
High-Level Area Prediction for Power Estimation†

Mahadevamurty Nemani and Farid N. Najm

ECE Dept. and Coordinated Science Lab.
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

Abstract
High-level power estimation, when given only a

high level design specification such as a functional or
RTL description, requires high-level estimation of the
circuit average activity and total capacitance. Con-
sidering that total capacitance is related to circuit
area, this paper addresses the problem of computing
the area complexity of single-output Boolean func-
tions given only their functional description, where
area complexity is measured in terms of the number
of gates required for an optimal implementation of the
function. We propose an area model that makes use
of a new complexity measure. The model is empiri-
cal, and is based on an observed relationship between
the proposed complexity measure, which is easily mea-
surable using Monte-Carlo simulation, and its optimal
implementation (gate-count). This model has been
implemented, and empirical results demonstrating its
feasibility and utility are presented.

1. Introduction
Rapid increase in the design complexity and re-

duction in design time have resulted in a need for CAD
tools that can help make important design decisions
early in the design process. To do so, these tools must
operate with a design description at a high level of
abstraction. One design criterion that has received
increased attention lately is power dissipation. As a
result, there is a need for high level power estimation
and optimization. Specifically, it would be highly ben-
eficial to have a power estimation capability, given only
a functional view of the design, such as when a circuit
is described only with Boolean equations. Of course,
a given Boolean function can be implemented in many
ways, with varying power dissipation levels. We are
interested in predicting the nominal power dissipation
that a minimal area implementation of the function
would have.

For a combinational circuit, since the only avail-
able information is its Boolean function, we consider
that its power dissipation will be modeled as follows:

Pavg = DavgACavg (1)
where Davg is an estimate of the average node switch-
ing activity that a gate-level implementation of this
function would have, A is an estimate of the gate count
(assuming some target gate library), and Cavg is an es-
timate of the average gate capacitance (including drain
capacitance and interconnect loading capacitance).

† This work was supported in part by Intel Corpora-
tion, and by the National Science Foundation.

The estimation of Davg was covered in [1-3], and
the estimation of gate count (or simply, area) A was
explored in [4], where the problem was addressed us-
ing the notion of average cube complexity of a Boolean
function. However, we have found that this area
model [4] severely under-estimates the area on a class
of circuits, as summarized in Table 1. In this paper, we
propose a new model for predicting the area A, leading
to improvement in both the area prediction accuracy
and run times relative to [4], as shown in Table 1.
In our experiments, we have compared our estimated
gate-counts to the gate-count for circuit implementa-
tions that were obtained using the SIS synthesis sys-
tem, synthesizing for minimum area. As was the case
with [4], our new model is still limited to single-output
Boolean functions; we are in the process of generalizing
it to multiple-output functions.

TABLE 1.
Area model comparisons with [4]

Circuit Area Area Area CPU sec CPU sec

SIS new [4] new [4]

s13207 o605 153 141 53 6 610

s13207 o604 147 156 51 7 605

s13207 o598 153 118 41 7 610

s13207 o597 136 143 41 7 580

s13207 o599 153 119 41 6 595

s9234 o42 186 184 20 81 580

s9234 o41 203 238 20 118 591

The proposed area model explores the structure
of the Boolean space of the function, and computes a
complexity measure for the Boolean function that we
will show correlates well with its area. This is done by
examining the essential prime implicants of the func-
tion. Based on the distribution of the essential primes
(of both the onset and the offset) we propose two com-
plexity measures called linear measure and exponential
measure. These two measures are used to predict the
area of the function.

The computation of essential primes is done us-
ing espresso [8]. For single output functions, which is
our focus right now, this can be done quite efficiently.
This is true even for large circuits because single out-
put functions extracted from multiple-output specifi-
cations of large circuits turn out to be reasonably small
Boolean functions. It was observed that the average
time to run espresso for several hundred single-output
functions extracted from ISCAS-89 and MCNC bench-



mark circuits was 0.876 sec, and the worst-case time
observed was 16.53 sec. The only case where espresso
tends to become expensive is for circuits composed of
arrays of exclusive-or gates. These circuits were also
problematic in [4], and they are also the source of prob-
lems for other CAD areas, such as BDD construction
for verification. One way around this limitation is to
require that the Boolean function specification explic-
itly list exclusive-or gates. In that case, these can be
identified up-front and excluded from the analysis, so
that the proposed method is applied only to the re-
maining circuitry. In any case, in the remainder of
this paper we will not consider circuits composed of
large exclusive-or arrays.

