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ABSTRACT
Starting from a model of the within-die systematic variations us-
ing principal components analysis, a model is proposed for esti-
mation of the parametric yield, and is then applied to estimation
of the timing yield. Key features of these models are that they
are easy to compute, they include a powerful model of within-
die correlation, and they are “full-chip” models in the sense that
they can be applied with ease to circuits with millions of com-
ponents. As such, these models provide a way to do statistical
timing analysis without the need for detailed statistical analysis
of every path in the design.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Design, Theory

Keywords
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1. INTRODUCTION
The yield of an integrated circuit (IC) is a complex function

of a number of factors related to both design and manufacturing.
Beyond issues of design centering [1, 2], which focuses mainly on
tuning the manufacturing process, yield is also affected by circuit
design. As part of circuit timing verification, one has to leave
enough margin so that circuit delay variations do not affect yield
too adversely. We will focus on this part of the overall yield
problem, referred to as timing yield or circuit-limited yield [3, 4].
Traditionally, this has been taken care of by using the right worst-
case file [5] as part of timing or performance verification (typi-
cally, during static timing analysis). The worst-case files specify
the values of transistor parameters for various process corners,
including the nominal and various extremes of device behavior.
A circuit is deemed to have passed the timing test if it meets the
performance constraints for all worst-case files belonging to that
process. However, this approach is becoming less feasible today,
especially for high-performance chips. For one thing, it can be
too conservative and does not provide the user with any quanti-
tative feedback on the robustness of the design [5]; it is a pass/fail
approach. In addition, this traditional approach cannot handle
within-die statistical variations [4] (mismatch between devices on
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the same chip) which have become important in deep sub-micron
processes [3].

Statistical techniques offer a better alternative approach; sta-
tistical transistor modeling techniques [6, 5] have been used for
quite some time. Recently, due to the increased importance of
within-die variations, there has been an increased interest in tack-
ling the timing yield problem by employing statistical techniques
as part of the circuit timing analysis step [4, 3, 7, 8, 9]. The aim
is to extend traditional static timing analysis so that it takes into
account statistical delay variations.

Within-die variations are of two types: systematic and statis-
tical. The systematic type are due to spatial location of a cer-
tain feature on the die and due to the context of that feature in
terms of the layout patterns around and above it. Techniques
have been proposed [10] for taking into account this type of vari-
ations. However, statistical within-die variations have not been
adequately addressed. A key contribution of this paper is to take
within-die statistical correlations into account.

To be sure, some prior work has been done on this. In a num-
ber of cases [4, 9, 11, 12], it has been assumed that within-die
variations are totally uncorrelated (so that path yields are multi-
plied to give the chip yield), an assumption which is not true in
practice. In order to avoid making this assumption, one needs to
express the correlations between within-die parameter variations
with a model that can be easily built from process data. This
point is key, and is hard to do - there are no published models,
for instance, for how exactly the variations are correlated across
the die as a function, say, of the distance between components. A
model of correlations in terms of distance is mentioned and used
in [13], but no details or data are given; it is not clear what shape
the model should take nor how one would build it from process
data. In [8], even though statistical within-die variations are not
taken into account, a suggestion is made at the end as to how
one may include them and take care of correlation by enforcing
correlation between features that are in the same region of the
layout. This theme was further developed recently where use was
made of principal components analysis [14] or a quad-tree par-
titioning [15] to express a region-wise spatial correlation among
within-die variations. Here too, it is not clear how one would
identify these regions and how the model would be built from
process data. Finally, since these methods depend on placement
information, these types of timing analysis become final sign-off
tools and are unusable during circuit design.

We propose an approach to take within-die statistical correla-
tions into account with a model that can be easily be built from
process data, and which can be applied pre-placement.

2. PROPOSED APPROACH
In our approach, we capture the within-die correlations using

principal components analysis (PCA). This is not, by itself, nec-
essarily an improvement over prior art because, as with previous
methods, the coefficients of the PCA would have to be evaluated
somehow from process data, and would depend on position in the
layout. However, with this model in hand, we then develop an
approach to estimate a lower bound on the timing yield which
which does not require knowledge of the individual PCA coef-
ficients, but requires only the order of the PCA (the number of
terms). While estimating detailed correlation functions is hard to
do from process data, estimating only the order of the PCA would
seem to be much easier, and we will suggest ways in which this
may be done. Since layout information is not required, this ap-
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proach becomes applicable to the pre-layout phase, during circuit
design and optimization.

