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ABSTRACT
Transistor threshold voltages (Vth) have been reduced as part
of on-going technology scaling. The smaller Vth values feature
increased fluctuations due to process variations, with a strong
within-die component. Correspondingly, given the exponential
dependence of leakage on Vth, circuit leakage currents are increas-
ing significantly and have strong within-die statistical variations.
With these currents loading the power grid, the grid develops
large voltage drops, which is an unavoidable background level of
noise on the grid. We develop techniques for estimation of the
statistics of the leakage-induced power grid voltage drop based on
given statistics of the circuit leakage currents.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids

General Terms
Design, Algorithms

Keywords
Power grid, leakage current, voltage drop, statistical analysis

1. INTRODUCTION
Technology scaling requires reduction of the MOSFET thresh-

old voltage (Vth), to accompany the reduction in supply voltages
(Vdd) and oxide thickness. In today’s 1.2 V, 0.13 µm technol-
ogy, Vth is about 0.3 V and is forecast to be further reduced at
the rate of 15% per generation in future [2]. This reduced Vth
comes with increased variations, due to underlying process vari-
ations [11, 7]. Considering sub-threshold leakage currents, and
due to the exponential dependence of these currents on threshold
voltage, we also get a high rate of increase (reportedly as high as
about 5X per generation [2]) along with large variability (close to
3X for individual gates [11] and 20X for whole chips [4]). More-
over, these variations are known to have a significant within-die
component [1, 7], so that transistors in close proximity on the
layout can have significant variations in their leakage currents.

In this work, we consider the fact that, in response to statis-
tical leakage currents, the power grid of VLSI chips exhibits a
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voltage drop at all the nodes that is statistically variable with a
strong within-die component. This voltage drop is unavoidable
and manifests itself as a background level of noise on the grid
which will have an effect on circuit delay and operation and must
be considered during circuit design. However, in order to account
for this noise, simply setting all leakage currents to their maxi-
mum values is too pessimistic because strong local variations in
Vth make this case highly improbable. Instead, one must consider
all leakage currents to be random and focus on their independent
components, consistent with the fact that within-die variations
are significant. We will show that die-to-die variations are easily
dealt with, and will focus on within-die variations, for which we
propose an efficient approach to directly estimate the statistics of
the voltages from the given statistics of the currents.

Except for [11] and [7], there is not much prior work on the
study of statistical leakage currents due to within-die process
variations. There is no work that the authors are aware of on
the study of the statistical grid voltages in response to the statis-
tical leakage currents.

2. PROBLEM FORMULATION
It is helpful to distinguish between two types of leakage in in-

tegrated circuits. A circuit certainly draws leakage current when
it is in standby or sleep mode, what may be referred to as the
standby leakage. The circuit also draws leakage current when it
is active. Indeed, a logic gate draws leakage current any time
that its supply is “on.” Even inside a switching window, part of
the current drawn from the supply may be attributed to leakage.
The leakage drawn by the circuit during its active (non-standby)
states, may be referred to as the dynamic leakage. The grid re-
sponse to standby leakage may be obtained by a DC analysis of
the grid, using only a resistive model, whereas response to dy-
namic leakage requires a transient analysis, using an RC or RLC
model of the grid.

2.1 System Equations
We consider an RC model of the power grid, where each branch

of the grid is represented by a resistor and where there exists a ca-
pacitor from every grid node to ground. In addition, some nodes
have ideal current sources (to ground) representing the current
drawn by the circuit tied to the grid at that point, and some nodes
have ideal voltage sources (to ground) representing the connec-
tions to the external voltage supply. Let the power grid consist
of N + p nodes, where nodes 1, 2, . . . , N have no voltage sources
attached, and nodes (N + 1), (N + 2), . . . , (N + p) are the nodes
with the voltage sources. Let ck be the capacitance from every
node k to ground. Let ik(t) be the current source connected to
node k, where the direction of positive current is from the node
to ground. We assume that ik(t) ≥ 0 and that ik(t) is defined
for every node k = 1, . . . , N so that nodes with no current source
attached have ik(t) = 0, ∀t. Let i(t) be the vector of all ik(t)
sources, uk(t) be the voltage at node k, and u(t) be the vector of
all uk(t) signals. Applying Modified Nodal Analysis (MNA) [10]
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leads to:
Gu(t) + Cu̇(t) = −i(t) + GVdd (1)

where G is an N×N conductance matrix, C is an N×N diagonal
matrix of node capacitances, and Vdd is a constant vector each
entry of which is equal to Vdd. Let vk(t) = Vdd − uk(t) be the
voltage drop at node k, and let v(t) be the vector of voltage drops,
then (1) can be written as:

