an erroneous circuit with maxN errors
and a trace v where some errors are excited before clock cycle
ki. The BMD methodology guarantees to debug cycles prior to
ki if the maximum error cardinality is maxNBMD = maxN +1
and all initial state suspects are grouped together.

Proof: For any debugging problem where the first failure
is observed in cycle k f , consider the case where maxN errors
are excited both before and after some clock cycle ki. In the
worst case the error effects are latched in all state elements in
clock cycle ki. If BMD is applied using a trace vBMD of length
k f − ki, then error suspects must be found on every maxN
gate as well as every state element. Since all state elements
in cycle ki are grouped together, for every initial state suspect
sought the single group will be found. Thus in order for BMD
to debug prior cycle to ki, a maximum error cardinality of
maxNBMD = maxN +1 must be used.

B. Reusing solutions

Another improvement relates to the iterative nature of the
BMD methodology. At every iteration, debugging problems
with longer suffixes may contain solutions that are already
found through previous iterations with smaller suffixes. For
example, consider two suffixes, one from clock cycle ki to k f ,
while the other is from clock cycle k j to k f , where ki > k j.
Every solution set s for the shorter suffix that does not contain
any initial state suspects is also a solution for the longer suffix.
In other words, since the interval k j to k f contains ki to k f ,
solution set s will also be a solution in the larger suffix.

This observation allows BMD to return viable solutions to
the end user prior to completing the iterative process. Further-
more solutions found in previous iterations can be skipped
to improve overall performance. In a SAT-based debugging
framework for instance, this can be achieved by adding a
conflict clause to the CNF [1] to block solutions from being
found in subsequent iterations.

C. Overall Algorithm

Pseudo-code for the BMD methodology described in this
paper, including the performance improvements of the previ-
ous section, is shown in Algorithm 1.

Initially, BMD uses the suffix from clock cycle k f − incr
to clock cycle k f as shown on line 3. The while loop shown
from line 4 to line 27 comprises the BMD iterations where

Algorithm 1 The complete BMD algorithm

1: exit condition = 0, N = 1
2: Final Solutions = /0
3: k = k f − incr
4: while (!exit condition) do
5: initial states = get current states(C,k−1)
6: vBMD = {initial states,stimulusk→k f

,responsek→k f
}

7: S = suspect locations∪group(initial state suspect)
8: Solutions = debug(C,vBMD,N,S)
9: for all Solution ∈ Solutions do

10: valid solution = 1
11: for all Suspects ∈ Solution do
12: if (is initial state(Suspect)) then
13: k = k− incr
14: N = 0
15: valid solution = 0
16: end if
17: end for
18: if (valid solution == 1) then
19: Final Solutions = Final Solutions∪Solution
20: end if
21: end for
22: if (N == maxN +1) then
23: exit condition = 1
24: else
25: N = N +1
26: end if
27: end while
28: return Final Solutions

successive debugging problems are constructed with longer
suffixes. On line 5 the initial state constraints are captured
by simulating the circuit C for k−1 cycles, while on line 6,
the stimulus, response and initial state values are combined to
construct vBMD. Grouping the initial state suspects as presented
in Section IV-A and adding all the potential suspects to S is
performed on line 7. On line 8, a debugger is called to solve
the constructed problem with error cardinality N.

Once solutions are found by the debugger, determining to
extend the length of the suffix is decided on line 12 based on
whether the grouped initial state suspect is found. Lines 13–14
increase the length of the suffix and reset the error cardinality.
When a solution does not contain the initial state suspect, the
solutions are added to the final set as shown on line 19. Finally,
the BMD process terminates when the maximum user defined
cardinality maxN is reached in line 22. Not shown here, are
termination conditions based on resource limits such as time-
out and memory-out.

V. EXPERIMENTS

In this section, we present experimental results of the
proposed BMD methodology. All experiments are conducted
on a single core of a Core 2 Quad 2.66GHz machine with 8GB
of memory. The debugger used is a hierarchical sequential
engine developed in C++ based on the concepts of [11] with
a Verilog frontend to allow for RTL-based debugging. The
SAT solver used is MiniSAT [12]. In the following this tool
is referred to as the stand-alone debugger.

