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Abstract—Efficient and early verification of the chip power
distribution network is a critical step in modern IC design.
Vectorless verification, developed over the last decade as an
alternative to simulation based methods, requires user-specified
current constraints and checks if the corresponding worst-case
voltage drops at all grid nodes are below user-specified thresholds.
However, obtaining/specifying the current constraints remains
a burdensome task for design teams. In this paper, we define
and address the inverse problem: for a given grid, we will
generate circuit current constraints which, if adhered to by the
underlying logic, would guarantee grid safety. There are many
potential applications for this approach, including various grid
quality metrics, as well as power grid-aware placement and
floorplanning. We give a rigorous problem definition and develop
some key theoretical results related to maximality of the current
space defined by the constraints. Based on this, we then develop
two algorithms for constraints generation that target key quality
metrics like the peak total power allowed by the grid and the
uniformity of the temperature distribution.

I. INTRODUCTION

A well-designed chip power/ground network should deliver well-
regulated voltages at all grid nodes in order to guarantee correct
logic functionality at the intended design speed. However, with
the continued scaling of semiconductor technology, there’s been
a corresponding increase in chip operating frequency and power
dissipation. As a result, modern high-performance integrated circuits
often feature large switching currents that flow in the power and
ground networks, causing excessive supply voltage variations that put
both circuit performance and reliability at risk. Therefore, efficient
verification of power grids is a necessity in modern chip design. We
will use the term “power grid” to refer to either the power or ground
distribution networks. In this paper, we focus on RC power grids,
but we are working to extend this to the RLC case.

Typically, power grid verification is done by simulation. The
grid is simulated to determine the voltage drop at every node,
assuming detailed information on the current sources tied to the grid,
which represent currents drawn by the underlying circuitry. However,
this method has the drawback that it requires the simulation of an
exhaustive set of current waveforms in order to cover all possible
scenarios and guarantee power integrity. A number of non-exhaustive
methods have been proposed to implement some type of search in
current space. For example, there are search techniques that find
vectors to maximize the current drawn from the power network [1],
as well as methods that use voltage drop analysis based on current
statistics [2]. Another notable limitation of simulation based methods
is that they cannot be applied at an early stage of the design flow,
when detailed information on the circuit currents is not yet available.

To overcome these issues, a power grid verification scheme was
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proposed in [3] that does not require full knowledge of the circuit
currents. Contrary to simulation-based approaches, this method relies
on information that may be available at an early stage of the design, in
the form of current constraints. This type of approach will hence be
referred to as a vectorless approach. Essentially, vectorless verification
consists of finding the worst-case voltage fluctuations achievable at
all nodes of the grid under all possible transient current waveforms
that satisfy user-specified current constraints. The grid is said to be
safe if these fluctuations are below user-specified thresholds at all
grid nodes. These methods are often formulated as linear programs
(LPs) to find the worst-case voltage drop under current constraints.

Several improvements have been made to mitigate the runtime
complexity of vectorless verification. Because this method requires
as many LPs as the number of nodes in a grid, [4] proposed a sparse
approximate inverse technique to reduce the size of the LPs. Due
to topological properties of the grid, voltages of grid nodes are not
completely independent, which was exploited by dominance relations
among voltage drops in [5]. Recently, in [6], a restriction of the
problem to a hierarchically structured set of power constraints was
considered to achieve a significant runtime improvement. Another
interesting technique was proposed in [7] that verifies each subgrid of
the original network independently, imposing boundary conditions on
the neighboring nodes of that subgrid, i.e. without explicitly involving
nodes that are not directly connected to the subgrid.

These methods have been fully developed over the last decade [8],
but a key question remains: how would one obtain/specify the current
constraints? In our work with colleagues in the industry, this point
always comes up and remains a hurdle to adoption of these methods!
The constraints are meant to capture the peak power dissipation of
circuit blocks. It’s easy to see how to get the constraints for a logic
block that is available (down to the cell level) and small enough to
exhaustively simulate, by using an “offline” characterization process.
Otherwise, if the block is unavailable or too large to simulate, one
must rely on engineering judgment, and/or expertise from previous
design activities, which places an undue burden on users. Our work
is aimed at addressing this problem.

Instead of the traditional approach of expecting users to provide
current constraints that would be used to check if the grid is safe
(what one might call the forward problem), we propose to solve the
inverse problem: given a grid and the allowed voltage drop thresholds
at all grid nodes, we will generate circuit current constraints which,
if satisfied by the underlying circuitry, would guarantee grid safety.
This is a significant departure from previous work and represents the
first time, in our experience, that this problem has been addressed.

We believe that these current constraints would encapsulate much
useful information about the grid. First of all, the availability of
current constraints at an early stage of the design process provides
a way to drive the rest of the design process, because these are
essentially power budgets for the logic blocks under the grid. If
all design teams respect these budgets throughout the design flow,
then the grid is safe by construction at the end of the design. If the
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constraints impose too severe a budget on a certain block in some
corner of the die, for example, then one can address the problem
early on by modifying the grid, while it is still easy to do so, and
generating a fresh set of constraints.

Alternatively, if the budgets are too severe for a candidate layout
location of a high level block, then perhaps the floorplan needs to be
reconsidered. Indeed, the constraints can be used to drive automated
floorplanning as well as placement, so that grid-aware placement may
become feasible, something that has never been done before.

Furthermore, as we will see below, our work provides a high-level
and early way to qualify the candidate grid and assess how good it is
relative to various quality metrics. For example, using our approach,
one can check what maximum level of peak power dissipation for
the whole die (or for a major part of the die) can be safely supported
by the candidate power grid. If the design has a peak power budget
of 100 Watts, for example, then the grid must be able to support the
corresponding level of peak current in the underlying circuit, and we
will see that we can verify that type of objective. Alternatively, one
may be interested in spreading the power dissipation across the die
in some uniform fashion, in order to avoid thermal hot-spots. We can
target that objective by looking for constraints that spread the circuit
current budget uniformly across the die area. Modifications of the
grid may be required to allow for that, and our engine can identify
whether these are needed, very early in the design process.

