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ABSTRACT
It has been widely recognized that the dynamic range informa-
tion of an application can be exploited to reduce the datapath
bitwidth of either processors or ASICs, and therefore the overall
circuit area, delay and power consumption. While recent propos-
als of analytical dynamic range estimation methods have shown
significant advantages over the traditional profiling-based method
in terms of runtime, we argue that the rather simplistic treatment
of input correlation may lead to significant error. We instead in-
troduce a new analytical method based on a mathematical tool
called Karhunen-Loéve Expansion (KLE), which enables the or-
thogonal decomposition of random processes. We show that when
applied to linear systems, this method can not only lead to much
more accurate result than previously possible, thanks to its capa-
bility to capture and propagate both spatial and temporal correla-
tion, but also richer information than the value bounds previously
produced, which enables the exploration of interesting trade-off
between circuit performance and signal-to-noise ratio.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Design, Theory

Keywords
Dynamic range, bitwidth, Karhunen-Loéve Expansion (KLE), cor-
relation

1. INTRODUCTION
Today’s ASIC designers start with a design specification handed

off by system designers. Often in the form of C code, the algorithm-
level design specification needs to be converted into register trans-
fer level (RTL) design, typically in the form of hardware descrip-
tion languages. A crucial decision to be made during this process
is the datapath bitwidth, including the bitwidths of different reg-
isters and functional units. An aggressively designed datapath
often replaces floating-point arithmetic operations contained in
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the design specification by their fixed-point counterparts. In ad-
dition, the redundant bits that do not contribute much to the
accuracy of the application are often eliminated. Such datap-
ath with minimal bitwidth always translates to superior circuit
performance in terms of area, speed and power consumption. To
make this possible, the dynamic range information of the applica-
tion, and in the case of C code, the dynamic range of all declared
variables and intermediate expressions (all referred to as variables
in the following text), has to be obtained.
Unfortunately, the best practice today for dynamic range esti-

mation is still profiling, which works by instrumenting the original
application with code that can trace the value ranges at runtime.
While this method can be made very accurate, the accuracy is
achieved only by extremely long simulation, and worst of all, no
confidence on the accuracy can be obtained. In contrast, analyt-
ical methods can avoid long simulation by analyzing the appli-
cation at compile time. While many advances have been made
on this front, the proposed methods have not been able to pro-
vide dynamic range information as accurate and as complete as
profiling.
More specifically, most analytical methods provide only value

bounds of the variables in terms of their minimum and maximum
values. The lack of other information, such as variable statistics
and probability, may limit our capability to accurately estimate
circuit performance. For example, in order to estimate power con-
sumption, the signal probability and correlation are required in
the circuit power macro-models. These power macro-model pa-
rameters can be obtained from the variable statistics. As another
example, from the joint-distribution of two variables used for com-
parison in a branch statement, we can distinguish a frequently
taken branch from an infrequently taken one, and therefore more
accurate estimation of power consumption. In addition, for differ-
ent categories of circuits, designers need to make different trade-
offs between algorithm reliability in terms of signal-to-noise ratio
(SNR) and circuit performance. If the distribution of variable
values is available, every decision on datapath bitwidth reduction
can be quantitatively associated with the reduced signal-to-noise
ratio. Therefore, for designs with high reliability requirement,
a wider bitwidth can be chosen, while for consumer electronics
and cost-driven designs where certain level of overflow is toler-
able, narrower bitwidth may be chosen to strike better balance
between reliability, cost and power.
In this paper, we propose a new analytical framework based on

Karhunen-Loéve Expansion (KLE) and demonstrate its effective-
ness in linear systems, which characterize a large class of useful
applications. KLE method allows us to decompose the system
input, modeled as an arbitrary random process, into K number
of deterministic signals, each multiplied by a random variable.
Exploiting the linearity of the system, we can therefore obtain
the system response of a random input by combining system re-
sponses of K deterministic inputs.
We demonstrate the following advantages over previous ap-

proaches: First, it is extremely fast. While profiling has to sim-
ulate the system for thousands or even millions of random input
realizations, our method only needs to simulate K inputs, where
K is typically a small number. Second, it offers complete infor-
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mation. In fact, the distribution of all variables can be obtained.
As a result, important design tradeoffs discussed earlier can be
explored. Third, it is highly accurate. Our method can capture
the temporal correlation in the system input, which is not pos-
sible in the previous methods, but as we show later, contributes
significantly to the accuracy of the result.
The remainder of this paper is organized as follows: Section 2

gives a brief account of the related literature. Section 3 gives
the theoretical foundation of our method before presenting the
CAD tool framework we developed. We give experimental result
in Section 4 before drawing conclusion in Section 5.