Previously proposed techniques for statistical static timing anal-
ysis change the static timing flow so that one is propagating distri-
butions of delay, instead of simply delay. Even though there may
be ways of doing this efficiently, this does represent a significant
change of methodology! For one thing, statistical cell models [16]
would need to be built if one is to use a cell-level or block-level
flow. In contrast, our approach does not propagate distributions.
Instead, the result of our approach is a selection of a “device
file” setting with which to run traditional static timing analysis,
which is somewhere within the extremes of device behavior. For
example, while the “nominal” device file may call for a setting
of ∆L = 0 (for channel length variations) and the “worst-case”
file may call for a setting of ∆L = +3σL, our approach aims
to predict the value “k” such that if the setting of ∆L = kσL
was used for all devices, and if the circuit timing is verified using
traditional static timing analysis, then the circuit would give the
desired timing yield. As a result, our approach preserves exist-
ing static timing methodology and only assumes the existence of
statistical transistor models, which have been standard for some
time.

We will do this by working with a “generic critical path” con-
cept, in the style of [13], and examining the statistical properties
of large ensembles of such paths. Due to the typically huge num-
ber of critical paths on chip, the law of large numbers [17] will
come into play, and we will show that the actual number of paths
“drops out” of the yield equation. We will be left with a yield
lower bound expression that depends only on the various compo-
nents of the variances (these will be explained below) and on the
“device file setting”. For a minimum desired yield, we will work
backwards to find the required settings of device parameters.

3. PARAMETER MODEL
For a given circuit element or layout feature i, let its coordi-

nates on the die be (xi, yi) and let X(i), be a zero-mean Gaussian
random variable (RV) that denotes the variation of a certain pa-
rameter of this element from its nominal (mean) value. Thus, for
example, X(i) may represent channel length variations of tran-
sistor i. Correlation between values of X(i) at different locations
on the die may be expressed by means of an autocorrelation func-
tion, but this is not a practical approach. Instead, it is standard
practice [18] to express the correlation by first breaking up the
variations into die-to-die and within-die components, as follows:

X(i) = Xdd +Xwd(i) (1)

The die-to-die component Xdd is an independent zero-mean Gaus-
sian RV that takes the same value for all instances of this element
on a given die, irrespective of location. The within-die component
Xwd(i) is a zero-mean Gaussian which can take different values
for different instances of that element on the same die. This leads
to the following relationship between the variances:

σ2(i) = σ2
dd + σ2

wd(i) (2)

Then, the within-die component is further broken down into two
components, a systematic component and a “random” compo-
nent:

Xwd(i) = Xwds(xi, yi) +Xwdr(i) (3)

where, for each i, the random component Xwdr(i) is an indepen-
dent zero-mean Gaussian. Notice that the use of the term system-
atic here is somewhat different than the mention that was made
of it in the introduction. In the introduction, we distinguished be-
tween systematic and statistical variations. In this case, the sys-
tematic component of the variations is statistical. Unfortunately,
this same term is used in the literature to denote two different
things. Throughout the rest of the paper, the term “systematic”
will denote statistical variations such as Xwds(xi, yi). The sys-
tematic component Xwds(xi, yi) contains an explicit dependence
on location because it is usually taken to represent the extent of
correlation across the die, and correlation is usually dependent on
relative location. A similar relationship follows for the variances:

σ2
wd(i) = σ2

wds(xi, yi) + σ2
wdr(i) (4)

One way to express the systematic component of the within-die
variations is to use a principal components analysis (PCA) [19]
and write:

Xwds(i) =

pX
j=1

aijZj (5)

where Zj are independent standard normal RVs (Gaussians with
zero mean and unity variance) and where the coefficients aij are
such that:

σ2
wds(xi, yi) =

pX
j=1

a2ij (6)

The RVs Zj correspond to underlying independent unobservable
factors. The value of p and the coefficients aij represent the
extent of correlation across the die. For example, if p = 1, then
the within-die spatial correlation coefficient is 1, there is perfect
correlation; a single underlying RV Z1 determines the value of the
systematic component of Xwd all over the die. A p > 1 allows for
less than perfect correlation.