II. BACKGROUND

We will review properties of a special class of matrices that will
be crucial to the analysis to follow, and describe the power grid model.
Throughout the rest of the paper, we will use the notation X ≥ 0 (or
X > 0), for any matrix X , to denote that Xij ≥ 0 (or Xij > 0),
∀i, j, respectively. This notation will be used for vectors as well.
We will also use the notation R+ or R

n
+ to denote the non-negative

part of the real space, i.e., Rn
+ = {x ∈ R

n : x ≥ 0}. Whenever the
product of a number of matrices Ai by a vector v is followed by the
notation |i, as in A1A2 · · ·Akv|i, the expression shall denote the ith
entry of the vector resulting from the product A1A2 · · ·Akv.

A. The Class of M-matrices

Definition 1. A square matrix G is called an M-matrix if:

gij ≤ 0, ∀i �= j and R(λi) > 0, ∀i (1)

where R(λi) is the real part of the eigenvalue λi.

Lemma 1. [9] If G is an M-matrix, then G−1 exists and its entries
are non-negative, which we denote by G−1 ≥ 0.

An n × n matrix G can be used to construct a graph G whose
vertices are {1, 2, . . . , n} and whose directed edges are (i, j) for
every gij �= 0. If the graph is strongly connected (i.e, if it has a
directed path from every vertex to every other vertex), then the matrix
is said to be irreducible. A matrix G is said to be diagonally dominant
if |gii| ≥∑j �=i |gij |, ∀i. A square matrix G is said to be irreducibly
diagonally dominant if it is irreducible, it is diagonally dominant, and
there is an i ∈ {1, 2, . . . , n} for which |gii| >∑j �=i |gij |, i.e., it is
strictly diagonally dominant in at least one row.

Lemma 2. [10] If G is irreducibly diagonally dominant with gii > 0,
∀i, and gij ≤ 0, ∀i �= j, then G is an M-matrix and its inverse has
strictly positive entries, which we denote by G−1 > 0.

B. Power Grid Model

Consider an RC model of the power grid, where every grid metal
branch is represented by a resistor, and where nodes are used to
represent either a via or a connection of more than two branches

on the same metal layer. We assume that there exists a capacitor
from every node to ground and we ignore all line-to-line coupling
capacitance. In a power grid, some nodes have ideal current sources
(to ground) representing the currents drawn by the logic circuits tied
to the grid at these nodes, while other nodes may be connected to ideal
voltage sources representing the connection to the external voltage
supply Vdd. Excluding the ground node, let the power grid consist of
n+p nodes, where nodes 1, 2, . . . , n are the nodes not connected to a
voltage source, and the remaining nodes (n+1), (n+2), . . . , (n+p)
are the nodes where the p voltage sources are connected. Let i(t) be
the non-negative vector of all the m current sources connected to the
grid, whose positive (reference) direction of current is from node-
to-ground. Without loss of generality, suppose that nodes attached
to current sources are numbered 1, . . . ,m, where m ≤ n. Let
H =

[
Im 0

]T be an n×m matrix where Im is the m-dimensional
identity matrix, and let is(t) = Hi(t). Modified Nodal Analysis
(MNA) [11] can be used to construct the system model [8] for the
power grid:

Gv(t) + Cv̇(t) = is(t) (2)

where v(t) is the n × 1 vector of time-varying voltage drops
(difference between Vdd and true node voltages); C is the n × n
diagonal non-negative capacitance matrix, which is non-singular
because every node is attached to a capacitor; G is the n × n
conductance matrix, which is known to be symmetric and diagonally
dominant with positive diagonal entries and non-positive off-diagonal
entries. Assuming the grid is connected (so that G is irreducible) and
has at least one voltage source (so G is strictly diagonally dominant
in at least one row), then G is irreducibly diagonally dominant and,
by Lemma 2, we have that G is an M-matrix with G−1 > 0.

Using a finite-difference approximation for the derivative, such
as a Backward Euler numerical integration scheme v̇(t) ≈
(v(t)− v(t−Δt)) /Δt, the grid system model (2) leads to:

v(t) = A−1Bv(t−Δt) +A−1is(t) (3)

where B = C/Δt is an n× n diagonal matrix with bii > 0, ∀i, and
A = G + B. Because G satisfies the conditions of Lemma 2, then
it’s clear that A = G+B also satisfies the same conditions, so that
A is an M-matrix with A−1 > 0. Let M = A−1 > 0 and define the
n ×m matrix M ′ = MH > 0. Furthermore, because B = A − G,
then In+G−1B = In+G−1(A−G) = G−1A where In is the n×n
identity matrix. But In ≥ 0, G−1 > 0, and B ≥ 0 with bii > 0, ∀i,
so that:

G−1A > 0 (4)

III. PROBLEM DEFINITION

We will introduce the notion of a container for a vector of current
waveforms, which will help us express constraints that guarantee grid
safety.

Definition 2. (Container) Let t ∈ R, let i(t) ∈ R
m be a bounded

function of time, and let F ⊂ R
m be a closed subset of R

m. If
i(t) ∈ F , ∀t ∈ R, then we say that F contains i(t), represented by
the shorthand i(t) ⊂ F , and we refer to F as a container of i(t).

Definition 3. (Safe Grid) Let Vth ∈ R
n, Vth ≥ 0, be a given vector

of the voltage drop thresholds at all grid nodes. We say that the grid
is safe for a given i(t), ∀t ∈ R, if the corresponding v(t) ≤ Vth,
∀t ∈ R.

To check if a power grid is safe, one would typically be interested
in the worst-case voltage drop at some grid node k, at some time
point τ ∈ R, over a wide range of possible current waveforms. Using
the above notation, and given a container F that contains a wide
range of current waveforms that are of interest, we can express this
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as maxi(t)⊂F (vk(τ)). Clearly, because F is the same irrespective of
time, and applies at all time points t ∈ R, then this worst-case voltage
drop must be time-invariant, independent of the chosen time point τ .
We now introduce the emax(·) notation, which is used to capture in a
single vector all the separate worst-case voltage drop maximizations,
as follows.

