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ABSTRACT
It has been widely recognized that the dynamic range informa-
tion of an application can be exploited to reduce the datapath
bitwidth of either processors or ASICs, and therefore the over-
all circuit area, delay, and power consumption. Recent advances
in analytical dynamic range estimation methods indicate that by
systematically decomposing the system inputs into orthonormal
random variables using a mathematical procedure called polyno-
mial chaos expansion (PCE), output statistics of interest can be
obtained for both linear and nonlinear systems. Despite its power
for capturing both spatial and temporal correlation, the applica-
tion of this method has been limited only to near-Gaussian inputs.
In this paper, we propose the first algorithm with the capacity
of handling both near-Gaussian and non-Gaussian input signals.
Our method is based on the use of independent component anal-
ysis (ICA). Our experiments show that the new algorithm can
reduce the original relative errors of 2nd order moments from
25%− 65% to 1%− 2%.

Categories and Subject Descriptors:
B.7 [Integrated Circuits]: Design Aids
General Terms: Design, Algorithms, Theory
Keywords: Dynamic range estimation, Non-Gaussian, Nonlin-
ear, Independent component analysis, Non-parametric

1. INTRODUCTION
Today’s ASIC designers start with a design specification handed

off by system designers. Often in the form of C code, the algorithm-
level design specification needs to be converted into register trans-
fer level (RTL) design, typically in the form of hardware descrip-
tion languages. A crucial decision to be made during this process
is the datapath bitwidth, including the bitwidths of different reg-
isters and functional units. An aggressively designed datapath
often replaces floating-point arithmetic contained in the design
specification by their fixed-point counterparts. In addition, the
redundant bits that do not contribute much to the accuracy of
the application are often eliminated. Such a datapath with mini-
mal bitwidth translates to superior circuit performance in terms
of area, speed, and power consumption. To make this possible,
the dynamic range information of the application, and in the case
of C code, the dynamic ranges of all declared variables and inter-
mediate expressions (all referred to as signals or variables in the
following text), have to be obtained.

Unfortunately, the common practice today for dynamic range
estimation is still profiling, which works by instrumenting the
original application with code that can trace the value ranges at
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runtime. While this method can be very accurate, the accuracy
is achieved only by extremely long and time-consuming simula-
tion. In contrast, analytical methods can avoid long simulation
by quickly analyzing the application. While many advances have
been made on this front, the proposed methods have not been
able to provide dynamic range information as accurate and as
complete as profiling. The inaccuracy problem can usually be
attributed to either no treatment of signal correlation, as in the
cases of bitwidth or moment propagation method, or inadequate
treatment of signal correlation, as in the case of affine arithmetic
method [1]. The incompleteness problem is due to the fact that
these methods typically produce only value or error bounds in-
stead of signal distribution, thereby limiting their utility.

A new method was recently proposed [1], in which full statis-
tics of all signals can be produced analytically and accurately.
The key idea is the use of a mathematical construct, polynomial
chaos (PC), which is a family of polynomials constructed from
a set of Gaussian random variables (RVs). By decomposing an
input random process into a linear combination of such polynomi-
als, called polynomial chaos expansion (PCE), and propagating it
through the system, full statistics of all signals can be easily de-
rived. The power of the PCE method lies in its ability to capture
both spatial and temporal correlation, and handle the nonlinear-
ity of systems. However, it is limited to applications with strictly
Gaussian or near-Gaussian inputs. Our study, as detailed in Sec-
tion 5, indicates that that method may lead to unacceptable error
for systems with non-Gaussian inputs. This seriously undermines
the general applicability of the PCE method.

In this paper, we provide the first non-parametric1 algorithm
for PCE model generation. More specifically, we propose the use
of a mathematical tool, independent component analysis (ICA),
to facilitate PCE extraction from sample data. ICA has found its
applications in neurophysiology, financial data modeling, image
processing, etc. Our optimized PCE extraction method is fast
and adds negligible overhead to the overall runtime.