The circuits selected for experiments are Verilog RTL
designs from OpenCores [9] as well as three industrial de-
signs (fxu, rx comm, s comm) provided to the authors by
semiconductor firms. In each of these designs one or more
errors are added at the RTL level. For example these errors
may be wrong state transitions, incorrect RTL operations, or
even wrong module instantiations. It is important to emphasize
that these errors at the RTL often translate into dozens of
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Problem
problem stats stand-alone debugger proposed BMD

# gates # DFFs
# cyc run-time

# sols found
run-time

# iters # sols
iter improv.

(kf ) (s) (s) found (×)

ac97 ctrl-1 25310 2346 978 2613.62 49 yes 204.57 10 7 0 6.09
ac97 ctrl-2 25288 2345 670 1245.19 34 yes 747.24 10 13 1 1.67
div64bits-1 74846 5512 108 713.01 21 yes 1264.49 10 20 2 0.56
fdct-1 377801 5717 182 MO N/A no TO 5 38 0 N/A
fdct-2 377801 5717 186 MO N/A no TO 4 48 2 N/A
fpu-1 82371 1083 316 2108.97 6 yes 201.01 4 6 1 10.49
fpu-2 22953 515 640 TO 10 no 333.00 10 24 1 10.81
fxu-1 602673 29080 28 1958.15 32 yes 479.14 1 32 1 7.51
fxu-2 267423 12016 154 TO 3 no 174.36 1 28 1 4.09
mem ctrl-1 46168 1145 681 2190.29 5 yes 22.43 1 5 1 97.65
mem ctrl-2 46168 1145 757 TO 5 no 28.35 1 11 1 126.98
rx comm-1 585641 30339 675 MO N/A no 452.97 1 30 1 7.95
rx comm-2 585641 30339 253 MO N/A no 331.19 1 18 1 10.87
rx comm-3 585632 30339 573 MO N/A no 369.09 1 5 1 9.75
rx comm-4 220456 18333 180 2240.73 85 yes TO 3 81 7 0.62
rx comm-5 585265 30339 99 TO 54 no 275.79 1 15 1 13.05
rx comm-6 585641 30339 560 MO N/A no 393.01 1 17 1 9.16
s comm-1 779607 29967 212 MO N/A no TO 4 21 1 N/A
s comm-2 779607 29967 212 MO N/A no TO 4 20 3 N/A
s comm-3 779575 29967 212 MO N/A no TO 4 14 1 N/A
s comm-4 779607 29967 132 MO N/A no TO 3 71 1 N/A
s comm-5 790407 29967 132 MO N/A no TO 3 39 2 N/A
spi-1 2942 185 251 973.18 65 yes 151.07 10 63 1 3.53
spi-2 2954 185 648 MO N/A no 106.47 10 57 1 33.81
vga-1 153837 17102 863 MO N/A no 553.35 3 63 1 6.51
vga-2 153837 17102 902 MO N/A no 1336.67 3 33 1 2.69
vga-3 155370 17206 175 1626.64 63 yes 685.95 3 83 1 2.37
vga-4 154137 17138 209 1531.70 33 yes 163.03 1 33 1 9.40
vga-5 154609 17146 381 MO N/A no 2982.43 5 29 3 1.21
vga-6 153837 17102 849 MO N/A no 166.52 1 8 1 21.62
wb-1 4479 251 269 466.03 14 yes 553.35 3 63 1 0.84

TABLE I

CIRCUIT AND PERFORMANCE STATISTICS WITHOUT BMD

error locations at the gate-level. Every instance of the designs
with an inserted error is a debugging problem used in the
experiments. Each debugging problem has a corresponding
error trace which includes stimulus vectors and expected
response vectors provided by the testbench.

The experimental results presented in Table I are grouped
in three sections. Section one provides a summary of the
debugging problems. Section two, shows the performance
and results of the stand-alone debugger. While section three
summarizes the results of the proposed BMD methodology.
In section one of Table I, columns one, two and three label
the debugging problem, and show the gate and DFF count,
respectively. Column four shows the number of clock cycles in
the entire error trace, corresponding to the first clock cycle k f

where a failure is observed. The problems used are specifically
chosen because of their large circuit size (over 100K gates),
long error trace (hundreds of clock cycles) or both. This
combination results in hard problems that push the capabilities
of the debuggers.

The next three columns of Table I present debugging
statistics when using the stand-alone debugger. Column five
shows the run-time in seconds required to solve each problem.
Column six presents the number of solutions found, equivalent
to the total number of equivalent error locations found with
maxN = 1. Column seven states whether the actual inserted
RTL error is found as one of the solutions. In cases where more
than one hour of CPU is used, a time-out (TO) is declared and
where more than 8GB of memory is required, a memory-out

(MO) is declared. Note that some solutions may be available
for time-out cases, whereas no solutions are found when a
debugging formulation uses excessive memory. In summary,
of the 31 debugging problems, three time-out, 17 memory-out,
and the inserted error is found in only 11 or 35% of all cases.