Before leaving this section, we should mention
some previous work on layout area estimation from an
RTL view. Wu et. al. [5] proposed a layout area model
for datapath and control for two commonly used layout
architectures based on the transistor count. For data-
path units, the average transistor count was obtained
by averaging the number of transistors over different
implementations and, for control logic, they calculate
the number of transistors from the sum of products
(SOP) expression for the next state and control signals.
A similar model was proposed by Kurdahi et.al. [6].
Both these models consider the effect of interconnect
on the overall area, while [6] considers the effect of
cell placement on the overall area. Since the controller
area, in [5][6], is estimated based on the number of
AND and OR gates required to implement the SOP
expression, the optimal number of gates required to
implement the function can be much smaller than the
above sum. This is because it is frequently possible
to apply logic optimization algorithms to give a much
better implementation.

2. The Weighting Function
We start with a precise statement of the problem

to be addressed. Consider an n-input single-output
Boolean function f(X). Given a target gate library, we
would like to estimate the minimum number of gates
(A) required to implement the function, given only
its high level description (Boolean equations), without
performing any logic synthesis on the function f(X).

The “sizes” of the essential prime implicants of the
on and off-sets may give us a hint as to the complexity
of the function at hand. By size of a cube we mean the
number of literals in the cube. Thus, the size of the
cube c = x1x̄2x4 is 3. We will study the complexity of
the function by characterizing the distribution of the
sizes of its essential prime implicants, as follows. The
complexity of the on-set of a Boolean function f will
be captured by the following measure:

C1(f) =
N∑

i=1

g(ci)pi (2)

Here, C1(f) is the complexity measure associated with
the on-set of f , N is the number of distinct sizes of
essential prime-implicants of the on-set of f , the set of
integers {c1, c2, . . . , cN} consists of the distinct sizes
of the essential primes of the on-set, g(.) is a mono-
tonically increasing function, and pi is a weight as-
sociated with the class of essential primes of size ci.

The complexity of the off-set will be similarly cap-
tured by C0(f) = C1(f̄). Thus, in the following, it
will be enough to discuss C1(f).

For C1(f), let the ci be ordered such that c1 >
c2 > · · · > cN . Let fi refer to a Boolean sub-
function of the original function f , defined so that
its on-set consists only of the essential primes of sizes
c1, c2, . . . , ci, where 1 ≤ i ≤ N . With each min-term of
the Boolean space, we associate a value of probability,
so that all min-terms are equi-probable and the sum of
their probabilities is equal to 1. We define the weight
pi as follows:

pi =
{P(fi) −P(fi−1), if i > 1;
P(f1), if i = 1. (3)

where P() denotes probability. Thus, pi is the proba-
bility of the set of all min-terms in the on-set of f that
are covered by essential primes of size ci, but not by es-
sential primes of any larger size. With pi thus defined,
as probabilities, the expression (2) becomes equal to
the mean of g(.) (when g(.) is assumed to take the
value 0 with probability 1 − P(f)), C1(f) = E[g(c)],
and can be easily computed using Monte Carlo mean
estimation techniques [7]. Using similar development,
C0(f) can also be computed using Monte Carlo simu-
lation.

3. Linear and Exponential Measures
In this section we will define two specific com-

plexity measures called the linear measure, denoted
L(f), and exponential measure, denoted E(f), by mak-
ing specific choices for the function g(.). Let us first
consider the linear measure. We will characterize the
on-set of f with a linear complexity measure, based
on (2), denoted by L1(f) (and the off-set with L0(f))
by choosing g(c) to be a linear function in cube size c,
specifically, g(c) = c, so that:

L1(f) =
N∑

i=1

cipi (4)

We then define L(f) as follows:

L(f) =
L1(f) + L0(f)

2
(5)

Since cubes of larger sizes have a lower probability of
occurrence, this measure is likely to be dominated by
the cubes of lower sizes.