We will adopt the PCA expansion (5) as our “correlation model”
for the within-die component. At first glance, this model appears
hard to use because it seems to depend on knowledge of the val-
ues of all the aij parameters. These coefficients depend on layout
and, in any case, it is not clear how one would compute them from
process data. A brute-force PCA expansion of the millions of in-
stances of a parameter on a chip would be impractical. However,
it will be shown in the following sections that one can estimate
a lower bound on the yield without having to know the values
of the aij parameters. Instead, it will be sufficient to know: 1)
the “order” (p) of the PCA expansion, and 2) the ranges (max
and min) of the variance terms given above. In the paper, the
crucial step in the analysis is in the transition from (27) to (28),
where an expression for yield that depends on all the aij terms
is transformed (using Cauchy’s inequality) to one that depends
only on the sum of all the a2ij terms, which is easily available as

the variance (6).
An important question, however, is how p is to be estimated.

We can name three ways in which this may be done. First, based
on knowledge of the process, it may be possible to simply identify
a number of underlying independent factors that are responsible
for the systematic variations, such as specific equipment or pro-
cess steps. Second, one may associate each Zj with a certain
spatial location on the die, such as was done recently in [14].
Thus, if the chip area is partitioned into, say, four quadrants, and
if one has some sense about distances over which the autocorrela-
tion functions die down, one may be able to make an estimation
of p. Third, and this may be the most practical approach, we can
measure yield for a certain parameter, from process data, and
then use the formulas to be derived below for parametric yield to
work backwards to compute a value of p.

4. PARAMETRIC YIELD MODEL
With the random parameter model given above, we now define

the parametric yield for parameter X as:
Y (x) = P{X(i) ≤ x, i = 1, 2, . . . , n} (7)

where n is the number of instances of this parameter on chip.
Here, X(i) is a generic parameter that may represent transistor
channel length variations, threshold voltage variations, etc. In
fact, X(i) is any statistical quantity on chip that may be char-
acterized by the parameter model introduced in section 3. When
X(i) is a simple parameter, such as channel length, then para-
metric yield is the probability that all device lengths on the die
are less than some threshold x. We will later on below show how
path delay can itself be viewed as a parameter with its own triplet
of variances (σ2

dd, σ2
wds , σ2

wdr) that we will relate to the underly-
ing transistor parameter variances. This will allows us to express
timing yield based on a parametric yield model. Thus, the ma-
terial in this section, although focused on parametric yield, will
actually be directly useful for computing timing yield. Note also
that, although we are expressing yield as a function of an upper-
bound constraint on the value of the parameter, our work can be
extended to cover lower bound and/or interval constraints.

Since Xdd is an independent zero-mean Gaussian with variance
σ2

dd, then Z0 = Xdd/σdd is an independent standard normal RV
(mean 0, variance 1), and the expression for Y (x) can be expanded
as:

Y (x) = P{σddZ0 +Xwds(xi, yi) +Xwdr(i) ≤ x, ∀i} (8)
We now recall a result from basic probability theory that will

be used repeatedly in the paper. Let A be an arbitrary event,
and X be an RV with a probability density function (pdf) f(x).
Then (see [17], pg. 85) we have:

P{A} =

Z +∞

−∞
P{A | X = x}f(x)dx (9)
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This result is simply an extension to the continuous case of the
simple fact that P{A} = P{A | B} · P{B} + P{A | B} · P{B},
where B is another event. Applying (9) to (8), and denoting by
φ(·) the pdf of the standard normal distribution, gives:

Y (x) =

+∞Z
−∞

P{Xwds(xi, yi) +Xwdr(i) ≤ x− σddz, ∀i}φ(z)dz

(10)
Let Xwd = max

∀i
(Xwds(xi, yi) +Xwdr(i)) and denote its cumula-

tive distribution function (cdf) by Ywd(a) = P {Xwd ≤ a}, then:

Y (x) =

Z +∞

−∞
P {Xwd ≤ x− σddz}φ(z)d(z)

=

Z +∞

−∞
Ywd(x− σddz)φ(z)dz (11)

which means that:

Y (x) = E

�
Ywd (x− σddZ0)

�
(12)

where E[·] is the mean or expected value operator. The bulk of
the effort will now be directed at computing the cdf Ywd(a). We
first consider the special case p = 1 separately, before covering
the general case.

