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Abstract

Estimating the reliability of integrated circuits is a

major concern of the semiconductor industry. In

CMOS circuits, the extent of node switching ac-

tivity, called the transition density [1], is a good

measure of susceptibility to a variety of reliabil-

ity problems. However, the density computation

algorithm in [1] does not take into account the ef-

fect of the inertial delay of logic gates. Thus, the

transition density may be severely overestimated

in high frequency applications. To overcome this

problem, we model the e�ect of gate delay in the

form of a conceptual low-pass �lter block that does

not allow unacceptably short logic pulses to prop-

agate through. Using a stochastic model of logic

signals, we then derive the equations required to

propagate the transition density through the �lter.

We will present experimental results that illustrate

the validity and importance of these results.

1. Introduction

The dramatic decrease in feature size and the

corresponding increase in the number of devices

on a chip have made reliability one of the major

concerns in VLSI circuits and systems design. A

key observation is that the reliability of a CMOS

chip is directly related to the extent of its switch-

ing activity, i.e., the rate at which its nodes are

switching. Indeed, it can be shown that both

electromigration and hot-carrier degradation, as

well as power dissipation, are aggravated by higher

switching frequencies. In general, less active cir-
cuits experience lower average currents, both in

their transistors and metal lines, and are therefore

more reliable.

However, estimating the level of activity is not

straightforward because it depends on the speci�c

signals being applied to the circuit primary inputs.

These signals are generally unknown during the

design phase because they depend on the system

in which the chip will eventually be used. A brute-

force solution might be to simulate a circuit for

all possible inputs. This, however, becomes pro-

hibitively expensive for all but the smallest cir-

cuits. To overcome these limitations, the transi-

tion density was introduced in [1] as a compact

measure of switching activity in digital circuits.

Simply put, the transition density at a node is the
average number of transitions per second at that

node, and it can be e�ciently evaluated [1] with-

out requiring exact information about the primary

input signals.

However, the algorithm for computing the

density in [1] is very basic and does not take into

account the e�ect of inertial delays of logic gates.

Thus, the transition density may be severely over-

estimated for high speed circuits, as we will now

demonstrate.

The density propagation algorithm of [1] can

be stated as follows. If y is a Boolean function of

x1; x2; : : : ; xn , then the densities at xi, D(xi) can

be used to compute the density at y as follows :

D(y) =

nX
i=1

P

�
@y

@xi

�
D(xi) (1:1)

where the P (@y=@xi) coe�cients are the probabili-

ties of the Boolean di�erence terms. The resulting

algorithm requires only two pieces of information
about every primary input node, namely its equi-

librium probability P (x) (fraction of time that it is

high) and its transition density D(x). Thus (1.1)

provides a very e�cient way of propagating these

values throughout the circuit so thatD(x) is com-

puted for all internal nodes.
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The problem with this approach is that it

places no checks or restrictions on the maximum

density (equivalently, the minimum pulse width)

at the output node of a Boolean module. This is

a result of the simpli�ed timing model. To illus-

trate, consider an n-input OR gate whose inputs

have equal probabilities P = 0:5 and equal densi-

ties D = d. Since the Boolean di�erence @y
@xi

is the

OR of the (n � 1) other inputs, its probability is

at least 0:5, which leads to D(y) � (nd=2). Thus,

for large enough n, the gate output will carry ar-

bitrarily high density, and therefore unrealistically

short pulses.

In practice, such short pulses are not gener-

ated; they are glitches that are �ltered out because

the module is not fast enough to respond to them.

In order to model this �ltration e�ect of the cir-

cuit inertial delays, we introduce a new delay block

called a �lter block at every module output. A �l-

ter block is a delay block with a low-pass �ltering

property, that may be de�ned as follows : a 0! 1

(1! 0) transition at the �lter input is transmitted

to its output after a delay of �1 (�0) if and only if

its input does not change state during that time.

Thus the �lter block e�ectively sets a minimum

pulse width at the output y : the minimum high

(low) pulse width at the �lter output is �0 (�1).

In this paper, we will analyze a �lter block

and show how to compute the density at its out-

put from that at its input. The basic de�nitions

and main result are given in section 2. Sections 3

and 4 are devoted to experimental results and con-

clusions. For lack of space, theoretical results will

be stated without proof. The reader is referred

to [3] for an expanded version of this paper that

includes formal proofs of these results.

2. Filter Block Analysis

Let x(t), t 2 (�1;+1); be a logic signal,

i.e., it only takes the values 0 or 1. Let nx(T ) be

the number of transitions of x(t) in the interval

(�T
2
; +T
2
]. The equilibrium probability P (x) and

transition density D(x) were de�ned in [1] as :

P (x) = lim
T!1

1

T

Z +T

2

�T

2

x(t)dt (2:1a)

D(x) = lim
T!1

nx(T )

T
(2:1b)

Based on this, an algorithm was proposed in [1] to

propagate P (x) and D(x) throughout the circuit.