For the exponential measure, we characterize the
on-set and off-set of the Boolean function with expo-
nential complexity measures E1(f) and E0(f) respec-
tively, based on (2), by choosing g(c) to be an expo-
nential function in cube size c, as follows:

E1(f) =
N∑

i=1

2cipi (6)

We then define E(f) as follows:

E(f) = log
{

min{E1(f), E0(f)}
}

(7)

where log is logarithm to base 2. This complexity mea-
sure compensates for reduction in probability of occur-



rence in larger sized cubes by associating them with
larger measure. Hence it is likely to be dominated by
cubes of larger sizes.

We have observed that the presence of essential
cubes of size one (cubes consisting of a single literal)
can adversely affect the accuracy of the area estima-
tion. This is because these cubes have a negligible
effect on the gate count (a single OR gate) but have
a big effect on the output probability value. Their
presence also skews the probability distributions and
makes the Monte Carlo estimation much more expen-
sive. We have found that the best practical method
for accounting for these cubes is to in effect exclude
them from the summation (2) used to compute C1(f),
and similarly for C0(f). This leads to improved esti-
mation speed and much improved accuracy. Thus, the
results to be presented below make this modification
to the essential cube distribution before carrying out
the area prediction.

4. The Area Model
For a given n, consider the set of all Boolean

functions on n inputs and whose output probability is
P(f) = p, based on all inputs being independent and
with 0.5 probability. For a number of randomly gen-
erated Boolean functions from this set, we computed
L(f) and E(f) using our algorithm and obtained an
estimate of the gate-count A(f) from an optimized
implementation of the function using SIS (by ran-
domly generated, we mean that these functions were
selected by making a random choice for each point in
the Boolean space, as to whether it belongs in the on-
set or off-set of the function). The curves of A(f) ver-
sus L(f) and E(f) are close to exponential. We have
found that not only do randomly generated Boolean
functions fall on these almost-exponential curves, but
also typical VLSI functions fall on it or close to it. A
similar observation was also made in [4]. Thus, these
curves of A versus L and E are very important and are
in fact the essence of our area prediction model.

We generate a family of such curves capturing
the variation of A with L and E for various values
of the output probability P(f). Hence, given the out-
put probability of the Boolean function and L(f), we
use the curve corresponding to that value of probabil-
ity and predict Al(f). The procedure for computing
Ae(f) is similar. Note that these curves need to be
generated only once, which is an up-front once-only
cost, and they can then be used to predict the area of
various functions. An important consideration is what
the largest n should be for which these curves need to
be generated. Please refer to [4] for detailed discus-
sion on this issue, as an approach similar to [4] can be
adopted.

We empirically observed that in many cases
Al(f) ≤ Ae(f). Also, we observed that the average
of Al(f) and Ae(f) was better correlated with A(f)
than either Al(f) or Ae(f). This relates to the com-
ments made in section 3, namely that the linear model
is mostly affected by small cubes while the exponential
model is dominated by large cubes; the average of the
two performs better than either of them acting sepa-
rately. Hence we measure the area complexity A(f) as
an average of Al(f) and Ae(f). The area complexity

as measured by this average area model is given by:

Aa(f) =
Al(f) + Ae(f)

2
(8)

In the next section we present empirical results
showing the performance of the average area model on
several benchmarks. Also, we compare this model with
Ae(f), and show that this model performs better on
the average.

5. Empirical Results
Before presenting the actual data, a word on how

the benchmarks were generated is in order. We used
single output functions extracted from the ISCAS-89
and MCNC benchmark suite. These single output
functions were optimized using SIS, for minimum area
using rugged.script and mapped using lib2.genlib.