4.1 Special Case p = 1
In this case, Xwds(xi, yi) = σwds(xi, yi)Z1, where Z1 is an

independent standard normal. Therefore:

Ywd(a) = P {σwds(xi, yi)Z1 +Xwdr(i) ≤ a, ∀i}

=

Z +∞

−∞

nY
i=1

P {Xwdr(i) ≤ a − σwds(xi, yi)z}φ(z)dz (13)

where we have again made use of (9) and of the fact that Xwdr(i)
are independent. Since Xwdr(i) is a zero-mean Gaussian with
variance σ2

wdr(i), then:

Ywd(a) =

Z +∞

−∞

nY
i=1

Φ

�
a− σwds(xi, yi)z

σwdr(i)

�
φ(z)dz (14)

= E

"
nY

i=1

Φ

�
a− σwds(xi, yi)Z1

σwdr(i)

�#
(15)

where Φ(·) is the cdf of the standard normal. Let σwds0 =
min
∀i

(σwds(xi, yi)) and σwds1 = max
∀i

(σwds(xi, yi)). Since Φ(·)
is monotonically increasing, then (14) leads to the lower bound:

Ywd(a) ≥
Z 0

−∞

nY
i=1

Φ

�
a− σwds0z

σwdr(i)

�
φ(z)dz (16)

+

Z +∞

0

nY
i=1

Φ

�
a− σwds1z

σwdr(i)

�
φ(z)dz (17)

Let σwdr0 = min
∀i

(σwdr(i)) and σwdr1 = max
∀i

(σwdr(i)), and con-

sider the possible ranges of values of a. If a ≥ 0, then (16) is
minimized at σwdr1 and (17) is broken into two integrals, one of
which is minimized at σwdr1 and the other at σwdr0, so that:

Ywd(a) ≥
Z 0

−∞
Φn

�
a − σwds0z

σwdr1

�
φ(z)dz

+

Z a/σwds1

0
Φn

�
a − σwds1z

σwdr1

�
φ(z)dz

+

Z +∞

a/σwds1

Φn

�
a − σwds1z

σwdr0

�
φ(z)dz (18)

and if a ≤ 0 then a similar analysis leads to:

Ywd(a) ≥
Z a/σwds0

−∞
Φn

�
a− σwds0z

σwdr1

�
φ(z)dz

+

Z 0

a/σwds0

Φn

�
a− σwds0z

σwdr0

�
φ(z)dz

+

Z +∞

0
Φn

�
a− σwds1z

σwdr0

�
φ(z)dz (19)

If these lower bounds on Ywd(a) are used in (12) then the result
would be a lower bound Y0(x) on the yield: Y (x) ≥ Y0(x). These
bounds are expected to be tight if the differences (σwds1 −σwds0)
and (σwdr1−σwdr0) are small. With a simple change of variables,
as will be illustrated below, Y0(x) can be computed by numerical
integration. If a yield of, say, better than 90% is desired, then
one can set Y0(x) = 0.9 and work backwards to get the value of
the threshold x.

4.1.1 Illustration
For illustration purposes, it is instructive to consider the sim-

plified special case when σdd = σwds(xi, yi) = σwdr(i) = σ, ∀i.
In this case, it becomes possible to get exact solutions to (12),
instead of lower bounds, as follows. Starting from (15), we get:

Ywd(a) = E
h
Φn
� a
σ

− Z1

�i
(20)

and, combining this with (12) (to see why it is valid to combine
the two in this way, see pp. 164–165 of [17]) leads to:

Y (x) = E

�
Φn
�
(x/σ) − Z0 − Z1

��
(21)

In order to compute this, we use the definition of the expected
value operator (as an integral) and with a change of variables of
u = Φ(z0) and v = Φ(z1), we arrive at:

Y (x) =

Z 1

0

Z 1

0
Φn
�x
σ

− Φ−1(u) − Φ−1(v)
�
dudv (22)

Plots of this parametric yield for different values of n are shown
in Fig. 1. Notice that yield decreases for larger n, as expected.

4.2 The General Case p � 1

Here Xwds(xi, yi) =
pP

j=1
aijZj , where

pP
j=1

a2ij = σ2
wds(xi, yi),

so that:

Ywd(a) = P
8<
:

pX
j=1

aijZj +Xwdr(i) ≤ a, ∀i
9=
; (23)

=

+∞Z
z1=−∞

· · ·
+∞Z

zp=−∞

nY
i=1

Pi(a)φ(z1) · · ·φ(zp)dz1 · · · dzp (24)

where we have made use of (9) a number of times (p) and of the
fact that Xwdr(i) are independent, and where:

Pi(a) = P
8<
:Xwdr(i) ≤ a−

pX
j=1

aijzj

9=
; (25)