The BMD methodology introduced in this paper is imple-
mented according to Algorithm 1. An initial suffix length of 10
clock cycles is used as well as an increment of 10 clock cycles
each time the suffix is increased. A maximum limit of 100
clock cycle is set as a hard limit, where the BMD methodology
terminates. The performance of BMD is presented in the last
five columns of Table I. In this section, column one presents
the run-time in seconds required by BMD to solve each prob-
lem. Column two shows the number of debugging iterations
performed until the process terminates. The corresponding
total number of solutions found by all iterations are shown in
column three. When the inserted error is found, the iteration in
which the error is found is listed in column four. If the inserted
error is not found, a zero (0) is listed in the column. The final
column presents the performance improvement achieved by
the proposed methodology over the stand-alone debugger.

The benefit of the BMD methodology is apparent based on
multiple criteria. First notice that none of the problems solved
with our methodology exceed the 8GB memory limit while
17 instance resulted in a memory-out with the stand-alone
debugger. Instead, with BMD, eight problems run over the one
hour time limit. It is clear that our technique provides a trade-
off between the time and memory resources. This trade-off is
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seen favorably because the overall number of problems where
the inserted error is found increases from 11 to 29 when using
BMD. In practice, the complete problem need not be solved
in order to find the error source or to provide vital debugging
information to the user.

When using BMD, as shown in the second to last column,
for only two problems the inserted RTL error is not found
versus 20 with the stand-alone debugger. These two cases are
ac97 ctrl-1 where the maximum suffix length of 100 clock
cycles is reached and fdct-1 where the time-out limit of one
hour is reached. Furthermore, notice that for all problems our
approach finds at least some solutions versus 17 problems for
which the stand-alone debugger did not find any solutions due
to memory-outs. Again, this data favors the memory versus
time trade-off of our technique.

The data in Table I reaffirms the probabilistic analysis of
Section II-B that errors are excited in temporal proximity to
the failure point. In the column # iter, 11 of 31 problems only
require one BMD iteration or a suffix of 10 cycles to debug the
problem completely. On average less than 15% of the original
trace length is used. Without considering cases that time-out,
only 6 of 23 problems or 26% of cases require more than 100
clock cycles to provide complete solutions.

Finally, observe the run-time improvement of the our
methodology over the stand-alone debugger shown in the last
column of Table I. Here improvements are achieved from
1.21× to 126.98×, or two orders of magnitude. Only in
three cases, div64bits-1, rx-comm4 and wb-1 a performance
degradation is observed because the multiple iterations result
in longer run-time than running the stand-alone debugger.
However, it is clear that BMD is very effective for the vast
majority of problems.

Since our technique only uses as much memory as required
by the suffix, memory requirements are only as much as the
stand-alone debugger when the entire trace must be analyzed.
Figure 5 and 6 provide more insight as they plot the memory
requirement as a function of CPU time for problems fpu-2 and
vga-5. The memory requirement graph follows a rising step
pattern each time the suffix length is increased. For example,
in Figure 6, there are five distinct plateaus corresponding to
the debugger solving problems with suffixes of length 10, 20,
30, 40 and 50. Notice that at each iteration, the solve time
appears to increase at a faster rate than the suffix length. For
example, the first iteration, which requires approximately 1.5
GB, takes under 100 seconds to solve, while the last iteration,
which requires approximately 6.5 GB, takes approximately
600 seconds to solve.

The final analysis of the BMD methodology is with respect
to the number of solutions found as a function of iterations.

As shown in Figure 7, for the sample problems selected,
the number of solutions found by BMD increases initially
and plateaus in later iterations. Notice that the number of
solutions does not always increase, since some solutions which
may contain initial state suspects in prior iterations may be
removed as solutions in future iterations. This graph portrays
our methodology favorably as it indicates that increasing the
suffix length after a certain point does not result in any more
new solutions. As a result, the BMD approach of starting with
a small suffix and systematically increasing the suffix length
appears to be effective for debugging.

VI. CONCLUSION
This work introduces the bounded model debugging

methodology to efficiently and systematically tackle problems
with long error traces. The contribution is based on the
empirical observation that errors are excited and failures are
observed in temporal proximity. The methodology proposed
is found to be faster than a conventional debugger in 90%
of cases. Furthermore it is more robust, as the error is found
in over 93% of problems compared to 35% without BMD.
Overall, the proposed technique allows large problems with
very long traces to be handled in an efficiency manner by
existing debuggers.
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