Definition 4. (emax) For a given container F , and for an arbitrary
τ ∈ R, define:

v∗(F)
�
= emax

i(t)⊂F
[v(τ)]

�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

max
i(t)⊂F

(v1(τ))

max
i(t)⊂F

(v2(τ))

...
max
i(t)⊂F

(vn(τ))

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

to be the n × 1 vector whose every entry is the worst-case voltage
drop at the corresponding node under all possible current waveforms
i(t) contained in F , with the convention that, if F = φ, then
emax
i(t)⊂F

[v(τ)] = 0.

The exact expression for v∗(F) was derived in [12] to be:

v∗(F) =
∞∑
q=0

emax
I∈F

[
(A−1B)qA−1I

]
(6)

where I ∈ R
m is a vector of artificial variables, with units of current,

that is used to carry out the emax(·) operation. One way to check
node safety is by computing (6), which would then be compared
against the threshold voltages. However, computing v∗(F) using (6)
is prohibitively expensive. Instead, we will use an upper-bound on
v∗(F) based on the following.

Definition 5. For any F ⊂ R
m, define:

v(F)
�
= G−1A emax

I∈F
(
M ′I

)
(7)

where I ∈ R
m is a vector of artificial variables, with units of current,

that is used to carry out the emax(·) operation, with the convention
that emaxI∈F (M ′I) = 0, if F = φ.

In [12] and [8], the authors have derived the following upper-
bound1 on v∗(F):

v∗(F) ≤ v(F) (8)

Definition 6. (Safe Container) For a given container F , we say that
F is safe if v(F) ≤ Vth.

Thus, we are interested to discover a container F for which
v(F) ≤ Vth, so that v∗(F) ≤ Vth and the grid is safe. We will see
below that a safe container F can be expressed as a set of constraints
on the circuit currents that load the grid, thereby providing a set
of linear constraints that are sufficient to guarantee grid safety. We
will find, however, that the choice of F is not unique. Indeed, there
is an infinity of possible safe containers. In the following sections,
we will first characterize the most desirable safe containers, and then
develop algorithms to generate specific types of containers for specific
objectives. In the next section, this upper bound (7) will be used
to characterize the class of safe containers, which will lead us to
investigate the most desirable containers, which we will call maximal.

1In [12], the upper bound on the worst case voltage drop is in terms
of i(t) and M ′, as in (7). In [8], the proof is presented in terms of
is(t) = Hi(t) and M , but it can be easily shown that the upper
bound in [8] also implies (7).

IV. MAXIMAL CONTAINERS

This section contains the bulk of the theoretical contribution of
this paper, culminating in the necessary and sufficient conditions given
in Theorem 1. It lays the foundation for subsequent sections.

Let u ∈ R
n and define the sets U and F(u) as follows:

U �
= {u ∈ R

n : 0 ≤ u ≤ Vth} (9)

F(u)
�
= {I ∈ R

m : I ≥ 0, M ′I ≤ MGu} (10)

and notice that:

MGu ≤ MGu′ =⇒ F(u) ⊆ F(u′), ∀u, u′ ∈ R
n (11)

We will see that it is enough to consider (as we will, in this paper)
only containers of the form (10). The restriction to I ≥ 0 is obvious
because i(t) ≥ 0 is already assumed in our grid model, above, but
the rest of (10) is motivated by the following.

Lemma 3. For any u ∈ R
n
+, we have 0 ≤ v(F(u)) ≤ u.

Proof: For any u ∈ R
n
+, if F(u) = φ then, from Definition 5,

0 = v(F(u)) ≤ u. Otherwise, if F(u) �= φ, then Definition 5
provides that v(F(u)) ≥ 0, due to (4) and the fact that I ≥ 0,
for all I ∈ F(u), by definition. Furthermore, from (10), we have
M ′I ≤ MGu, ∀I ∈ F(u), so that:

emax
I∈F(u)

(M ′I) ≤ MGu (12)

Multiplying both sides of (12) with G−1A ≥ 0, due to (4), we get
v(F(u)) ≤ u, which completes the proof.

Based on this, the rest of (10) is due to the following necessary
and sufficient condition.

Lemma 4. For any J ⊂ R
m
+ , v(J ) ≤ Vth if and only if ∃u ∈ U

such that J ⊆ F(u).

Proof: The proof is in two parts.

Proof of the “if direction:” Let J ⊆ F(u) for some u ∈ U , it
follows that emaxI∈J (M ′I) ≤ emaxI∈F(u) (M

′I), from which
v(J ) ≤ v(F(u)), due to (4). Using Lemma 3, we get v(J ) ≤ u
which, due to u ∈ U , gives v(J ) ≤ Vth.

Proof of the “only if direction:” Let J ⊂ R
m
+ with v(J ) ≤ Vth, and

let u = v(J ) ≤ Vth, from which:

G−1A emax
I∈J

(M ′I) = u (13)

Because I ≥ 0 for any I ∈ J , and due to (4), we have u ≥ 0, so
that u ∈ U . Multiplying (13) with MG, we get:

emax
I∈J

(M ′I) = MGu (14)

so that, ∀I ∈ J , we have M ′I ≤ MGu which, coupled with I ≥ 0
gives J ⊆ F(u).

Therefore, 1) F(u) is safe for any u ∈ U and 2) all possible
safe containers J may be found as either specific F(u) for some
u ∈ U , or as subsets of such F(u). Note that, if J ⊆ F(u), for
some u ∈ U , with J �= F(u), then clearly F(u) is a better choice
than J . Choosing J would be unnecessarily limiting, while F(u)
would allow more flexibility in the circuit loading currents. Therefore,
it is enough to consider only containers of the form F(u) with u ∈ U .

Definition 7. Define the set of safe containers:

S �
= {F(u) : u ∈ U} (15)

It should be clear from the above that all containers of interest
are members of S. Going further, if F(u1) ⊆ F(u2) with F(u1) �=

4B-3

360



F(u2), then clearly F(u2) is a better choice than F(u1). Thus, in a
sense, the “larger” the container, the better. We capture this with the
notion of maximality, defined as follows.

Definition 8. Let E be a collection of subsets of Rm and let X ∈ E .
We say that X is maximal in E if there does not exist another Y ∈ E ,
Y �= X , such that X ⊆ Y .