2. RELATED WORK
Profiling or simulation-based approaches [1, 2] have been used

extensively to estimate the dynamic range of variables in a pro-
gram. As mentioned earlier, these method are computationally
expensive, since huge amount of sample data need to be simu-
lated.
The Lp norm method based on use of a transfer function is

proposed in [3]. While theoretically well formulated, this method
requires the explicit knowledge of the system transfer function,
which may not be always available, and which may be difficult to
extract from C code. In addition, it propagates only the maxi-
mum value of the data. Thus, the estimated dynamic range can
be very conservative.
A moment-based method is presented in [4]. This method mod-

els the input as a random variable and propagates its moments
(up to 7th order) through the system. The probability density
function (pdf) of all variables can be constructed from the prop-
agated moments. However, this method assumes that the input
data is temporally uncorrelated, and that variables internal to
the system (such as at the input to an arithmetic operator) are
spatially uncorrelated. Both these assumptions are not true in
practice, and can have significant impact on accuracy of the re-
sults, as we will demonstrate in our results section.
A bitwidth/interval propagation method is adopted by [5]. This

method propagates the input bitwidth or interval through the
whole system to obtain the dynamic range for intermediate vari-
ables. The estimated result from this method is too pessimistic,
since it always considers the worst case. If the system is large,
these estimation errors can accumulate, leading to significant er-
rors in dynamic range.
An improvement on the interval propagation technique is given

in [6], where they do take into account the spatial correlation be-
tween internal variables. However, this method does not consider
the temporal correlation of the input signals. For many appli-
cations, spatial correlation between variables is a direct result of
the temporal correlation of the input signals. Therefore, ignoring
the temporal correlation of the input automatically causes loss
of true correlation information internally. This can cause large
errors, as we will show in Fig. 3.
Thus, all existing methods have certain shortcomings, espe-

cially in the way that correlation is dealt with. In our work, we
take care of both temporal input correlation and spatial internal
correlation and we provide, not only ranges of the data, but its
statistical distribution as well.

3. PROPOSED METHOD
Consider an application that can be modeled as a linear sys-

tem with a single input data channel. We will focus on this case
in this paper. However, it is straightforward to extend the pro-
posed method to linear systems with multiple input channels. In
order to model the unknown input data, and since the size of
the input space is typically huge, we will model the input data
stream as a discrete-time random process, i.e., a sequence of ran-
dom variables (RVs) that are presented at the system input at
discrete time-steps. Correspondingly, the system internal state
and output variables all become random processes. Given the
distribution of the input process, the dynamic range estimation
problem can be formulated as the determination of the statistics
of the random processes corresponding to the system state and
output variables. Typically, the variance may be sufficient to de-

termine dynamic range. However, we will show that we are able
to estimate the whole probability distribution function (pdf), if
needed.

3.1 Capturing Temporal Relation of Random
Process by Karhunen-Lóeve Expansion

A random process p(t) defined over [0, t0] with zero mean and
autocorrelation function R(t1, t2), can be expressed using the fol-
lowing Karhunen-Loéve (KL) expansion [7]:

p(t) =
∞X

i=0

p
λifi(t)µi (1)

where fi(t) and λi are referred to as the eigenfunction and eigen-
values, respectively, of the autocorrelation function. The eigen-
functions are also known to be orthonormal, i.e.:Z t0

0
fi(t)fj (t)dt = δij (2)

where δij is Kronecker delta function:

δij =

�
0, if i �= j
1, if i = j

(3)

and where the µi are a set of zero-mean orthonormal RVs, which
means:

E[µiµj ] = δij (4)

where E[·] is the mean or expected value operator. When the ran-
dom process p(t) is Gaussian (i.e., it has a normal distribution),
a model which is often useful in practice, it turns out that the µi

are all independent standard normal RVs. They may be referred
to as a Gaussian basis. In cases where p(t) is near-normal, the
Gaussian basis can still be a good way to decompose the pro-
cess in practice. In cases of large deviation from the normal, the
Gaussian basis is not appropriate and one can then determine the
nature of the µi basis (their distribution type) using standard KL
techniques. The details are unimportant because one often does
not need to know the exact nature of the µi basis, but only their
moments. For our work, actually the 2nd order moments would
seem to be sufficient, but we will show how higher order moments
can be generated as well. The literature on KL techniques and
their practical implementations is quite extensive. Notice that,
irrespective of the distribution of the µi, the orthonormality prop-
erty (4) guarantees that:

E[µ2
i ] = 1 (5)

and this fact will be useful later on to compute the variance,
without having to know exactly the distribution of the µi basis.
It can be shown that the KL expansion is optimal, in the sense

that the mean square error resulting from replacing the infinite
summation in (1) by a truncated finite summation is minimal. Fi-
nally, one can obtain fi(t) and λi by solving the following integral
equation: Z t0

0
R(t1 , t2)fi(t1)dt1 = λifi(t2) (6)

The above results are applicable to a continuous-time process.
If we consider the discrete-time random process p[k] to be defined
on the discrete time domain [0, n], then, as was done in [8], a KL
expansion can be expressed in discrete-time as:

p[k] =
nX

i=0

p
λifi[k]µi k = 0, 1, · · · , n (7)

where λi and fi[k] are the eigenvalues and eigenfunctions of the
autocorrelation matrix of the discrete-time random process p[k]:2
666664

R(0, 0) R(0, 1) · · · R(0, n)
R(1, 0) R(1, 1) · · · R(1, n)

· · ·
· · · · · ·
· · ·

R(n, 0) R(n, 1) · · · R(n, n)

3
777775

2
666664

fi[0]
fi[1]
·
·
·

fi[n]

3
777775 = λi

2
666664

fi[0]
fi[1]
·
·
·

fi[n]

3
777775 (8)
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where R(k1, k2) = E [p[k1]p[k2]] is the autocorrelation function.
Here too, λi and fi[k] are orthonormal, and the summation can
be truncated, yielding a least-squares-optimal expansion:

p[k] ≈
mX

i=0

p
λifi[k]µi k = 0, 1, · · · , n (9)

In this case, it can be shown that the relative mean square error
resulting from the truncation is given by:

e = 1−
Pm

i=0 λiPn
i=0 λi

(10)

where λ0, . . . , λm are the eigenvalues that are kept in the trun-
cated KL expansion. We will refer to this error term as the trun-
cation error of the KL expansion.

3.2 Responses of Linear Systems
Let u[k] be the random process at the system input and x[k] be

the random process at an arbitrary state variable or at a system
output. Then, we can write:

x[k] = L(u[k]) (11)

where L(·) denotes the linear system operator that transforms
u[k] to x[k]. Let u[k] have the following KL expansion:

u[k] =
mX

i=0

p
λifi[k]µi =

mX
i=0

ui[k]µi (12)

where ui[k] =
√

λifi[k]. Combining (11) and (12), gives:

x[k] = L(u[k]) = L
 

mX
i=0

ui[k]µi

!
(13)

By the superposition property of linear systems, it follows that:

x[k] = L(u[k]) =
mX

i=0

L (ui[k])µi =

mX
i=0

xi[k]µi (14)

where xi[k] = L(ui[k]). In this way, we can obtain the KL expan-
sion of the random process x[k] in terms of the system responses
to each of the deterministic (non-random) functions ui[k] applied
as input. In specific cases where a system transfer function is
available, one can solve for xi[k] directly. However, in the more
general case, and this is the approach that we take, even when the
system is specified with a high-level behavioral description such
as a C program, xi[k] can be obtained by simply simulating the
system (e.g., executing the C program) with ui[k] as input. The
order m of the KL expansion is typically small, as we will show in
the results section, so that the complete statistics of the system
internals and outputs may be obtained by simulating the system
m times. The initial state of the simulation and the length of
the simulation period are parameters that can be set depending
on the particular situation. For example, in order to study the
dynamic range during a system transient, the simulations can be
performed starting from any desired initial state, and the largest
variance of the resulting responses may be monitored. If the
steady-state dynamic range is of interest, then the simulation pe-
riod must be set long enough for the statistics of the responses to
reach steady state. This, to some extent, depends on the statis-
tics of the input process and on the system dynamics. Thus, a
KL expansion is not a magic remedy that eliminates the need for
simulation. Instead, KL is a way to drastically reduce the number
of required simulations, compared to profiling based methods, as
we will demonstrate in the results section.