With our proposed method, a complete PCE-based method-
ology for dynamic range estimation can be constructed. This
methodology enjoys not only the benefits of being much faster
than profiling method, and providing more detailed and accu-
rate information than other analytical methods, as shown in [1],
but also the capability of handling systems with arbitrary input
characteristics. Compared with the previous PCE method, our
proposed method can reduce the 2nd order moment error from
25%− 65% to 1%− 2%.

The remaining parts of this paper are organized as follows: Sec-
tion 2 gives a brief introduction of polynomial chaos. Section 3, 4
describe our proposed solution. We give experimental results in
Section 5 before drawing conclusion in Section 6.

2. POLYNOMIAL CHAOS
An arbitrarily distributed random variable (RV) x can be ex-

panded to a series of polynomials of Gaussian random variables,
provided that E[x2] (i.e., the mean of x2) exists. This expansion

1
In statistics, the term non-parametric describes a procedure or test

which may be applied irrespective of the distribution type of the un-
derlying data



is referred to as polynomial chaos expansion (PCE) [1, 2]:

x =
∞∑

i=0

xiΨi (1)

where xi are constants, and Ψi are a set of orthogonal polynomi-
als of independent standard Gaussian RVs {ξj}, which are called
polynomial chaos (PC) [2]. Orthogonality of Ψi means:

E[ΨiΨj ] = δij (2)

where δij is Kronecker delta: δij = 1, if i = j; otherwise, δij = 0.
Ψi can be constructed very easily. The degree of polynomial Ψi is
called its polynomial chaos order, and the number of underlying
independent standard Gaussian RVs ξj of set {Ψi} are called
the dimension of the polynomial chaos set. For example, for 2
dimensional PCs up to 2nd order: Ψ0 = 1, Ψ1 = ξ1, Ψ2 = ξ2,
Ψ3 = ξ2

1 − 1, Ψ4 = ξ1ξ2 and Ψ5 = ξ2
2 − 1.

In practice, (1) is truncated and only the first m terms are
preserved to approximate RV x.

3. BACKGROUND
The behavior of digital signal processing (DSP), as well as the

behavior of general digital applications, can be captured at a high
level of abstraction with a data-flow graph (DFG). Each node of
the DFG represents a primitive operation, typically a multipli-
cation or addition of real numbers, or a decision operation, as a
result of a branch structure.

The output PCE of primitive operations, such as arithmetic
operations, can be derived from their input PCE. For example,
for addition, if z = x + y, and if a PCE expansion is considered
for all three variables:

x =
m∑

i=0

xiΨi, y =
m∑

i=0

yiΨi, z =
m∑

i=0

ziΨi (3)

then it is clear that:
zi = xi + yi (4)

More PCE propagation formulas and their derivation can be found
in [1].

By PCE propagation, the PCE models for all system variables
can be obtained. All statistics of the variable values are available
from its PCE since PCE is a complete analytical description of
the variable. For example, mean, variance, higher order moments
and distribution function of variables can be easily computed from
their PCEs as shown in [1].

4. PCE MODEL GENERATION BY ICA
Before we perform PCE propagation through the system, we

need to build a PCE model for the system input from sample
data. The PCE propagation through the system is based on this
input PCE model.

Extraction of PCE model from sample data or other analyt-
ical description of random process is not a trivial problem. No
previous algorithm is available except for two cases: lognormal
random variable or process [3], and ideal Gaussian process [2].
The fact that no solution exists to the PCE extraction of general
random process seriously restricts the applicability and accuracy
of the PCE method. It is not realistic to assume that all initial
inputs or parameters are Gaussian or lognormal. Our proposed
PCE model generation method aims to eliminate the necessity
of these oversimplified assumptions, thereby handling real world
data.

In this section, we propose a novel non-parametric (i.e., not
dependent on a specific assumed distribution) algorithm for PCE
model generation. This new method consists of three stages: a
Karhunen-Loéve Expansion (KLE), an Independent Component
Analysis (ICA), and a Polynomial Chaos Expansion (PCE).