The area complexity values (gate-count predic-
tions) of these benchmarks, using our model, were
computed as follows. Firstly, the probability of the
Boolean function was estimated to a 5% error tol-
erance and 95% confidence using a Monte-Carlo ap-
proach. The complexity measures L and E were es-
timated to an accuracy of 90% with a confidence of
90% on a SUN sparc-5 workstation after the essential
primes were computed (using espresso). The average
run time for all the benchmarks was about 1.9 cpu
seconds and worst case run time was 85 cpu seconds.
Hence, the total time required for computing the com-
plexity measures was on the average about 4 cpu sec-
onds and the worst case value observed was 119 cpu
seconds. The above computed complexity measures
were used along with output probability P(f) to es-
timate Al(f) and Ae(f), which in turn were used to
compute Aa(f).

The comparison between the SIS-optimized gate
count values and the predicted gate counts given by
Aa(f), Ae(f) and Al(f) are given in Figs. 1, 2 and 3
respectively. A blow-up of the plot in Fig. 1 is also
given in Fig. 4. The performance of these models is
much better than the area model in [4] in terms of
accuracy and run-times.

6. Conclusions
In this paper, we have proposed an area model

for predicting the area of single-output Boolean func-
tions, that is superior to the model in [4], both in
accuracy of prediction and run time. Moreover, the
feasibility of the proposed model was demonstrated on
a realistic library, lib2.genlib of the SIS library suite.
The improvement in prediction accuracy was achieved
through the definition of two new complexity mea-
sures, linear measure and exponential measure, which
depend on the distribution of essential prime impli-
cants of the function at hand. It was also empirically
demonstrated that the average area model has a better
correlation with SIS-optimized area than the areas pre-
dicted from the linear measure and exponential mea-
sure. Like [4], this work relates structural attribute
of the function (area) to its functional attribute (com-
plexity measures), which is a definite requirement for
high-level power estimation. We are currently working
on extending this model to multi-output functions.



0.0 50.0 100.0 150.0 200.0
Actual Area

0.0

50.0

100.0

150.0

200.0

P
re

di
ct

ed
 A

re
a

Figure 1. Actual versus Predicted Area
for average area model.

0.0 50.0 100.0 150.0 200.0
Actual Area

0.0

50.0

100.0

150.0

200.0

P
re

di
ct

ed
 A

re
a

Figure 2. Actual versus Predicted Area
for Exponential measure.

0.0 50.0 100.0 150.0 200.0
Actual Area

0.0

50.0

100.0

150.0

200.0

P
re

di
ct

ed
 A

re
a

Figure 3. Actual versus Predicted Area
for Linear Measure.

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
Actual Area

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

P
re

di
ct

ed
 A

re
a

Figure 4. Actual versus Predicted Area
for average area model.

References

[1] F. Najm, “Towards a high-level power estima-
tion capability,” ACM/IEEE International Sym-
posium on Low-Power Design, pp. 87–92, 1995.

[2] D. Marculescu, R. Marculescu and M. Pedram,
“Information theoretic measures of energy con-
sumption at register transfer level,” International
Symposium of Low Power Design, pp. 81-86, 1995.

[3] M. Nemani and F. Najm, “Towards a high-level
power estimation capability,” IEEE Transactions
on Computer Aided Design of Integrated Circuits
and Systems, vol. 15, no. 6, pp. 588-589, June
1996.

[4] M. Nemani and F. Najm, “High-level power esti-
mation and the area complexity of Boolean func-
tions,”International Symposium of Low Power
Electronics and Design, pp. 329-334, 1996.

[5] A. C-H. Wu, V. Chaiyakul and D. D. Gajski,
“Layout area models for high level synthesis,” In-
ternational Conference on Computer Aided De-
sign, pp. 34-37, 1991.

[6] F. J. Kurdahi, D. D. Gajski, C. Ramachandran
and V. Chaiyakul, “Linking register transfer and
physical levels of design,”IEICE Transactions on
Information and Systems, September 1993.

[7] M. Xakellis and F. Najm, “Statistical estima-
tion of the switching activity in digital circuits,”
31st ACM/IEEE Design Automation Conference,
pp. 728–733, 1994.

[8] R. K. Brayton, G. D. Hatchel, C. T. McMullen
and A. L. Sangiovanni-Vincentelli, Logic Mini-
mization Algorithms for VLSI Synthesis, Boston,
MA: Kluwer Academic Publishers, 1984.