3.3 Obtaining Statistics of State Variables
Once the required m simulations are complete, we can assemble

the complete KL expansion for any system variable or output
response x[k] as:

x[k] =
mX

i=0

xi[k]µi (15)

It is important to note that this is a complete statistical descrip-
tion of the process x[k]. One can use this expansion to compute
any desired probability associated with x[k], such as the proba-
bility that it would exceed a certain threshold value, or simply
compute the overall distribution of x[k] from the known distribu-
tions of the µi RVs. Often times, the moments of the distribution
are very useful, and they are perhaps easiest to compute from this
expansion. The first-order moment is the mean or expected value
of the process, which is known to be zero because the input is
zero-mean. The 2nd-order moment, which is required to com-
pute the variance, is given by:

E[x[k]2] = E

2
4
 

mX
i=0

xi[k]µi

!2
3
5 =

nX
j=0

xi[t]
2 (16)

which is true because the µi have zero mean and unity variance
(due to (5)).
If the system input is Gaussian, then all the internal and out-

put responses are also Gaussian, so that the mean and variance
are sufficient to capture the complete distribution. In the gen-
eral case, higher order moments may be required and they may
be obtained by similar, although slightly more involved, expan-

sions that turn out to require terms such as E
h
µm1

j1
µm2

j2
· · ·µmk

jk

i
,

where m1+m2+ · · ·+mk = m. These terms may be obtained by
using the KL transformation (9) in the reverse direction to com-
pute samples of the RVs µi from the input data samples, and us-

ing these samples to compute terms like E
h
µm1

j1
µm2

j2
· · ·µmk

jk

i
us-

ing simple (Monte Carlo) averaging. The process is fairly straight-
forward but is omitted for brevity. Once the moments of the
response x(t) are obtained, one can further estimate its pdf us-
ing pdf expansion techniques such as Gram-Charlier, Hermite,
or Edgeworth expansion [9]. These pdf estimation methods have
been extensively applied in many research areas.

3.4 Methodology
This approach has been implemented in a tool that embodies

the flow-chart shown in Fig. 1. It takes as input the behavioral
description of the application in the form of a C program. It
also takes some information on the system input, such as either
input statistics or input sample data consisting of a set of time-
domain traces that are samples or realizations of the input ran-
dom process. The tool can output the pdf and statistics of all
state variables and outputs. Optionally, it can make decisions on
the bitwidth of all state variables and outputs, given a certain
desired signal-to-noise ratio (SNR).
The input statistics can be correlation functions, such as the

R(k1, k2) matrix in (8), and other moments of the input. If the
input random process is Gaussian or nearly-Gaussian, its mean
and correlation function are sufficient to compute the statistics
of the state variables and outputs. In the general case, other mo-
ments may also be needed depending on the order of the required
state variable statistics. If input statistics are not available and
sample data traces are provided instead, as shown in Fig. 1, we
first extract the mean and correlation matrix, from the sample
data (other higher order moments are computed if needed). Ex-
tracting the mean is done by simple averaging. The correlation
matrix is obtained by averaging the cross-terms, as follows:

1

m

2
666664

p1(0) p2(0) · · · pm(0)
p1(1) p2(1) · · · pm(1)

· · ·
· · · · · ·
· · ·

p1(n) p2(n) · · · pm(n)

3
777775

2
666664

p1(0) p1(1) · · · p1(n)
p2(0) p2(1) · · · p2(n)

· · ·
· · · · · ·
· · ·

pm(0) pm(1) · · · pm(n)

3
777775

(17)
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Figure 1: Block diagram of KLE-based method.

If the mean is not zero, then the input process is decomposed
into a deterministic term whose value is equal to the mean, and
another zero-mean random process resulting from subtracting the
mean from the original process. The corresponding mean of every
system response can be computed by one execution of the system
behavior using the input mean as excitation. Since the mean can
be easily subtracted out up-front, and the response to the mean
value easily added later on, it is sufficient to focus the discussion
on the zero-mean case.
The KLE extraction module in the flow-chart accepts the cor-

relation matrix as input and solves the eigensystem problem for
this matrix. Solution techniques of such systems are standard.
After the eigenvalues and eigenfunctions are found, the KL ex-
pansion of the input random process is available. It can easily
be truncated according to the truncation error specified by the
user using (10). Higher-order moments (higher than 2nd order)
of the RVs µj are also computed by this module, from the mo-
ments of the input random process, if they are needed. In the
system variable KLE solution module, the coefficient functions
of the input KL expansion

p
λjui[k] are utilized to compute the

KL expansions for all variables in the C program (these represent
all system state variables and system outputs), by simulating the
system (executing the program) a total of m times.
The KLE statistics module uses the KLE model of all the vari-

ables to compute required statistics and probability distribution
for them by the methods presented above. Users can specify a tol-
erable probability for the occurrences of overflow according to the
noise and reliability requirement of the design. Then, dynamic
ranges of all state variables associated with this probability can
be determined based on their statistical information. According
to the distribution of variables, this module can also determine
the bitwidth of variables and compute the corresponding signal-
to-noise ratio.