4.1 Karhunen-Loéve Expansion
Karhunen-Loéve expansion (KLE) is a well-known mathemat-

ical technique by which the zero-mean2 random process p[k],

2
we can always make a random process zero-mean by subtracting its

mean function.

k = 1, 2, · · · , N can be expressed as:

p[k] =
N∑

i=1

√
λifi[k]µi k = 1, 2, · · · , N (5)

where µi are a set of orthonormal RVs, and λi and fi[k] are
the eigenvalues and eigenfunctions of the autocorrelation matrix
of the discrete-time random process p[k]. The autocorrelation
matrix is easy to compute either from sample traces of random
process or from analytical descriptions.

The KL expansion (5) can be truncated, yielding a least-mean-
squares optimal expansion on fewer variables n < N :

p[k] ≈
n∑

i=1

√
λifi[k]µi k = 1, 2, · · · , N (6)

It can be shown that the relative mean square error resulting from
the truncation is given by:

e = 1−
∑n

i=1 λi∑N
i=1 λi

(7)

4.1.1 Independence Assumption
If p[k] is a Gaussian process, it can be shown that {µi} is a set

of independent standard Gaussian RVs. If p[k] is not Gaussian,
then one can only guarantee that the {µi} is an orthonormal set,
that is:

E[µiµj ] = δij (8)

Therefore, µi are uncorrelated to each other, but not necessarily
independent. Uncorrelatedness is weaker than independence.

For a Gaussian random process, after KLE, it is already in the
required form of a PCE since the independent standard Gaussian
RVs µi are exactly the first order polynomial chaos. No extra
work is needed.

For a near-Gaussian random process, even though RVs µi are
only uncorrelated, it is possible to approximate them as being
independent and further expand every µi individually by PCE.
The error caused by this assumption is tolerable since p[k] only
slightly diverges from the Gaussian.

However, for a random process that is significantly non-Gaussian,
the RVs µi cannot be treated as independent variables. Other-
wise, the resultant error is large, as we will show in Section 5.
In this case, we will find a linear transformation on the random
vector µ = [µ1 µ2 · · · µn]T such that the transformed RVs are
mutually independent. The matrix defining this linear transfor-
mation can be found by independent component analysis (ICA),
detailed in the next section.

4.2 Independent Component Analysis
Consider a random vector µ = [µ1 µ2 · · · µn]T , where the RVs

µ1, µ2, · · · , µn are uncorrelated. ICA tries to find an invertible
square matrix B, so that by performing the linear transformation,

v = Bµ (9)

the elements (v1, v2, . . . ,vn) of the resulting random vector v are
mutually independent or at least “as independent as possible”.

ICA can therefore be formulated as an optimization problem [4]:
with an established quantitative metric for random vector inde-
pendence, find the matrix B, such that the metric is minimized
or maximized.

4.2.1 Optimization Objective
We want to discover a matrix B such that the uncorrelated

RVs µi, forming the vector µ, can be expressed as:

µ = B−1v (10)

where v is a vector of RVs vi that are independent (or as inde-
pendent as possible). Let y = Aµ where A is a matrix. If/when
A = B, then yi = vi. When A �= B, then yi is some linear
combination of some of the vi’s because y = AB−1v. The more
vi’s are involved in this linear combination, the closer yi is to
being Gaussian, due to the central limit theorem. Therefore, the
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Figure 1: Normal scores plot for rp1, rp2, and rp3, CDF for rp2, and Output CDF of rational filter

case yi = vi (i.e., A = B) corresponds to maximizing the non-
Gaussianity of yi. Thus, a row of B, denoted by Bi, may be
obtained as the vector Bi that maximizes the non-Gaussianity of
the RV Biv. This leads to the intuition that nonguassianity can
serve as the optimization metric for ICA. This metric was in fact
proved rigorously by information theory [4].