Gv(t) + Cv̇(t) = i(t) (2)

This is a revised system equation which one can solve directly for
the voltage drop values. Notice that the circuit described by (2)
consists of the original power grid, but with all the voltage sources
set to zero and all the current source directions reversed. In the
following, we will mainly be concerned with this modified power
grid and the revised system of equations (2).

In cases when the circuit is in a standby state, where all the
currents are constant, the circuit response is obtained using a DC
analysis. The DC equivalent of (2) is readily seen as:

GV = I (3)

2.2 Current Statistics
By virtue of the underlying process variations, the leakage cur-

rents exhibit two kinds of variations: within-die variations (also
referred to as intra-chip or intra-die variations) and die-to-die
variations (also referred to as inter-chip or inter-die variations).
As is typically done with other types of parameter variations [12,
8], we can express each (random) current vector as the sum of two
(random) current vectors that separately capture the die-to-die
(idd) and within-die (iwd) variations:

i(t) = idd(t) + iwd(t) (4)

At each time point, the components of idd(t) are all correlated, so
that they are all functions of a single underlying random variable
that takes the same value all over the die. However, the compo-
nents of of iwd(t) are all independent and have zero-mean. The
same breakdown of currents can be done in the DC currents case.

Since the grid is a linear system, then by superposition, the
voltage response of the power grid to the total current can be
composed as the sum of its responses to the two types of random
currents in (4). Note that the voltage drop on each node increases
when the currents loading the grid increase [5], so that it becomes
very easy to study the response due to idd(t), by setting all the
components at the top of their range (at the mean + 3σ point)
and solving the grid once, then setting them at the bottom of their
range and solving the grid again. This gives the total spread in
voltage values due to die-to-die variations.

Handling within-die variations is more difficult, primarily be-
cause the currents are all independent random variables. The rest
of this paper will be focused on within-die variations. Precisely,
given the means and variances of the individual independent leak-
age currents, our problem is to estimate the means and variances
(and possibly covariances) of the grid voltages.

2.3 Mean Estimation
Due to linearity of the mean (E[·]) operator, one can write:

GE [v(t)] + C
d

dt
E [v(t)] = E [i(t)] (5)

Thus, if we solve the system (2) once, using simply the current
means as inputs, the solution gives the voltage means at all the
nodes. The rest of this paper is focused on estimation of the node
voltage variances.

3. VARIANCE ESTIMATION
Variance is inherently harder to estimate than the mean. We

have no good way to formulate the system equations in as-simple
a form as (5) that maintains the full dynamic model of the grid.
Instead, we have found it necessary to introduce the following
“pseudo-static” assumption:

Assumption 1. For variance estimation, we assume that the
grid may be solved as a DC system at every/any time point.

This is purely a simplifying assumption which helps arrive at
an efficient formulation for the variance computation. Notice that
this assumption is automatically true for the case of standby leak-
age. For dynamic leakage, since the leakage current of a logic gate
is constant when it is not switching, then this assumption may be
acceptable in practice, especially since some dynamics of the sys-
tem have been included in the analysis (through the computation
of the mean response as per (5)).

One way of estimating the (output) distributions of voltage
given the (input) distributions of current is to simply do random
sampling on the currents. Generate a randomly-chosen vector of
current values, according to the distributions of the currents, and
solve the system (3) repeatedly to get a corresponding sample of
the voltages, until the desired statistics have been estimated with
sufficient accuracy. This technique is viable, and we have actually
implemented it and found that, in some cases, it requires fewer
samples than the column-sampling approach to be proposed be-
low. However, it has a serious disadvantage in that when checking
whether a certain estimator of the variance has converged, one is
required to evaluate certain percentiles of the χ2 distribution for
every sample. This can get very expensive because it requires
numerical integration of the χ2 pdf (probability density function)
- using a table is not a practical option because the number of
samples can be huge. In contrast, the column-sampling method
(below) transforms the variance estimation problem to a mean
estimation problem, which requires estimating (only once) a per-
centile of the standard normal pdf. Thus, we have found that
the current-sampling technique takes much longer time to con-
verge (about 10-20X more) than the column-sampling method
presented below, which is our main result for this paper.