4. EXPERIMENTAL RESULTS
We construct a set of experiments to verify and demonstrate

the effectiveness of the proposed methodology. All our exper-
iments are conducted on a Sun workstation (Ultra 80, Model
4450). The set of benchmarks used includes FIR31, FIR63, CX-
FIR, IIR, IIR8, and FFT128. The first two, FIR31 and FIR63
are 31-order and 63-order FIR digital filters, respectively. CXFIR

Table 1: KLE Extraction Result
Random Truncation Terms Correlation KL
Process Error Kept Func.(s) Expan.(s)

rp1 2.91% 88 10.17 0.31
rp2 2.97% 82 10.19 0.28
rp3 2.99% 53 10.27 0.24
rp4 2.91% 19 10.45 0.13
rp5 2.92% 7 10.28 0.1

is a complex FIR filter, whose input and output are all complex
numbers. IIR is a 2nd-order IIR digital filter. IIR8 is an 8th-
order IIR digital filter. FFT128 performs a 128-point fast Fourier
transform.
Sample sets of five input random processes are generated to

conduct all experiments. These were applied to the benchmarks
as input signals. These processes fit the Auto-Regression Moving
Average (ARMA) model of time series [10], which is extensively
used in engineering. Every sample set consists of 10,000 traces of
100-time-point each, for a total of 1 million data points in each
sample set. The “randomness” of these sample sets were chosen
to be different so as to provide extensive testing, as shown in
Table 1. Thus, rp1 is the most noisy sample set, while rp5 shows
the most correlated behavior. The “randomness” of data samples
decreases from rp1 to rp5.

4.1 Results of KLE Extraction
We first demonstrate the accuracy and speed with which we

extract a KL expansion and build a KLE model of random pro-
cesses from the sample data set. Table 1 shows these results. It
can be observed from columns 4 and 5 that all extractions can be
accomplished within 10 seconds while retaining a truncation error
of about 3%. Overall, the time complexity of our KLE extraction
algorithm is linear in sample size. It takes about 1 second to ex-
tract a signal trace of 1,000 samples, and this scales linearly to
about 10 seconds for a trace of 10,000 samples.
It is interesting to observe from column 3 that the more corre-

lated the sample set is, the less terms are needed to capture its
behavior for a specific truncation error. This is because the en-
ergy of more correlated sample sets are concentrated on only a few
random terms in the KLE. On the other hand, for sample data
sets which show more random behavior in the time domain, their
energy is spread over many more terms. While the impact of the
truncation on the estimation error is small and can be ignored, it
can significantly reduce the computational work required.
One limitation of our approach is that, for the case when the

input signal is white noise or nearly white noise, since every KLE
term has the same significance, its KLE can not be truncated very
effectively and almost all of the KLE terms are kept. However this
case is rare, since one would expect that most practical signals
include significant temporal correlation.

4.2 KLE versus Profiling
In this section, we demonstrate the accuracy and speed of

KLE method by comparing against the traditional profiling-based
method. The accuracy results are listed in Table 2. Note that
these results are produced where all KL expansions are truncated
to retain 97% of its energy (a truncation error setting of 3%).
The second column and third column list the variances of the
system outputs obtained from KLE-based method and profiling-
based method respectively. The last column shows the difference
in percentage between variances from KLE and profiling. The
results from KLE is consistently close to the results from profil-
ing. Even the largest difference is within 0.5%. It is important to
note that this difference is only an artifact of truncation during
input KL expansion. If all terms in KL expansion is kept, then
the difference is essentially zero. KLE is accurate.
Fig. 2 further shows the histogram of an output variable in

benchmark FIR31 when rp1 is applied as input. The bar graph
and curve corresponds to the histograms from profiling and the
estimated histograms from KLE-based method respectively. The
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Table 2: Variance from profiling v.s. variance from
KLE, with Sample data set rp1 as Input