The natural metric for nongaussianity is entropy. However, it
is difficult to compute. We instead use a simpler metric, as in [4],
the absolute value of kurtosis, defined as

|kurt(vi)| = |E[v4
i ]− 3E[v2

i ]2| (11)

When vi is Gaussian, the above metric reaches its minimum
value: 0. Therefore, maximizing nongaussianity is equivalent to
maximizing the the absolute value of kurtosis.

4.2.2 Optimization Algorithm
We can determine the ICA matrix B by finding its row vectors

one at a time. Let Bi be the i-th row vector of B, then we have
vi = Biµ. Bi is solved by maximizing the nongaussianity of
individual element vi of v, that is, |kurt(vi)|.

As a simplifying procedure, we can constrain the elements of
random vector v to be zero mean and unity variance, and uncor-
related to each other. This can always be achieved by prepro-
cessing the original raw random vector by KLE first, and then

only choosing Bi with unity norm (i.e. ‖Bi‖ =
√

BiBT
i = 1 ) to

perform ICA.
Quite a few methods for ICA (also known as blind source sep-

aration) are available. In this paper, we adopt the algorithm
belonging to the fixed-point category [5].

The gradient of |kurt(vi)| is:
∂|kurt(vi)|

∂Bi
= ±4(E[µ(Biµ)3]T − 3Bi‖Bi‖2) (12)

We constrain all possible vectors Bi on unity sphere by ‖Bi‖ = 1.
Starting with a random selected initial vector Bi, conduct the
iteration by replacing Bi with the normalized objective gradient:

Bi ←− E[µ(Biµ)3]T − 3Bi (13)

Bi ←− Bi/‖Bi‖ (14)

where (13) is derived from Newton iteration. Because we only
care about the direction of Bi, the sign part of the gradient
is omitted in the above iteration. When the objective function
reaches its maximum value, the direction of Bi no longer changes.
We terminate the iteration at this fixed point, keep the current
Bi and start to search for Bi+1. In addition, at each iteration
step, we need to make sure that Bi is orthogonal to all previously
solved Bj (j < i) by subtracting Bi’s components along all Bj

from Bi. By doing so, we can prevent different Bi from converg-
ing to the same vector and also guarantee that the elements of
resultant random vectors are uncorrelated.

4.3 Expanding Independent RVs by PCE
After the ICA procedure, the random process p[k] is expressed

in terms of a set of independent RVs vi. If we can now transform
each of these RVs to a Gaussian, we would achieve a polynomial

chaos expansion (PCE) of the input process. From probability
theory, we know that

ξi = Φ−1(Fi(vi)) (15)

is a standard Gaussian RV, where Φ−1(·) is the inverse function of
the standard Gaussian cumulative distribution function (cdf) and
Fi(·) is the cdf of the RV vi. Notice that the cdf Fi(·) is known; it
can be constructed from samples of vi, obtained from samples of
µi via ICA, which are themselves obtained from samples of p[k]
via KLE.

Using (15), we can construct a standard Gaussian RV ξi for ev-
ery vi. Because RVs vi are mutually independent, RVs ξi are also
mutually independent. We can use ξi as the underlying Gaussian
RVs to construct polynomial chaos and expand each vi. Note
that every vi corresponds to a different ξi. We can expand every
vi individually by a 1-dimensional PCE of ξi since we already
eliminate all dependence in sets {vi} and {ξi}, that is:

vi =
∑

j

cijΨj (16)

where Ψj is a polynomial in the RV ξi, only. If we multiply both
sides of this equation by Ψk, and take the expectation on both
sides, then by the orthogonality property of polynomial chaos, it
follows that:

cik =
E[viΨk]

E[Ψ2
k]

(17)

In (17), the E[Ψ2
k] are constants which can be easily pre-computed;

E[viΨk] can be estimated from sample data of vi and Ψk; the
sample data of Ψk can be obtained from samples of vi by utiliz-
ing (15).