Maximality is a highly desirable property and so the purpose of
the rest of this section is to give necessary and sufficient conditions
for a container to be maximal in S. We will see that the maximality
of F(u) depends on crucial properties of u, as will be shown below.
Note that 0 ∈ U for any Vth ≥ 0, and F(0) = {0}, due to M ′ > 0
combined with I ≥ 0, ∀I ∈ F(0). It follows that S always contains
a non-empty set as a member, so that F(u) = φ is never maximal in
S - this will be useful below.

A. Feasible

Definition 9. For any u ∈ R
n, u is said to be feasible if F(u) is

not empty, otherwise it is infeasible.

Because F(0) = {0}, then u = 0 is always feasible. In general,
we have the following lemma.

Lemma 5. For any u ∈ R
n, u is feasible if and only if MGu ≥ 0.

Proof: To prove the “if direction,” let u ∈ R
n with MGu ≥ 0,

in which case clearly 0 ∈ F(u), so that F(u) is not empty and u is
feasible. To prove the “only if direction,” let u ∈ R

n be feasible so
that F(u) is not empty, and there exists an I ∈ R

m such that I ≥ 0
and M ′I ≤ MGu. Due to M ′ ≥ 0 combined with I ≥ 0, we have
0 ≤ M ′I ≤ MGu, so that MGu ≥ 0.

Notice that if u ∈ R
n is feasible then multiplying both sides of

MGu ≥ 0 by G−1A ≥ 0 gives u ≥ 0, so that, u ∈ R
n
+. Notice

also that, if Vth,k = 0, then for every u ∈ U we have uk = 0.
In this case, the only feasible u ∈ U is u = 0, because otherwise
MG = M(A − B) = In − MB, which leads to MGu|k = uk −
MBu|k = −MBu|k < 0.

B. Extremal

Definition 10. For any u ∈ U , we say that u is extremal in U if
∃k ∈ {1, . . . , n} such that uk = Vth,k.

Denote by m′
ij the (i, j)th element of M ′ and by c′j its jth column.

Lemma 6. If F(u) is maximal in S then u is feasible and extremal
in U .

Proof: We will prove the contrapositive. Let u ∈ U be either
infeasible or not extremal in U ; we will prove that F(u) is not
maximal in S. If u is infeasible then F(u) = φ, which we already
know is not maximal in S . Now consider the case when u is feasible
but not extremal in U . In other words, we have MGu ≥ 0 and
0 ≤ u < Vth, so that ε

�
= min∀i (Vth,i − ui) > 0. Let 1 be

the n × 1 vector whose every entry is 1 and let u′ = u + ε1.
Because G is irreducibly diagonally dominant with positive diagonal
and non-positive off-diagonal entries, then G1 ≥ 0, with G1 �= 0.
Let γ

�
= G (u′ − u) = εG1, so that γ ≥ 0 with γ �= 0,

then Mγ > 0 so that MGu′ > MGu. Furthermore, considering
u′ = u + ε1, we have 0 ≤ u′ ≤ Vth due to the definition of ε,
so that u′ ∈ U . We have so far established that there exists u′ ∈ U
with MGu < MGu′, so that F(u) ⊆ F(u′), due to (11). It only
remains to prove that F(u) �= F(u′). For some i ∈ {1, . . . ,m},
let j = argmin∀k

(
MGu′|k /m′

ki

)
, δ = (MGu′|j /m′

ji) ≥ 0,
ei ∈ R

m be the vector whose ith entry is 1 and all other entries
are 0, and I(i) = δei ≥ 0. Notice that, for any k, we have:

M ′I(i)
∣∣∣
k
= δ M ′ei

∣∣
k
= δ c′i

∣∣
k
= δm′

ki (16)

Therefore, M ′I(i)
∣∣∣
j
= δm′

ji = MGu′|j > MGu|j , so that I(i) �∈
F(u). By definition of δ, we have δ ≤ (MGu′|k /m′

ki

)
, for every

k, meaning δm′
ki ≤ MGu′|k, for every k. Using (16), we then

have M ′I(i)
∣∣∣
k
= δm′

ki ≤ MGu′|k, for every k, which leads to

I(i) ∈ F(u′), and the proof is complete.

C. Irreducible

Definition 11. We say that u ∈ R
n is reducible if there exists u′ ≤ u,

u′ �= u, with F(u′) = F(u); otherwise, u is said to be irreducible.

We will see that irreducibility of u is a crucial property that is
required for maximality of F(u).

Lemma 7. For any feasible u ∈ R
n and any z ∈ R

n such that
0 ≤ MGz ≤ MG (u− v(F(u))), let u′ = u − z, it follows that
F(u′) = F(u).

Proof: For any I ∈ F(u′), we have I ≥ 0 and M ′I ≤ MGu′ =
MGu − MGz ≤ MGu, because MGz ≥ 0, so that I ∈ F(u). It
follows that F(u′) ⊆ F(u). In addition, for any I ∈ F(u), we have
I ≥ 0 and:

M ′I ≤ emax
I∈F(u)

(M ′I) = MGv(F(u)) (17)

Notice that for any z with 0 ≤ MGz ≤ MG (u− v(F(u))), we
have MGu′ = MGu − MGz ≥ MGu − MG (u− v(F(u))) =
MGv(F(u)). Combining this with (17), we get M ′I ≤ MGu′, so
that I ∈ F(u′). Therefore, F(u) ⊆ F(u′) from which F(u′) =
F(u), and the proof is complete.

Lemma 8. For any feasible u ∈ R
n, let u′ = v(F(u)), it follows

that F(u′) = F(u).

Proof: Let z = u − v(F(u)), so that MGz = MGu −
MGv (F(u)) = MGu − emaxI∈F(u)(M

′I) ≥ 0, the last step
due to the definition of F(u). As a result, z satisfies the conditions
of Lemma 7. Let u′ = u − z = v(F(u)). Then, by Lemma 7,
F(u′) = F(u).

Lemma 9. For any u ∈ R
n
+, u is irreducible if and only if it is

feasible and v(F(u)) = u.

Proof: The proof is in two parts.