Benchmark KLE Profiling Difference

FIR31 0.050 0.050 -0.027%
FIR63 0.114 0.114 -0.009%
CXFIR 0.168 0.168 -0.009%
IIR 0.223 0.224 -0.460%
IIR8 57.997 57.998 -0.002%
FFT128 75.444 75.470 -0.038%

-1 -0.5 0 0.5 1

Values of variable

0

200

400

600

800

Fr
eq

ue
nc

y

Simulation
KLE

Figure 2: pdf and Histogram

total sample number for simulation is 10,000. It can be seen
that these two histograms match very well. These results clearly
verify that the KLE-based method is accurate and reliable. It is
important to note that that while we use profiling result to verify
the KLE method, it does not necessarily imply that profiling is
more accurate than the KLE-based method. In fact, profiling
can never reach the real theoretical values, because the simulated
sample data can never be infinite. However, provided that the
accurate statistics of input random processes are given, the exact
statistics of state variables can always be obtained by KLE. For
example, given the mean and correlation function of a Gaussian
random process as input, then the exact models and statistics for
state variables can be calculated.
Finally, Table 3 shows the computation time of our KLE-based

method v.s. a profiling-based method. The KLE-based technique
achieves about 100-time speedup. It is still several times faster
than profiling even when the data processing time is included.

4.3 Bitwidth and SNR Tradeoff
As an application of our work, we will show how the distri-

bution and statistics obtained by the KLE-based method can
be used to make a tradeoff between bitwidth and the signal to
noise ratio (SNR). Due to lack of space, and since this is only for
demonstration purposes, this will be very brief, will focus on the

Table 3: Computation time, Simulation versus KLE

Benchmarks KLE Profiling Speedup
time(s) time(s)

FIR31 0.59 63.12 107
FIR63 0.62 69.48 112
CXFIR 0.53 58.12 110
IIR 0.52 57.48 111
IIR8 0.58 61.90 107
FFT128 0.33 27.28 83

Table 4: Bitwidth and Signal to Noise Ratio

Bitwidth Dynamic Probability SNR(dB)
Range

14 ±8.191 65.44% 7.68
15 ±16.383 94.07% 17.95
16 ±32.767 99.98% 47.62
17 ±65.535 ≈ 1 148.34
18 ±131.071 ≈ 1 527.92

overflow error only, and will be done only for the case of bench-
mark FFT128. This can be extended to cover round-off error as
well, and can be applied to all the other benchmarks.
For a candidate bitwidth, one can easily compute the corre-

sponding dynamic range, and the range probability, or the proba-
bility for the value to fall within the range, and the signal-to-noise
ratio (SNR) using [11]:

SNR = 10 log10

�
σ2

s

σ2
n

�
(18)

where σ2
s and σ2

n are the variances of signal and noise respec-
tively. Assuming the data is zero-mean Gaussian and is to be
truncated to a dynamic range of ±zσs, where z > 0, and ignor-
ing discretization (round-off) error and focusing only on overflow
error, it can be easily shown that the SNR is given by:

SNR = −10 log10

�
2(1 + z2)Φ(−z) − 2zφ(z)

�
(19)

where Φ(·) and φ(·) are the cumulative distribution function (cdf)
and the probability distribution function (pdf) of the standard
normal distribution. With this, one can generate results such as
those in Table 4 that show the trade-off between bitwidth and
SNR. Notice that, for a bitwidth b, and allowing for one sign bit,
the dynamic range is ±(2b−1δ − 1), where δ is the discretization
step size, i.e., the value of the least-significant bit. For the data
in Table 4, δ = 0.001. Based on the computed variances from
KLE for any/all signals, one can generate and use such tables to
manage the trade-off between bitwidth and SNR.