4.4 Summary
As a summary, by performing KLE, ICA and PCE extraction

on the input random process p[k] and combining the results to-
gether we obtain the expansion of the input in PCE format:

p[k] =
∑

i

pi[k]Ψi (18)

where pi[k] is a deterministic function in discrete time domain.
This PCE model will be applied at system input and propagated
through the system.

Fig. 2 summarizes the complete PCE generation method. In
step 9, the KLE matrix, which transforms vector µ to p[k] can
be obtained from (6) by rewriting it in matrix format. The mean
function computed in step 2 is directly passed to the final step as
the 0 th order PCE coefficient. Note that because the dependence
among the vi’s are completely eliminated, there is no cross terms
of different ξi in the final generated PCE model. Of course, these
cross terms could be generated by nonlinear operations when in-
put PCE passes through the system.

5. EXPERIMENTAL RESULTS
In this section, we first experimentally establish the impor-

tance of the ICA method by showing the PCE expansion error
of non-Gaussian random processes when ICA is not used. We



Table 1: 1st, 2nd, and 3rd order moments: ICA vs profiling
Bench 1st order moments (mean) 2nd order moments 3rd order moments

Prof. with ICA without ICA Prof. with ICA without ICA Prof. with ICA without ICA

volterra 74.9 74.1(−1.03%) 74.5(−0.54%) 3.10e4 3.10e4(−0.05%) 1.84e4(−40.8%) 2.10e7 2.07e7(−1.25%) 6.21e7(−70.4%)
teager 17.0 16.8(−0.95%) 16.8(−1.23%) 1.15e4 1.16e4(0.83%) 4012(−65.1%) 5.72e6 5.63e6(−1.61%) 5.54e5(−90.3%)
adapt1 86.1 86.2(0.07%) 85.8(−0.29%) 1.05e4 1.05e4(−0.16%) 1.01e4(−3.43%) 1.63e6 1.56e6(−3.83%) 1.41e6(−13.5%)
adapt2 118 118(0.51%) 126(6.84%) 2.06e4 2.11e4(2.66%) 2.58e4(25.3%) 4.98e6 5.25e6(5.51%) 6.81e6(36.9%)
rational 1.58 1.57(−0.32%) 1.62(2.64%) 3.563 3.556(−0.2%) 4.533(27.2%) 11.6 12.0(3.82%) 16.4(41.9%)
bilinear 8.72 8.71(−0.14%) 8.80(0.92%) 140.9 137.9(−2.15%) 153.7(9.1%) 3850 3661(−4.9%) 4742(15.1%)

1. Start from sample data (traces) of discrete time random
process p[k].

2. Compute mean function of p[k], and make p[k] zero-
mean by subtracting its mean function.

3. Compute autocorrelation matrix of the resultant zero-
mean process and conduct KLE on it.

4. Transform the sample traces of p[k] to samples of µ vec-
tor by inverse KLE matrix.

5. Compute kurtosis of µi, if kurtosis of all µi are close to
0, directly go to PCE extraction in step 8.

6. Compute ICA matrix B for random vector µ as (13) and
(14).

7. Use matrix B to transform samples of µ to samples of v.

8. Conduct PCE extraction for every vi to compute PCE
coefficients cij .

9. Combine the KLE matrix, ICA matrix B−1 and cij to
form the final PCE coefficients pi[k].

Figure 2: Algorithm of PCE model generation

then demonstrate the effectiveness of ICA by measuring its ac-
curacy for dynamic range estimation and the computational cost
it incurs. Our experiments are constructed for a set of nonlin-
ear benchmarks and random processes. All our experiments are
conducted on a Sun Ultra 80 workstation.