We know from basic probability theory that, if X is an RV and
a1 ≤ a2 are two real numbers, then P{X ≥ a1} ≥ P{X ≥ a2}.
In the problem at hand, we have:

pX
j=1

aijzj ≤
������

pX
j=1

aijzj

������ ≤
vuut pX

j=1

a2ij

vuut pX
j=1

z2j (26)

where the 2nd inequality follows from Cauchy’s inequality [17].
Therefore:

Pi(a) = P
8<
:(a−Xwdr(i)) ≥

pX
j=1

aijzj

9=
; (27)

≥ P
8<
:(a−Xwdr(i)) ≥

vuut pX
j=1

a2ij

vuut pX
j=1

z2j

9=
; (28)

which, using
pP

j=1
a2ij = σ2

wds(xi, yi), leads to:

Pi(a) ≥ P
8<
:Xwdr(i) ≤ a − σwds(xi, yi)

vuut pX
j=1

z2j

9=
;

= Φ

0
B@a − σwds(xi, yi)

qPp
j=1 z

2
j

σwdr(i)

1
CA (29)
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Figure 1: Parametric yield.

The transition from (27) to (28) is a key step and is fundamen-
tal to our contribution. A yield expression based on (27) would
be very hard to use in practice because it requires knowledge of
the individual aij coefficients. As previously mentioned, it is not
clear how one would obtain these coefficients, which anyway are
functions of layout, from the process data. However, estimation
of the lower bound based on (28) would be quite feasible because
it depends only on knowledge of the variance. It is precisely this
step in the analysis that allows us to make yield estimation based
on a generic critical path and without requiring layout informa-
tion.

Plugging (29) into (24) gives:

Ywd(a) ≥ E

2
64 nY

i=1

Φ

0
B@a− σwds(xi, yi)

qPp
j=1 Z

2
j

σwdr(i)

1
CA
3
75

≥ E

2
64 nY

i=1

Φ

0
B@a− σwds1

qPp
j=1 Z

2
j

σwdr(i)

1
CA
3
75 (30)

where the 2nd inequality is true because
qP

Z2
j ≥ 0, and where

σwds1, as before, is the largest σwds(xi, yi). Let Qp ≥ 0 be an
independent positive RV such that Q2

p =
Pp

j=1 Z
2
j , then Q2

p has

the chi-square (χ2) distribution with p degrees of freedom [17].
Therefore, we can replace the above right-hand-side by:

Ywd(a) ≥ E
"

nY
i=1

Φ

�
a− σwds1Qp

σwdr(i)

�#
(31)

=

Z ∞

0

nY
i=1

Φ

�
a− σwds1

√
q

σwdr(i)

�
fχ2

p
(q)dq (32)

where fχ2
p
(·) is the pdf of the χ2 distribution with p degrees of

freedom. As was done in the p = 1 case, a case-analysis based on
the sign of a gives our final result. If a ≥ 0 then:

Ywd(a) ≥
Z a2/σ2

wds1

0
Φn

�
a− σwds1

√
q

σwdr1

�
fχ2

p
(q)dq

+

Z ∞

a2/σ2
wds1

Φn

�
a− σwds1

√
q

σwdr0

�
fχ2

p
(q)dq (33)

where, as before, σwdr1 and σwdr0 are the largest and smallest
σwdr(i), respectively. If a ≤ 0, then similarly:

Ywd(a) ≥
Z ∞

0
Φn

�
a− σwds1

√
q

σwdr0

�
fχ2

p
(q)dq

(34)

4.2.1 Illustration
Consider again the special case where σdd = σwds(xi, yi) =

σwdr(i) = σ, ∀i. Then (31) leads to:

Ywd(a) ≥ E
h
Φn
� a
σ

−Qp

�i
(35)

and, combining this with (12), leads to:

Y (x) ≥ Y0(x) = E

�
Φn ((x/σ) − Z0 −Qp)

�
(36)

Plots of this parametric yield are given in Fig. 1, for various values
of p and n. Notice that a larger p has the same effect as a larger
n; more things can go wrong and the yield is lower.