4.4 Impact of Temporal Correlation
In this section, we demonstrate that the temporal correlation

in the input process can significantly impact the accuracy of the
result. This experiment is important because all prior analytical
methods did not consider temporal correlation. In fact, prior
work either assumes that the input is a series of independent and
identically distributed random variables (correlation coefficient
ρ = 0), or a sequence of the same random variable (ρ = 1).
This effectively leads to two extreme assumptions on temporal
correlation, both unfounded: the former assumes that the input is
completely uncorrelated, while the latter assumes that the input
is completely correlated.
In order to show that these oversimplified assumptions may

cause large estimation errors, we have repeated our experiments
and artificially introduced a ρ = 0 (independence) assumption in
one case and a ρ = 1 (correlated) assumption in another. The
results are shown in Table 5. All of the three kinds of inputs in
this table have exactly the same distribution at any specific time
point; the only difference between them is the temporal corre-
lation. In Table 5, the second column shows the variance from
the KLE-based method. They are the same as those in Table 2
and verified by simulation. The variances listed in the third col-
umn are the results under the fully correlated assumption, while
the variances in the fourth column are the results under inde-
pendent assumption. We can see that the results from different
temporal correlation are quite different. For FFT128, the vari-
ance estimated from the fully correlated assumption is about 30
times larger than the result from the KLE-based method, while
the variance from independent assumption are about 4.4 times
less than the KLE-based method.
Fig. 3 shows the pdf curves obtained by the KLE-based method

and from the fully correlated case and the independent case, cor-
responding to the test case FIR31 in the second row of Table 5.
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Table 5: Variances from KLE versus the cases where
temporal correlation is simplified to be either 1 (full)
or 0 (none), with sample data set rp1 as input.

Benchmarks KLE ρ = 1 ρ = 0

FIR31 0.050 0.224 0.012
FIR63 0.114 0.137 0.066
CXFIR 0.168 0.295 0.076
IIR 0.223 0.000 0.287
IIR8 57.997 173.124 14.784
FFT128 75.444 2218.93 17.335
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Figure 3: The pdf under various assumptions related
to correlation, compared to the pdf from KLE.

The accuracy of pdf from KLE-based method has been verified
by the histogram match in Fig. 2. The independence assumption
gives a narrow distribution, while the extremely correlated as-
sumption gives a flat distribution, both of which are quite wrong,
as can be seen from the figure. The figure also shows what hap-
pens in the case when both temporal and spatial correlation is
ignored, and the results are even worse in that case, as would be
expected.
These results clearly demonstrate the advantages of the KLE

approach and the need to maintain correlation information. Trun-
cating one of the “wrong” pdfs in Fig. 3 would either give signifi-
cant noise, or be very conservative. To illustrate this, we show the
dynamic ranges under different range probabilities in Table 6. It
can be observed that the extremely correlated assumption leads
to dynamic range 5 times wider than necessary, a pessimistic re-
sult, while the independent assumption leads to dynamic range 2
times narrower than required, an overly optimistic result.

5. CONCLUSION
In this paper, a new method for dynamic range estimation is

presented, based on the Karhunen-Loéve Expansion (KLE). It
models the variables and intermediate results in the program by

Table 6: Dynamic range from KLE versus from the
cases where temporal correlation is simplified to be
either 1 (full) or 0 (none).

Probability KLE ρ = 1 ρ = 0

99.98% ±32.14 ±174.29 ±15.41
99.02% ±22.41 ±121.53 ±10.74
95.00% ±17.02 ±92.33 ±8.16
90.10% ±14.33 ±77.72 ±6.87

random processes. Starting from a description of the system be-
havior in the form of a C program, then by executing a trans-
formed C program, the KL expansions for the random processes
corresponding to all program variables can be generated. Based
on this, full statistical information about the variables can be ob-
tained. In this work, this technique has been applied to linear
systems. We are currently extending this to the more general
case.
Compared with currently available methods, this approach has

the following advantages. Firstly, more detailed information about
the dynamic range or values of the variables is obtained. It in-
cludes the probability distributions. Designers can associate ev-
ery choice of bitwidth with a value of the signal-to-noise ratio
and thus make judicious trade-offs between reliability and cost
or power. Secondly, the proposed method fully considers both
the spatial correlation and the temporal correlation. In contrast,
previous methods that treat input as random variables cannot
truly handle dynamic systems, especially those with feedback or
operations on signal of multiple time points; and previous meth-
ods that treat input as white noise can lead to large estimation
error. Thirdly, our method can construct random process mod-
els from real sample data or empirical statistics, instead of using
oversimplified models or assumptions. Our method can therefore
compete with profiling for accuracy and flexibility. Finally, our
method is computationally efficient. If one only considers the
propagation of random processes, it can be several orders of mag-
nitude faster than simulation very easily. For designers who want
to thoroughly explore the design space, they only need to extract
the random process model once. When they modify their designs
and redo the dynamic range estimation, their computation cost
is only the propagation of the previously obtained models.
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