3.1 Variance Computation
Under DC conditions, the system (5) is simplified to:

GE [V] = E [I] (6)

We now combine (3) and (6) to yield:

G (V − E [V]) = I − E [I] (7)

Multiplying each side by its transpose and applying the expected
value operator to each side, leads to:

GE
�
(V − E [V]) (V − E [V])T

�
GT =

E
�
(I − E [I]) (I − E [I])T

�
(8)

We recognize the expectations as being simply covariance matri-
ces [9], so that the above result can be rewritten as:

GCov(V)GT = Cov(I) (9)

Since G is symmetric, so is G−1. Therefore, (9) becomes:

Cov(V) = G−1Cov(I)G−1 (10)

Generating and storing Cov(V) is computationally very expensive
for large grids. Furthermore, one can envision the need for the
covariance of a few nodes in a small vicinity on the layout, but
it is not clear how covariances among all pairs of nodes would
be useful. Indeed, it may be argued that the only information of
practical value today is the variances of the node voltages, i.e., the
diagonal of Cov(V). Therefore, we will derive a simpler system
based on the variances of the voltage drops, rather than their
entire covariance matrix. Noting that the independence of the
currents means Cov(I) is diagonal, and since G−1 is symmetric,
it can be seen from (10) that:

[Cov(V)]ii =
��

G−1
�
i1

�2
[Cov(I)]11

+ · · · + ��
G−1

�
iN

�2
[Cov(I)]NN , (11)
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where [.]ij is the (i, j)th entry of the corresponding matrix. Let
Var(V) and Var(I) be respectively the vectors of variances of all

voltages and currents, and define a matrix G−1(2) such that:

[G−1(2)]ij =
�
[G−1]ij

�2
, (12)

so that (11) can be written as:

Var(V) = G−1(2)Var(I) (13)

The solution of (13) requires full knowledge of the inverse of G,
which is impractical for large grids. In the following, we propose
an efficient random-sampling-based technique which uses (13) to
estimate the variances of the node voltage drops.

3.2 A Column-Sampling Approach
In order to simplify the notation, let rij = [G−1(2)]ij . Also,

let σ2
Ii

be the variance of the current source at node i and σ2
Vi

be the variance of the voltage drop at node i. Let S =
�N

i=1 σ2
Ii

and let pi = σ2
Ii

/S. Then, using (13) yields:

σ2
Vi

= S
N�

j=1

pjrij (14)

Since
�N

i=1 pj = 1, then we can view the pj weights as being
probability values that are associated with the rij values, so that
the summation above becomes the mean (weighted average) of all
the rij elements in the ith row. If we define a random variable
(RV) ri as being a discrete RV that takes the values rij with
probabilities pj , j = 1, 2, . . . , N , then we can write (14) as:

σ2
Vi

= SE[ri] (15)

Let the mean of ri be µi = E[ri] and its variance be σ2
i . We can

now use methods of mean estimation from statistics, basically
Monte Carlo random sampling [6, 13], to estimate the population
mean µi using the mean of a much smaller sample (say, of size
n � N) from the population, i.e., using the sample mean.

Using a weighted random number generator, we generate ac-
cording to the probabilities pj a sequence of indices of columns

of G−1(2) to form the following sample mean for every row i:

r̄i =
1

n

�
j∈J

rij (16)

where J is the set of indices included in the random sample. We
also compute the sample standard deviation, si ≥ 0 given by:

s2
i =

1

n − 1

�
j∈J

(rij − r̄i)
2 =

n

� �
j∈J

r2
ij

	
−
� �

j∈J
rij

	2

n(n − 1)
(17)

It can be shown that, for large n (as n → ∞), r̄i converges to µi.
Furthermore, for finite n, it is possible to determine [6, 13] how
large n should be in order for r̄i to be a good approximation (to
within arbitrary accuracy) of µi, as follows.