Proof of the “if direction:” The proof is by contradiction. Let u be
feasible with v(F(u)) = u and suppose that u is reducible so that
there exists u′ ≤ u, u′ �= u, with F(u′) = F(u). Notice that F(u)
is not empty, because u is feasible, so that F(u′) is not empty and
u′ is feasible. Therefore, we get:

u′ − v(F(u′)) = u′ − v(F(u)) = u′ − u+ u− v(F(u))

Notice that, because u′ is feasible, we have MGu′ ≥ 0 from which
u′ ≥ 0, due to (4). Because v(F(u′)) ≤ u′, due to Lemma 3, it
follows that u′ − u + u − v(F(u)) ≥ 0, so that u − v(F(u)) ≥
u − u′ ≥ 0. But u − u′ �= 0, so that v(F(u)) �= u and we have a
contradiction that completes the proof.

Proof of the “only if direction:” We will prove the contrapositive.
Let u be either infeasible or v(F(u)) �= u, and we will prove
that u is reducible. If u is infeasible then F(u) = φ and u �= 0
(recall, u = 0 is always feasible), and it is easy to find another
infeasible u′ with u′ ≤ u and u′ �= u, as follows. Let u′ = 1

2
u,

from which MGu′ = 1
2
MGu �≥ 0, because u is infeasible, so that

u′ is infeasible. Therefore, we have found u′ ≤ u, u′ �= u, with
F(u′) = F(u) = φ which means u is reducible. If u is feasible and
v(F(u)) �= u, let u′ = v(F(u)) ∈ R

n
+, due to Lemma 3, which
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also provides that v(F(u)) ≤ u, so that u′ ≤ u, u′ �= u, with
F(u′) = F(u) due to Lemma 8, and u is reducible.

Note, if u is irreducible and extremal in U , then uk = Vth,k for
some k, and v(F(u))|k = Vth,k.

Lemma 10. For any u ∈ R
n
+, u is irreducible if and only if:

MGu ≤ MGu′ ⇐⇒ F(u) ⊆ F(u′), ∀u′ ∈ R
n (18)

Proof: The proof is in two parts.

Proof of the “if direction:” We give a proof by contradiction.
Given (18) and suppose u is reducible, so that it is either infeasible
or v(F(u)) �= u. If u is infeasible, then F(u) = φ ⊆ F(u′), for
any u′ ∈ R

n, so that MGu ≤ MGu′, for any u′ ∈ R
n, due to (18).

But this is impossible, because we can always find a u′ ∈ R
n that

violates MGu ≤ MGu′, as follows. Let 1 be the n×1 vector whose
every entry is 1 and let w = −G−1A1 so that MGw = −1 < 0,
and let u′ = u+w so that MGu′−MGu = MGw < 0. Therefore,
it must be that u is feasible and v(F(u)) �= u. Let u′ = v(F(u)), so
that F(u′) = F(u) due to Lemma 8, with MGu′ = MGv(F(u)).
Recall that MGv(F(u)) = emaxI∈F(u)(M

′I) ≤ MGu, and
MGv(F(u)) �= MGu due to v(F(u)) �= u, so that MGu′ ≤
MGu, MGu′ �= MGu. This means that we have F(u) ⊆ F(u′)
while MGu �≤ MGu′, which contradicts (18), and the proof is
complete.

Proof of the “only if direction:” Let u be irreducible, so that u is
feasible with v(F(u)) = u. Due to (11), it only remains to prove that
∀u′ ∈ R

n,F(u) ⊆ F(u′) =⇒ MGu ≤ MGu′. Notice that F(u′)
is non-empty, because F(u) �= φ and F(u) ⊆ F(u′), from which u′

is feasible. Because u and u′ are feasible, and using u = v(F(u)),
notice that:

MGu′ −MGu = MGu′ −MGv(F(u))

= MGu′ − emax
I∈F(u)

(M ′I)

≥ MGu′ − emax
I∈F(u′)

(M ′I) ≥ 0

where we used emaxI∈F(u′) (M
′I) ≥ emaxI∈F(u) (M

′I), because
F(u) ⊆ F(u′). Therefore, MGu′ −MGu ≥ 0, so MGu ≤ MGu′

and the proof is complete.

D. Maximality

As pointed out earlier, we are interested in safe containers that
are maximal in S. We now present our main result that gives the
necessary and sufficient conditions for maximality.

Theorem 1. F(u) is maximal in S if and only if u is irreducible
and extremal in U .

Proof: The proof is in two parts.

Proof of the “if direction:” We give a proof by contradiction. Let
u ∈ U be irreducible and extremal in U , but suppose that F(u)
is not maximal in S, so that ∃u′ ∈ U such that F(u) ⊆ F(u′),
with F(u) �= F(u′). Because F(u) �= F(u′), then clearly MGu �=
MGu′, and using Lemma 10, we have MGu ≤ MGu′. Let δ =
MGu′ − MGu, so that δ ≥ 0 and δ �= 0. Because G−1A > 0
from (4), then G−1Aδ = u′ − u > 0. Then u < u′ ≤ Vth, due to
u′ ∈ U , so that u is not extremal in U , and we have a contradiction
that completes the proof.

Proof of the “only if direction:” We give a proof by contradiction.
Given that F(u) is maximal in S, we know from Lemma 6 that
u is feasible and extremal in U . Suppose u is reducible, so that
v(F(u)) �= u, because we already have that u is feasible. Recall
that 0 ≤ v(F(u)) ≤ u. Let u′ �

= v(F(u)) �= u, so that
u′ ∈ U and MGu′ = MGv (F(u)) = emaxI∈F(u)(M

′I). Let

δ = MGu − MGu′ = MGu − emaxI∈F(u)(M
′I), then we have

δ ≥ 0 and δ �= 0 (due to u′ �= u). Because G−1A > 0, then
G−1Aδ = u− u′ > 0. Consequently, we have u′ < u ≤ Vth, due to
u ∈ U , so that u′ is not extremal in U . Therefore, by Lemma 6, F(u′)
is not maximal in S. However, F(u) = F(u′), due to Lemma 8, so
that F(u) is not maximal in S, a contradiction that completes the
proof.