4.3 Bounded Variations
Notice that, in the above expressions for yield, the yield de-

creases for larger n. One would somewhat expect this, but it
is surprising to note that the yield approaches zero as n goes
to infinity, for any combination of values of the three variances.
This may also be seen in the above plots in Fig. 1. Even if the
threshold is set at 10σ, there is still some parametric yield loss.
This is somewhat non-physical, and arises due to the fact that we
have assumed that the distribution of Xwdr(i) is normal; recall
that the normal distribution extends to ±∞ in both directions.
In reality, one would expect process variations to be bounded by
some upper and lower bounds. If a device somewhere deviates
by large amounts, like 9σ or 10σ, then chances are there is a
serious problem with that die, and that it would be lost due to
other reasons, other than timing yield that is. Therefore, it is a
good idea to limit the spread the cdf of Xwdr(i) to some multiple
of σ in order to avoid these non-physical effects at large n. In
this section, therefore, we will use a truncated normal distribu-
tion for Xwdr(i). For clarity of presentation, we will restrict the
analysis to the illustrative special case introduced above wherein
σdd = σwds(xi, yi) = σwdr(i), ∀i. The analysis can be extended
to the general case. Suppose, therefore, that Xwdr(i) is bounded
by ±kσ, and let Φt(x) represent the cdf of the truncated standard
normal, which is 0 for x ≤ −k and 1 for x > k.

We can plug Φt(·) instead of Φ(·) (for Xwdr(i)) into the above
equations and plot the resulting yield integrals, as shown in Fig. 2.
In this case the yield loss at higher n values is limited so that the
1e6 and 1e8 plots in each group are indistinguishable. This is to
be expected, because the “tail” of the distribution has been cut
off, and it is primarily the tail that causes the yield loss at very
large n.

When working with a truncated normal, it is noteworthy that
we can derive lower bounds on the yield that are independent of
n. The derivations are not shown, for brevity, but lead to the
following results. For the special case when p = 1, we have:

Y (x) ≥ Y0(x) = E

�
Φ ((x/σ) − k − Z0)

�
(37)

A plot of this yield lower bound is shown in Fig. 2, in the p = 1
group. The lower bound is very tight, and is indistinguishable on
the plot from the 1e6 and 1e8 curves in that group. In the general
case of p ≥ 1, we can show:

Y0(x) = E

�
U((x/σ) − k − Z0)χ2

p

�
((x/σ) − k − Z0)2

� �
(38)

where U(x) is 1 for x ≥ 0 and 0 for x < 0. Some plots of this yield
lower bound are shown in Fig. 2. As before, the lower bound is
very good, and is indistinguishable on the plot from the 1e6 and
1e8 curves in each group.

5. TIMING YIELD MODEL
In deep sub-micron CMOS, process-induced delay variations

are due mainly to variations in the MOSFET threshold voltage
(Vt) and effective channel length (Le). Due to short-channel ef-
fects, Vt may depend on Le (the so-called Vt roll-off effect), so
that Vt and Le are not independent variables. We capture this
by assuming that Vt can be expressed as the sum of a term that
depends on Le and another independent term, so that, as RVs,
we can express Vt and Le of transistor i as follows:

Le(i) = E [Le(i)] + L(i)

Vt(i) = E [Vt(i)] + f(L(i)) + V (i) (39)

where E[·] is the mean (expected value) operator. We are inter-
ested in the RVs L(i) and V (i), which are assumed to be inde-
pendent of each other. We assume these RVs to be zero-mean
Gaussians and break them up in the usual manner as:

L(i) = Ldd + Lwds(xi, yi) + Lwdr(i)

V (i) = Vdd + Vwds(xi, yi) + Vwdr(i) (40)
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Figure 2: Parametric yield for k = 3.

(Of course, here Vdd is the die-to-die component of V (i), and not
the supply voltage.) We assume that the variances of L(i) and
V (i), as well as the variance of their components, are known from
the technology files:

σ2
L(i) = σ2

dd,L + σ2
wds,L(xi, yi) + σ2

wdr,L(i)

σ2
V (i) = σ2

dd,V + σ2
wds,V (xi, yi) + σ2

wdr,V (i) (41)

5.1 Gate Delay
We assume that, for a given chip design in a given technol-

ogy, one can define a “nominal” representative logic gate, with
appropriate output loading and input slope. For reasons that
will become clear below, this gate should be typical of gates on
critical paths in this technology. Due to the nonlinearity of the
relationship between gate delay and transistor parameters, the
mean value of gate delay does not necessarily coincide with its
nominal value (the value corresponding to the case when L(i) = 0
and V (i) = 0). Furthermore, the distribution of gate delay would
not necessarily be Gaussian. Simple experiments with HSPICE,
however, reveal that this nonlinearity is not strong, at least not
in 0.13µm CMOS. Therefore, we will ignore these complications
for now, and simply assume that gate delay is a Gaussian with
mean equal to its nominal value.