A signal x(t) is composed of an alternating

sequence of high (corresponding to x = 1) and

low (x = 0) pulses. We de�ne �1 (�0) as the av-

erage high (low) pulse-width of x(t). Also, let

the population of high (low) pulse-widths have

the cumulative distribution function (cdf) F1(t)

(F0(t)) and the probability density function (pdf)

f1(t) = d
dtF1(t) (f0(t) = d

dtF0(t)). Thus F1(t)

(F0(t)) is the fraction of high (low) pulses that are

shorter than or equal to t. Based on this, de�ne :

F̂0(t) =

Z t

0

z

�0
f0(z)dz; F̂1(t) =

Z t

0

z

�1
f1(z)dz

In practice, it is reasonable to assume for a

general logic signal that two pulses that are suf-

�ciently separated in time will be uncorrelated or

independent. We extend this intuitive notion and

make the following simplifying assumption which

will make possible the solution of a �lter block :

The width of every pulse of x(t) is assumed to

be independent of all other pulses of x(t). This

assumption is mild in the sense that it is approx-

imately true in practice, such as when two pulses

are widely separated in time. The main result of

this paper is the following theorem that shows how

P (y) and D(y) at the output of a �lter block can

be computed from P (x) and D(x) at its input :

Theorem 1. For a �lter with input x and output

y, and given the basic assumption made above, we

have :

P (y) = P (x)�

�
F̂1(�1) +

�1
�1

[1� F1(�1)]

�
[1� F0(�0)]

[1� F0(�0)F1(�1)]
P (x)

+

�
F̂0(�0) +

�0
�0

[1� F0(�0)]

�
[1� F1(�1)]

[1� F0(�0)F1(�1)]
[1� P (x)] (2:2a)

and :

D(y) =
[1� F0(�0)] [1� F1(�1)]

1� F0(�0)F1(�1)
D(x) (2:2b)
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3. Experimental Results and Discussion

Given the equilibrium probability P (x) and

transition density D(x) at the primary inputs of a

combinational logic circuit, the corresponding val-

ues inside the circuit can be computed using [1].

The density values can be used to estimate the

susceptibility to reliability problems such as hot-

carrier degradation and electromigration, as well

as a measure of power dissipation. The density

propagation algorithm based on (1.1) was imple-

mented in the program densim [1]. The results

of this paper have been incorporated into a new
implementation of densim by simply applying the

�lter operation to the output of every gate. The

�lter parameters �
0
and �

1
can be set by the user

in the module library; otherwise, they are derived

from the propagation delay and rise/fall times.

In order to use the �lter equations (2.2), how-

ever, we need to know the pulse width distribu-

tion functions F1(t) and F2(t). The form of these

distributions is generally unknown, but one can

make reasonable assumptions about them, as fol-

lows. We will again make use of the intuitive prop-

erty that the values of a logic signal at widely sep-
arated time points are relatively independent. If

we extend this property to the point that the fu-

ture value of a signal is independent of its past,

once its present value is speci�ed, then the sig-

nal is said to be Markov [2] and its high and low

pulses are known to be exponentially distributed.

In the absence of any other information, therefore,

we will assume an exponential distribution.
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Figure 1. Filter transfer characteristics

with �
0
= �

1
= 1 nsec and P (x) = 0:5, for

di�erent input distributions.

It is prudent at this point to experimentally

validate the results of theorem 1. To do this, we

applied a randomly generated logic signal to the

input of a �lter block, and processed the signal

as one would in a logic simulator. We then mon-

itored the signal at the �lter output. Averaging

over a long enough simulation time, the output

probability and density should converge to those

predicted by theorem 1. This behavior was in-

deed observed, for three di�erent distributions, as

shown in Figs. 1 and 2. The two other distri-

butions marked \gamma-2" and \gamma-3" are

closely related to the exponential distribution. In

both �gures (and in the remainder of this sec-

tion), the results of logic simulation are marked

\logsim," while the results of applying theorem 1

are marked \densim."
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Figure 2. Filter transfer characteristics

with �0 = �1 = 1 nsec and D(x) = 1:2e9,

for di�erent input distributions.

The average power dissipation of a circuit is

equal to a weighted sum of its node transition

densities : Pavg =
Pn

i=1
1

2
CiV

2

ddD(xi). The plot

shown in Fig. 3 compares the average power dis-

sipation, as measured by logic simulation, to that

measured by densim with and without the �lter.

This gives a measure of the overall accuracy in the

density computation. The horizontal axis shows
the average frequency of the signals applied to the

circuit primary inputs (the transition density is

twice the average frequency). It clearly shows the

need for the �lter mechanism at higher frequen-

cies. Fig. 4 shows the results of a similar analysis

for a 4-bit parallel multiplier and a 4-bit alu.
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The above experimental results demonstrate

the validity of the results in theorem 1, and the

fact that if the �lter mechanism is not used, then

the basic density propagation algorithm (1.1) will

severely deviate from the correct results at higher

frequencies.

As a �nal note, we should say that the im-

proved accuracy a�orded by the �lter mechanism

is obtained at virtually no speed penalty. Equa-

tions (2.2) have to be evaluated only once for a

logic gate. Thus, the density propagation algo-

rithm remains as e�cient as was shown in [1].

On the other hand, the overall approach still

has some accuracy problems, even at low frequen-

cies, due to the independence assumptions implicit

in (1.1). As was discussed in [1], this is due to node

correlations resulting from reconvergent fanout.

This issue is part of our continuing work in this

area.
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Figure 3. Results for a 32-bit ripple adder

with P (x) = 0:5 for all inputs, for a wide

range of input densities.
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Figure 4. Results for a 4-bit parallel multiplier and a 4-bit alu with

P (x) = 0:5 for all inputs, for a wide range of input densities.

4. Summary and Conclusions

We have presented an extension to the transi-

tion density approach in [1] by taking into account
the e�ect of the inertial delay of a logic gate. In

the framework of the stochastic representation of

logic signals of [1], we have modeled this e�ect

with a conceptual low-pass �lter block. Detailed

analysis of this block has yielded compact expres-

sions for the transition density at its output given

the density at its input.

Experimental results demonstrate that the �l-

ter module behaves as it should, and that the �lter

mechanism is required in order to maintain accu-

racy at higher frequencies.
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