This important theoretical result forms the basis for our choice of
practical constraints generation algorithms that are guaranteed to give
maximal containers, as we will see in the next section. Recall that
whenever u is irreducible and extremal in U , then v(F(u))|k = Vth,k,
for some k, so that the upper bound on the voltage drop at the kth
grid node will be equal to its maximum allowable voltage drop. In
other words, a maximal container always causes some node(s) on
the grid to experience the maximum allowable voltage drop, at least
based on the v(·) upper bound.

V. APPLICATIONS

So far, we have shown that a container F(u) is maximal in S if
and only if u satisfies the conditions of Theorem 1. In the following,
we will discuss some design objectives that will lead us to algorithms
for finding specific maximal safe containers F(u).

A. Peak Power Dissipation

An interesting quality metric for a power grid is the peak
total power dissipation that it can safely support in the underlying
circuit. We refer here to the instantaneous power dissipation, which
is conservatively approximated by Vdd

∑m
j=1 ij(t). Thus, we are

interested in a safe container that is maximal in S and that allows
the highest possible

∑
∀j Ij . For any u ∈ U , we define σ(u) to be

the largest sum of current source values allowed under F(u):

σ(u)
�
= max

I∈F(u)

(
m∑

j=1

Ij

)
(19)

and we define σ∗ to be the largest σ(u) achievable over all possible
u ∈ U , i.e.:

σ∗ �
= max

u∈U
(σ(u)) (20)

Let up ∈ U be such that σ(up) = σ∗, and I∗ ∈ F(up) be such that∑m
j=1 I

∗
j = σ∗. In general, up and I∗ may not be unique. Based

on (9) and (10), we can express the combined (19) and (20) as the
following linear program (LP):

σ∗ = Max
∑m

j=1 Ij

subject to M ′I ≤ MGu
0 ≤ u ≤ Vth, I ≥ 0

(21)

Let D be the feasible region of the LP (21):

D �
= {(I, u) : I ≥ 0,M ′I ≤ MGu, 0 ≤ u ≤ Vth} (22)

so that, from the above, we have:

σ∗ = max
(I,u)∈D

(
m∑

j=1

Ij

)
(23)

Notice that, (0, 0) ∈ D so that D is not empty and all of σ∗, up,
and I∗ are well-defined. Also, for every (I, u) ∈ D, we have M ′I ≤
MGu and I ≥ 0 which, because M ′ ≥ 0, gives 0 ≤ M ′I ≤ MGu
so that u is feasible, due to Lemma 5. Therefore, up is feasible and
the container F(up) = {I ∈ R

m : I ≥ 0,M ′I ≤ MGup} �= φ
provides the desired current constraints:

i(t) ≥ 0, ∀t ∈ R

M ′i(t) ≤ MGup, ∀t ∈ R
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The following lemma establishes the maximality of F(up), based on
Theorem 1. Denote by mij the (i, j)th element of M and by cj its
jth column, and notice that c′j = cj , for every j ∈ {1, 2, . . . ,m}.

Lemma 11. F(up) is maximal in S .

Proof: We give a proof by contradiction; the proof is in two
parts. First, we will prove that if F(up) is not maximal in S, then
there exists a u ∈ U that is not extremal in U , with σ(u) = σ∗.
Second, we will prove that, for any u ∈ U such that σ(u) = σ∗, we
have that u is extremal in U , which will provide a contradiction that
completes the proof.

Suppose that F(up) is not maximal in S , so that either up is
not extremal in U or up is reducible, due to Theorem 1. If up is
not extremal in U , then we have found a u = up ∈ U that is not
extremal in U , with σ(u) = σ∗. If up is reducible, then by Lemma 9
and because up is feasible, we must have v(F(up)) �= up. Let u′ =
v(F(up)) , so that F(u′) = F(up), due to Lemma 8, and, by (19),
we have σ(u′) = σ(up) = σ∗. Let δ = MGup − MGu′. Note
that MGv (F(up)) = emaxI∈F(up)(M

′I) ≤ MGup and MGup �=
MGv(F(up)), due to v(F(up)) �= up, from which δ ≥ 0 and δ �= 0.
Combining this with G−1A > 0, from (4), we have 0 < G−1Aδ =
up − u′. Therefore, we have 0 ≤ u′ < up ≤ Vth, the final step due
to up ∈ U , so that u′ ∈ U , u′ is not extremal in U and σ(u′) = σ∗.
This completes the first part of the proof.

Next, we will prove that, for any u ∈ U with σ(u) = σ∗, we
have that u is extremal in U . For any such u, there must exist a
vector I ∈ F(u) such that

∑m
j=1 Ij = σ∗. We will proceed by

contradiction. Suppose that u is not extremal in U , so that u < Vth.
Let ε �

= min
∀k

(Vth,k −uk) > 0, let 1 be the n×1 vector whose every
entry is 1, and let 0 ≤ γ = u+ ε1 ≤ Vth due to the definition of ε,
from which γ ∈ U . Notice that:

MGγ = MGu+ εMG1

Because G is irreducibly diagonally dominant with positive diagonal
and non-positive off-diagonal entries, then G1 ≥ 0, with G1 �= 0,
so that εMG1 > 0, because εM > 0, and MGγ > MGu.

Now, let λ = min∀i (MGγ|i −MGu|i) /max∀i,j(mij). Be-
cause MGγ > MGu and M > 0, it follows that λ > 0. Also, let
e1 ∈ R

n be the vector whose 1st entry is 1 and all other entries are
0 and let I ′ = I + λe1. Because λ > 0, we have λe1 ≥ 0, λe1 �= 0,
I ′ ≥ I ≥ 0, and I ′ �= I , so that

∑m
j=1 I

′
j >

∑m
j=1 Ij = σ∗.

Furthermore, we have I ′ ∈ F(γ), because:

M ′I ′ = M ′I + λM ′e1 = M ′I + λc′1 (24)

= M ′I +
min∀i (MGγ|i −MGu|i)

max∀i,j(mij)
c1 (25)

≤ MGu+min
∀i

(MGγ|i −MGu|i)1 (26)

≤ MGγ (27)

where in (26) we used I ∈ F(u) and c1/max∀i,j(mij) ≤ 1.
Therefore, we have found γ ∈ U and I ′ ∈ F(γ) with σ(γ) ≥∑m

j=1 I
′
j > σ∗, which contradicts (23). It follows that u is extremal

in U .