For all the transistors within a logic gate, we assume that their
channel length variations are captured with a single RV L(i) and
their threshold voltage variations are captured with a single RV
V (i). Having ignored the nonlinearity between gate delay varia-
tions and the Vt and Le variations, then if D(i) is the deviation
of the delay of logic gate i from it’s mean (nominal) delay, we
have:

D(i) = αL(i) + βV (i) (42)

where α and β are sensitivity parameters, with suitable units, that
one can easily obtain from circuit simulation of a representative
logic gate. Notice that, in general, α > 0 and β > 0. (For
a specific industrial 0.13µm process, we have found that for a
minimum-sized inverter, α ≈ 0.857ps/nm and β ≈ 17.3ps/V.) As
a result, we can express the statistical variations in delay of gate
i as:

D(i) = Ddd +Dwds(xi, yi) +Dwdr(i) (43)

so that Ddd = αLdd + βVdd, Dwds(xi, yi) = αLwds(xi, yi) +
βVwds(xi, yi), and Dwdr(i) = αLwdr(i)+βVwdr(i). This leads to
σ2

dd,D = α2σ2
dd,L +β2σ2

dd,V , σ2
wds,D(xi, yi) = α2σ2

wds,L(xi, yi)+

β2σ2
wds,V (xi, yi), and σ2

wdr,D(i) = α2σ2
wdr,L(i) + β2σ2

wdr,V (i).

These equations provide a way in which the statistical model of
gate delay (i.e., its three variances) can be computed from the
underlying statistical model of transistor parameters.

5.2 Path Delay
Consider a path of N logic stages (gates). Variations in path

delay are due to variations in the delays of both the gates and
the interconnect. For simplicity of presentation, we will focus
on the gate delay variations only. Interconnect delays can be
handled in a similar way. Having assumed that nominal gate
delay coincides with mean gate delay, the same follows for paths.

Let DN (j) denote the deviation of the delay of path j from its

mean (nominal) value. Since DN (j) =
PN

i=1D(i), then:

DN (j) = NDdd +
NX

i=1

Dwds(xi, yi) +
NX

i=1

Dwdr(i) (44)

The gates on a path exist at various different locations. We will
make the simplifying assumption that as far as physical location
on the die, for purposes of computing the within-die-systematic
component, all gates on path j share the same “nominal” coordi-
nates (xj , yj), so that:

DN (j) = NDdd +NDwds(xj , yj) +
NX

i=1

Dwdr(i) (45)

This is motivated by the expectation that gates on a critical
path should be nearby on the die, and differences between their
position-dependent within-die-systematic variations should be mi-
nor. Based on the independence relations between the terms
in the above, we have σ2

dd,DN
= N2σ2

dd,D, σ2
wds,DN

(xj , yj) =

N2σ2
wds,D(xj , yj), and if σ̂2

wdr,D(j) is the average value of σ2
wdr,D(i)

over all gates on this path, then σ2
wdr,DN

(j) =
PN

i=1 σ
2
wdr,D(i) =

Nσ̂2
wdr,D(j). As for σ̂2

wdr,D(j), we may approximate it using the

average value of σ2
wdr,D(i) over the whole die, which we denote

by σ̂2
wdr,D , so that:

σ2
wdr,DN

(j) ≈ Nσ̂2
wdr,D (46)

With this, we have a full statistical model of path delay, so that
we can treat it as a “parameter” and we can talk about its yield,
as was done for the generic parameter X(i) in sections 4 and 4.3.

5.3 Timing Yield
The timing success of an integrated circuit depends on a num-

ber of factors, including max delay violations, min delay viola-
tions, clock skew violations, etc. In this work, we focus on max
delay constraints and consider a circuit to “pass” the timing test
if its longest (critical) path delays are below some threshold (our
work can be extended to cover other timing concerns). We let
N be the number of stages (gates) on a path that would be rep-
resentative of these critical paths, and we consider that the chip
contains a (typically large) number of disjoint (non-intersecting)
critical paths of N stages (gates) each, so that our expression for
the chip timing yield becomes:

Y (τ) = P {DN (j) ≤ τ, ∀j} ≥ Y0(τ) (47)
where Y0(·) is the lower bound expression for yield found above, in
sections 4 and 4.3. Since the paths being considered are disjoint,
then any correlations between their delays would be due only to
correlations in the process variations, and not to the sharing of
circuit component. If Y is the desired yield, then the techniques
of sections 4 and 4.3 effectively provide the inverse function to
compute τ for any desired Y :