Considering all possible samples of size n from a given popula-
tion, one can view r̄i itself as a random variable, with mean µi and
variance σ2

i /n. For moderately large values of n (larger than 30 [6]
or 50 [13]), the distribution of r̄i becomes close to a normal dis-
tribution. This means that the distribution of (r̄i − µi)/(σi/

√
n)

becomes close to a standard normal distribution. Thus, it be-
comes possible to use tables of the standard normal to estab-
lish how large n should be in order for the variance of r̄i to be
small enough for it to be a viable estimator of µi, with a certain
level of confidence [6, 13]. For example, if it is desired to have
(1 − α) × 100% confidence (where α is a small positive number,
0 < α < 1) that the following is true:

|r̄i − µi| < ε (18)

Then n should be larger than n0 where:

n0 =

 zα/2σi

ε

�2
(19)

where zα/2 is such that the area to the right of it under the pdf

of the standard normal curve is equal to α/2 (e.g., for 90% confi-
dence, α = 0.05 and zα/2 = 1.96). Note that the strict use of (19)
requires knowledge of σi. In practice, however, one samples until
n is larger than 30 or 50 or so, then starts to use (19), substituting
si for σi [6, 13], to monitor convergence, leading to:.

n0 =

 zα/2si

ε

�2
(20)

3.3 Error Bound
In order to choose a meaningful error bound ε for use in (20),

recall that our intent is to approximate the variance of every node
voltage as follows:

σ2
Vi

≈ Sr̄i (21)

Let δ be a small positive number, 0 < δ < 1. It makes sense to
aim to achieve a user-defined error bound on σVi

defined relative
to the supply voltage, Vdd, as follows:���σVi

−


Sr̄i

��� ≤ δVdd (22)

In other words, we want to find ε (to be used in (20)) as a function
of δ in order for the following to be true:

|r̄i − µi| < ε =⇒
���Sr̄i −


Sµi

��� < δVdd (23)

To simplify the notation, let x = µi and x0 = r̄i. Also, let

y =
√

µi =
√

x and y0 =
√

r̄i =
√

x0, and let γ = δVdd/
√

S.
Notice that γ > 0. We want to find ε in terms of δ so that:

|x − x0| < ε =⇒ |y − y0| < γ (24)

There are two cases to consider, according to whether y0 < γ
or y0 > γ. When y0 < γ, then (since y > 0 in all cases) in
order to guarantee that |y − y0| < γ, it is sufficient to impose
that y < y0 + γ. Since y is an increasing function of x, then we
require that: |x − x0| = x − x0 < (y0 + γ)2 − y2

0 = 2y0γ + γ2, so

ε = 2y0γ + γ2.
When y0 > γ, then we need to have y0 − γ < y < y0 + γ,

which implies that (y0 − γ)2 < x < (y0 + γ)2. This translates to
requiring that: |x − x0| < 2y0γ − γ2, so ε = 2y0γ − γ2.

Notice that the condition y0 > γ translates to r̄i > δ2V 2
dd/S.

In summary, then:

ε =

� δVdd
S

�
2
√

Sr̄i + δVdd

�
if r̄i < δ2V 2

dd/S,

δVdd
S

�
2
√

Sr̄i − δVdd

�
if r̄i > δ2V 2

dd/S.
(25)

Plugging (25) into (20) leads to:

n0 =

�
zα/2siS/δVdd

δVdd ± 2
√

Sr̄i

�2

(26)

where the + or − sign depends on whether r̄i is smaller or larger
than δ2V 2

dd/S, respectively.

4. EXPERIMENTAL RESULTS
This method has been implemented on a number of test-case

grids. Not having access to power grids from industrial designs,
we have opted to generate a number of grids ourselves. Starting
with a square uniform grid of a given size, we randomly delete
a user-specified percentage of nodes, which we call the degree of
non-uniformity. Geometric and physical grid characteristics (e.g.
grid dimensions) as well as characteristics of the fabrication pro-
cess (e.g. sheet resistances) lead to initial values of branch con-
ductances. When a node is deleted, the conductances of the re-
maining surrounding branches are increased by a random amount
in order to allow the non-uniform grid to be loaded with currents
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Table 1: Results on grids that allow an exact solution.