As an example, the LP (21) is run on the small grid in Fig. 1 and
the resulting container is shown in Fig. 2 where up = [89 100 95 98]T

(units of mV ). Notice that this method, in order to allow the
maximum peak power, may generate a container that is skewed in
a way that imposes a tight constraint on current in certain locations
of the die (such as at i2(t)) while allowing larger current in other
locations (such as at i1(t)). Other approaches are possible to avoid
this skew and even out the current budgets, as we will see next.

Vdd

i (t)2

i (t)1

1pF

1pF 1pF

1pF

4

1

2

36.25 1

1.25

2

2

Fig. 1: An example of a power grid with 4 nodes, 2 current sources,
and Vth = [110 100 95 105]T (units of mV ).
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Fig. 2: An example of F(up) and F(us).

B. Uniform Current Distribution

The design team may be interested in a grid that safely supports a
uniform current distribution across the die, so as to allow a placement
that provides a uniform temperature distribution. We can generate
constraints that allow that objective by searching for a safe maximal
container F(u) that contains the hypersphere in current space that
has the largest volume, or the largest radius θ. In other words, this
method aims to “raise the minimum” and avoid the skew indicated
above. We will develop a method (34) which, when applied to the
simple grid in Fig. 1, generates the container F(us) shown in Fig. 2,
where us = [83 91 95 92]T (units of mV ).

Let S(θ) ⊂ R
m denote the hypersphere with radius θ, centered at

the origin and let S+(θ) = S(θ)∩R
m
+ be the part of that hypersphere

that is in the first quadrant of Rm. Denote by ri and r′i the ith rows
of M and M ′, respectively. For any u ∈ U , define Hi = {I ∈
R

m : I ≥ 0, r′iI = riGu} to be the hyperplane that constitutes the
ith outer boundary of F(u). Define Di to be the distance from the
origin to Hi which, according to [13], can be expressed as:

Di =
|riGu|
di

(28)

where di =
√∑m

j=1 m
2
ij > 0. As we’re interested in a non-empty

F(u), we will enforce that θ ≥ 0 and u is feasible, i.e., riGu ≥ 0,
∀i, so that:

Di =
riGu

di
(29)

In order to have S+(θ) ⊆ F(u), we will require that:

θ ≤ Di, ∀i ∈ {1, . . . , n} (30)
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TABLE I: Results of both LPs

Power Grid Peak Power Uniform Current Peak Power Uniform Current
Distribution using us Dist. using up

Name Nodes Current SPAI
P (up) in mW

CPU
ρ(us) in μA

CPU
P (us) in mW ρ(up) in μASources Time Time Time

G1 8,413 552 1.3 min 1.73 1.15 min 1.77 2.2 min 0.6 0.84
G2 18,678 1,119 4.6 min 3.71 5.51 min 2.11 12.86 min 1.86 1.06
G3 32,554 2,070 13.38 min 6.75 23.51 min 1.47 36.7 min 3.02 0.462
G4 50,444 3,192 27.7 min 9.83 29.28 min 1.8 57.2 min 5.09 0.8
G5 113,304 7,140 2.52 h 22.06 1.92 h 1.44 3.38 h 11.07 0.45
G6 200,828 12,656 6.8 h 40.69 6.37 h 2.11 11.9 h 22.7 0.98
G7 312,232 19,460 17.73 h 59.77 11.19 h 2.03 18.68 h 35.23 0.98

which can be expressed compactly as:

θd ≤ MGu (31)

where d = [d1 · · · dn]
T . For any u ∈ U , we define ρ(u) to be the

largest θ ≥ 0 for which (31) is satisfied, so that:

ρ(u)
�
= max

0≤θd≤MGu
(θ) (32)

and we define ρ∗ to be the largest ρ(u) achievable over all possible
u ∈ U , i.e.:

ρ∗
�
= max

u∈U
(ρ(u)) (33)

Let us ∈ U be such that ρ(us) = ρ∗. In general, us may not be
unique. We can express the combined (32) and (33) as the following
linear program:

ρ∗ = Max θ

subject to θd ≤ MGu
0 ≤ u ≤ Vth, θ ≥ 0

(34)

Let R be the feasible region of the LP (34):

R �
= {(θ, u) : θ ≥ 0, θd ≤ MGu, 0 ≤ u ≤ Vth} (35)

so that, from the above, we have:

ρ∗ = max
(θ,u)∈R

(θ) (36)

Notice that, (0, 0) ∈ R so that R is not empty and ρ∗ and us are
well-defined. Also, for every (θ, u) ∈ R, we have θd ≤ MGu and
θ ≥ 0. Because d ≥ 0, it follows that 0 ≤ θd ≤ MGu so that u is
feasible, due to Lemma 5. Therefore, us is feasible and the container
F(us) = {I ∈ R

m : I ≥ 0,M ′I ≤ MGus} �= φ provides the
desired current constraints:

i(t) ≥ 0, ∀t ∈ R

M ′i(t) ≤ MGus, ∀t ∈ R

The following lemma, based on Theorem 1, establishes the maximal-
ity of F(us).

Lemma 12. F(us) is maximal in S.

Proof: We give a proof by contradiction; the proof is in two
parts. First, we will prove that if F(us) is not maximal in S, then
there exists a u ∈ U that is not extremal in U , with ρ(u) = ρ∗.
Second, we will prove that, for any u ∈ U such that ρ(u) = ρ∗, we
have that u is extremal in U , which will provide a contradiction that
completes the proof.