τ = Y −1
0 (Y) (48)

where Y −1
0 (·) depends on the variances of DN , which can be

computed using the expressions for path and gate variances given
above, from underlying transistor level variances. This τ is the
timing margin of an N-gate path, for the desired specified yield
Y . Therefore, in order to get the desired yield, the circuit should
be designed to “pass” the timing constraints when DN (j) = τ ,
for all j. Therefore, we set D(i) = τ/N , and based on (42) we
require: τ

N
= αL(i) + βV (i), ∀i (49)

This gives the range of possible settings of L(i) and V (i) required
to achieve a timing deviation of τ on N-gate paths. If the circuit
“passes” under these conditions, then the desired yield would be
achieved. To simplify matters, suppose we want the L(i) and V (i)
settings to be the same multiple of their individual σ’s, i.e., let:

L(i)

σL(i)
=
V (i)

σV (i)
= δ, ∀i (50)

Notice that this is feasible (and δ > 0) because both α and β have
the same sign (positive). This leads to:

δ =
Y −1
0 (Y)/N

ασL(i) + βσV (i)
(51)

This δ effectively defines the “worst-case file” for which the circuit
should be tested (simulated, or checked) for timing constraint
violations, so as to guarantee that the timing yield is at least Y .
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Figure 3: Timing yield plots, for k = 3 and N = 9.

6. APPLICATION TO STATIC TIMING
We will now illustrate how the above timing yield model al-

lows us to choose a setting for the transistor parameters so that
a desired yield is achieved if the circuit passes traditional static
timing analysis. For clarity, let all transistor-level variances be
equal: σ2

dd,L = σ2
wds,L(xi, yi) = σ2

wdr,L(i) = σ2
L/3 , ∀i, and

σ2
dd,V = σ2

wds,V (xi, yi) = σ2
wdr,V (i) = σ2

V /3 , ∀i. At the gate

level, this leads to σ2
dd,D =

�
α2σ2

L + β2σ2
V

�
/3, σ2

wds,D(xi, yi) =�
α2σ2

L + β2σ2
V

�
/3, and σ2

wdr,D(i) =
�
α2σ2

L + β2σ2
V

�
/3. There-

fore, σ2
D =

�
α2σ2

L + β2σ2
V

�
. At the path level, we have σ2

dd,DN
=

σ2
DN

2/3, σ2
wds,DN

(xj , yj) = σ2
DN

2/3, and σ2
wdr,DN

(j) = σ2
DN/3,

where the last equation is notable for the absence of the square
factor. If we let σ2 = N2σ2

D/3, then σdd,DN
= σwds,DN

= σ

and σwdr,DN
= σ/

√
N , where the last expression is notable for

the presence of the square root term. With this, the equations
for timing yield become as follows. In case p = 1, we have:

Y0(τ) =

Z 1

0
Φ
�

(τ/σ) − (k/
√
N) − Φ−1(u)

�
du (52)

and in the general case we have:

Y0(τ) =

Φ((τ/σ)−(k/
√

N))Z
0

χ2
p

�
[(τ/σ) − (k/

√
N) − Φ−1(u)]2

�
du (53)

Plots of Y0(τ) for a few values of p are shown in Fig. 3, for
k = 3 and N = 9. One can use this type of figure as follows. If
p = 6 and we want 90% yield (i.e., Y = 0.9), then it is clear from
the figure that we need τ ≈ 5σ, which leads to:

δ =

�
5√
3

� qα2σ2
L + β2σ2

V

ασL + βσV
(54)

Let r = (ασL)/(βσV ) then:

δ =

�
5√
3

� √
1 + r2

1 + r
(55)

If, for example, r = 1, then:

δ =
5√
6
≈ 2 (56)

so that the circuit would need to be simulated (and its timing
checked) with all its transistors’ Le and Vt set at their +2σ points.
Notice that, since α and β depend on transistor sizing, then (55)
provides a way in which δ can be controlled by circuit optimiza-
tion and/or process tuning.

7. CONCLUSION
A method for statistical timing analysis has been developed,

based on a timing yield model. The model is a “full-chip” model
in that it can be applied with ease to large chips, before lay-
out. This is achieved by using a measure of yield based on use
of a generic critical path concept and capturing the statistics of

a large collection of such paths using a model of within-die cor-
relations that uses principal components analysis. This results
in a methodology whereby one can select the right setting of the
transistor parameters to be used in simulation or in traditional
timing analysis in order to verify performance while guaranteeing
a certain desired yield.
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