Six benchmarks were selected from practical applications in the
DSP domain. Among them, volterra is a second order volterra fil-
ter, which derives its name from the volterra expansion of general
nonlinear functionals ; teager implements a one-dimensional Tea-
ger’s algorithm and is commonly used for contrast enhancing in
image and speech recognition; bilinear is a nonlinear filter whose
output is linear respect to every single system variable. Adaptive1
is a regular LMS adaptive filter which adjusts its parameters in
proportion to the computed error signal, and adaptive2 adjusts
its parameters only according to the sign of the error signal. It is
interesting to note that the latter includes conditionals. Finally,
rational filter uses both nonlinear multiplications and divisions.

Sample sets of input random processes with different character-
istics are generated to conduct all experiments. These processes
fit the Auto-Regression Moving-Average (ARMA) model of time
series, which is extensively used in engineering. In our experi-
ment, every sample set consists of 10,000 traces. A size of such
magnitude is necessary in order to make sure we do not report
results containing artifacts caused by finite sample size.

5.1 Importance of ICA
We construct three random processes, one (rp1) is close to

Gaussian, while the other two (rp2, rp3) are significantly non-
Gaussian. Fig. 1 (a) shows normal scores plots for rp1, rp2, and
rp3, respectively. The normal scores plot is a commonly used
statistical technique to verify whether a set of data samples come
from an underlying Gaussian distribution. If Gaussian, the data
should form a straight line. It is clear that rp1 is close to Gaus-
sian, while rp2 and rp3 significantly deviate from the Gaussian.

We use both KLE with ICA and KLE without ICA to extract
PCEs from these random processes. Three cdfs are generated for
every random process: two from the PCE models obtained with
ICA and without ICA, another one directly from the original
sample data.

For near-Gaussian process rp1, we observe that the PCE mod-
els with ICA and without ICA find similar distributions and both
of them fit the original sample distribution very well. The au-
tocorrelation functions from these three sources show the same
trend. Therefore, we can conclude that for near-Gaussian cases,
not performing ICA is acceptable and the method reported in [1]
is sufficient.

However for significantly non-Gaussian cases, the distributions
obtained with and without ICA are quite different, as shown in
Fig. 1 (b). Only those obtained with ICA fit the original cdfs
well. Although not shown in the paper, we observe the same for
sample rp3. We can conclude that for the general case of non-
Gaussian random processes, ICA is necessary. Additionally, the
speed of ICA method is fast and required only a few seconds in
our experiments.

5.2 Accuracy of ICA
We now demonstrate the accuracy of the ICA-based method

for dynamic range estimation. We obtain our results by applying
rp2 to the benchmarks. Table 1 shows the 1st order (mean), 2nd
order, and 3rd order moments of benchmark outputs obtained by
PCE with ICA, without ICA, and profiling respectively. We can
clearly see that the statistics obtained with ICA match the pro-
filing results very well. However the 2nd and 3rd order moments
obtained without ICA have larger errors since the input random
process is significantly non-Gaussian. For 2nd and 3rd order mo-
ments, the relative errors are up to 65% and 90% respectively
by PCE without ICA method, while the corresponding errors are
only 2% and 5% by ICA method. The errors casued by PCE
without ICA is rapidly increased with moment order. To visual-
ize the result, Fig. 1 (c) shows the distribution functions for the
rational filter benchmark. It is clear that the distribution func-
tion obtained without ICA causes large errors in this case. Also
in our experiment, we observe 100 − 300 speedup for PCE-based
dynamic range estimation comparing with profiling.

6. CONCLUSIONS
In this paper, we propose a new non-parametric approach for

dynamic range estimation, which utilizes the powerful mathe-
matic tools of polynomial chaos expansion and independent com-
ponent analysis. Our new approach can effectively eliminate er-
rors caused by the nongaussianity of inputs and extend the pre-
vious study to both nonlinear and non-Gaussian/Gaussian cases.
Its excellent accuracy and high speedup over profiling are verified
by our experiments. Our PCE generation algorithm is the first
algorithm in its kind with the capacity to handle general ran-
dom processes (both Gaussian and non-Gaussian), and general
systems (both linear and nonlinear).
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