Suppose that F(us) is not maximal in S , so that either us is
not extremal in U or us is reducible, due to Theorem 1. If us is
not extremal in U , then we have found a u = us ∈ U that is
not extremal in U , with ρ(u) = ρ∗. If us is reducible, then by
Lemma 9 and because us is feasible, we must have v(F(us)) �= us.
Let u′ = v(F(us)), so that F(u′) = F(us) due to Lemma 8.
Clearly, S+(ρ∗) ⊆ F(u′), because S+(ρ∗) ⊆ F(us), so that
ρ(u′) = ρ∗. Let δ = MGus −MGu′. Note that MGv (F(us)) =

emaxI∈F(us)(M
′I) ≤ MGus and MGus �= MGv(F(us)), due to

v(F(us)) �= us, from which δ ≥ 0 and δ �= 0. Combining this with
G−1A > 0, from (4), we have G−1Aδ = us − u′ > 0. Therefore,
we have 0 ≤ u′ < us ≤ Vth, the final step due to us ∈ U , so that
u′ ∈ U , u′ is not extremal in U and ρ(u′) = ρ∗. This completes the
first part of the proof.

Next, we will prove that, for any u ∈ U with ρ(u) = ρ∗, we have
that u is extremal in U . We will proceed by contradiction. Suppose
that u is not extremal in U , so that u < Vth. Let ε �

= min
∀k

(Vth,k −
uk) > 0, let 1 be the n × 1 vector whose every entry is 1, and let
0 ≤ γ = u+ε1 ≤ Vth, due to the definition of ε, from which γ ∈ U .
Notice that:

MGγ = MGu+ εMG1 (37)

Because G is irreducibly diagonally dominant with positive diagonal
and non-positive off-diagonal entries, then G1 ≥ 0, with G1 �= 0,
so that εMG1 > 0, because εM > 0, and MGγ > MGu.

Now, let λ = min∀i (MGγ|i −MGu|i) /max∀i(di) and let
θ′ = ρ∗+λ. Because MGγ > MGu and di > 0, ∀i, it follows that
λ > 0 and θ′ > ρ∗ ≥ 0. Furthermore, we have (θ′, γ) ∈ R, because:

θ′d = ρ∗d+
min∀i (MGγ|i −MGu|i)

max∀i(di)
d (38)

≤ MGu+min
∀i

(MGγ|i −MGu|i)1 (39)

≤ MGγ (40)

where in (39) we used (ρ∗, u) ∈ R and d/max∀i(di) ≤ 1.
Therefore, we have found (θ′, γ) ∈ R and θ′ > ρ∗, which
contradicts (36). It follows that u is extremal in U .

VI. RESULTS

The above two algorithms (21) and (34) have been implemented
using C++. Both problems require the computation of the inverse of
A, which was generated using the sparse approximate inverse tech-
nique (SPAI), as was done in [4]. The maximizations were performed
using the Mosek optimization package [14]. We conducted tests on a
set of power grids with a 1.1 V supply voltage that were generated
based on user-specifications, including grid dimensions, metal layers,
pitch and width per layer, and C4 and current source distributions,
consistent with 65nm technology. All results were obtained using a
2.6 GHz Linux machine with 24 GB of RAM.

The number of variables in (21) is n + m, and the number of
variables in (34) is n+ 1, where n is the total number of nodes and
m is the number of current sources attached to the grid. Denote by
P (u)

�
= Vdd×σ(u) the peak power dissipation allowed under F(u).

In Table I, we present the results of both LPs in columns 5 and 7,
respectively. For instance, on a 312,232 node grid, the peak power
dissipation is 59.77 mW and the largest current radius for which the
part of the hypersphere in the first quadrant is contained in F(us)
is 2.03 μA. The CPU times for solving (21) and (34) are given in
columns 6 and 8, respectively. Note that these CPU times do not
include the time for computing the approximate inverse, which is
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Fig. 3: Contour plots for peak power density across the layout and the corresponding histograms. The color bar units are mA/cm2.

reported separately in column 4. For example, the total CPU time
for solving (21) corresponds to the sum of the CPU times reported in
columns 4 and 6. The only source of error is the sparse approximation
(SPAI) of A−1, which is controlled by enforcing an error tolerance of
10−4 between every entry of the exact inverse and the corresponding
entry of the approximate inverse.

To study the difference between the containers generated us-
ing (21) and (34), we used two methods. First, we computed the peak
power dissipation achievable under F(us), which is P (us), and the
largest current radius for which the part of the hypersphere in the first
quadrant is contained in F(up), which is ρ(up). The results obtained
for P (us) and ρ(up) are reported in columns 9 and 10 of Table I.
The results show that P (us) � P (up) and ρ(up) � ρ(us) on all
grids. In fact, the peak power dissipation achievable under F(us) is
at most 59% of that achievable under F(up). Also, the largest current
radius for which the part of the hypersphere in the first quadrant is
contained in F(up) is at most 50% of that contained in F(us). Thus,
each approach provides a distinct trade-off for the chip design team.

Another way to compare the two approaches (21) and (34), is to
look at the power density, i.e., the power dissipation per unit area of
the die, allowed by the two resulting containers. To assess this, we
maximize the allowed power (current) within a small window of the
die surface, and we do this for every position of that window across
the die. We divide the die area into κ × κ of these windows and
compute the peak power density inside each, as allowed by F(up) or
F(us). In Figs. 3a and 3b, we present contour plots for κ = 35 for
the peak power densities under F(up) and F(us), respectively, on a
50k node grid. Note that the current constraints based on F(up) allow
higher current densities at certain spots but also include some spots
with very small and restricted current density budgets. This large
spread in power densities can lead to thermal hotspots. This may
be avoided by using F(us) which, as expected and as seen in the
figure, provides a uniform distribution of power densities across the
die area compared to F(up), which is reflected in a smaller standard
deviation. Of course, F(up) supports a larger overall peak power
dissipation than F(us), which is reflected in a larger mean. There is
a clear trade-off between the two methods, making them both useful
but also pointing the way to future work for managing this trade-off
and investigating other possibilities.

VII. CONCLUSION

Early power grid verification is a key step in modern chip
design. Traditionally, it has been performed either by simulation or by
vectorless verification, both of which have serious shortcomings. We
propose a novel method to solve the inverse problem of vectorless ver-
ification, by generating circuit current constraints that ensure power
grid safety. We develop some key theoretical results to allow the

generation of constraints that correspond to maximal current spaces.
We then apply these results to provide two constraints generation
algorithms that target key quality metrics of the grid: the maximum
power dissipation the grid can safely support and the uniformity of
the power spread across the die.
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