Size Number Degree (%) of Avg. Error Max. Error Number of CPU time CPU time CPU time
(#nodes) of C4s non-uniformity (% of Vdd) (% of Vdd) samples (LU) (sampling) (exact)
17,678 150 3 0.07 0.73 5,559 21 sec. 6 min. 17 min.
38,800 170 3 0.09 0.65 7,381 2 min. 24 min 2 hrs.
41,058 170 19 0.08 0.63 20,523 45 sec. 41 min. 1.2 hrs
41,095 170 19 0.09 0.84 17,725 51 sec. 37 min. 1.3 hr.
41,147 170 19 0.09 0.78 20,068 46 sec. 41 min. 1.2 hr.
64,067 260 3 0.08 0.73 15,092 6 min. 1.6 hr. 6.5 hrs.
76,503 260 19 0.09 0.92 28,829 3 min 2.3 hrs. 5.6 hrs.
76,522 260 19 0.09 1.07 28,526 3 min. 2.2 hrs. 5.4 hrs.
81,000 350 10 0.07 0.60 11,236 5 min. 1.2 hrs. 8.1 hrs.
110,776 400 8 0.05 0.43 18,501 13 min. 3.4 hrs. 18.8 hrs.
138,500 450 8 0.06 0.51 14,589 18 min. 3.4 hrs. 29.6 hrs.

Table 2: Results on larger grids that do not allow an exact solution.

Size Number Degree (%) of Number of CPU time CPU time Memory
(#nodes) of C4s non-uniformity samples (LU) (sampling) usage
164,510 550 23 24,314 11 min. 3.1 hrs. 163 MB
203,251 580 6 22,124 35 min. 5.6 hrs. 302 MB
251,856 590 10 31,052 39 min. 8.6 hrs. 335 MB
309,719 620 4 34,346 1.5 hrs. 16.6 hrs. 558 MB
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Figure 1: Correlation plot of results for a grid with
138,500 nodes

that are comparable to those applied to its uniform predecessor,
while exhibiting comparable IR-drops. The number of Vdd (C4)
sites and leakage current sources are supplied by the user; the C4s
and current sources are then distributed at random. Finally, the
statistical estimation was conducted at 90% confidence (α = 0.1)
and with a 1% error bound (δ = 0.01).

Table 1 shows results for a number of power grids that are small
enough to allow for the exact solution of (13), in order to assess
the accuracy of our column-sampling approach. These results
were obtained on a Sun Blade 1000 with a 750MHz CPU and 2.5
GB of RAM. Clearly, column-sampling does a very good job; the
average error is well below the specified 1% threshold, and only 1
of 11 cases has a maximum error above 1%. With an error thresh-
old of 1% and a confidence of 90%, one would expect the error
to exceed 1% with only 10% probability, which is exactly what
we find. For the grid with 138,500 nodes, the correlation plot of
standard deviations is given in Fig. 1, showing very good accu-
racy. Results on larger grids are shown in Table 2, obtained on a
Dell machine with a 1.6GHz Intel Pentium-4 CPU and 2.0GB of
RAM. Only the proposed column-sampling approach was applied
to these grids, and run-time and memory usage data are shown.
Clearly, this technique is applicable to relatively large grids, with
a tight (δ = 1%, in this case) error bound.

5. CONCLUSION
Due to reduced threshold voltages (Vth), leakage currents are

much higher than before, and due to increasing Vth variations,
which exhibit a strong within-die component, leakage currents are

statistically variable, with a strong within-die component. The
effect of these currents on the power grid is to generate a statisti-
cal background-noise voltage drop on the grid which needs to be
accounted for before a power grid can be deemed safe. This volt-
age drop reduces the allowable dynamic voltage drop that may
be tolerated on a power grid due to normal circuit operation. We
have presented an efficient approach by which given statistics of
the leakage currents can be used to derive statistics (means and
variances) of the grid voltages.
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