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ABSTRACT
Traditional corner analysis fails to guarantee a target yield for
a given performance metric. However, recently proposed solu-
tions, in the form of statistical timing analysis, which work by
propagating delay distributions, do not conform to modern de-
sign methodology. Instead, new statistical techniques are needed
to modify corner analysis in ways that overcome its weaknesses
without violating usage models of timing tools in modern flows.

Categories and Subject Descriptors:
B.7 [Integrated Circuits]: Design Aids

General Terms: Design, Algorithms

Keywords: Variability, Statistical timing analysis

1. INTRODUCTION
Manufacturing process variations cause electrical parameter

variations (such as transistor or wire parameters), leading to vari-
ations in certain chip performance metrics, such as the maximum
operating frequency (FMAX) and the chip power dissipation. If
these performance variations cause a particular chip to violate
some performance constraint, then that chip is considered failed.

The underlying sources of the variations (in the process) are
numerous and not always well characterized. Thus, there is not a
universal agreement, for instance, that the variations can always
be modeled as random variables. If they are modeled as random,
there is not a universal agreement as to what their distribution
may be. Nevertheless, there is a significant body of literature
based on the assumption that the variations are random and that
they can be modeled by normally distributed (Gaussian) random
variables (RVs). This paper will also be based on this assumption.

For a circuit or chip designer, the challenge is to ensure that
the unavoidable electrical parameter variations do not lead to ex-
cessive performance variations. It is useful to think of two spaces:
the parameter space, which is typically multi-dimensional corre-
sponding to the potentially large number of electrical parameters
on modern chips, and the performance space, which also can be
multi-dimensional (chip frequency, power dissipation, etc.). In
the performance space, a number of performance constraints de-
termine the acceptability region. A chip is considered failed if the
performance variations put its performance metrics outside the
acceptability region.

If the underlying process variations are modeled as RVs, then
the electrical parameter variations are also RVs, and the perfor-
mance variations are RVs as well. In the performance space, the
probability that the performance metrics fall in the acceptability
region gives the yield. Naturally, this yield is only the perfor-
mance yield related to the set of variations under study, and there
can be several other reasons for yield loss in an IC.

Let X1, X2, . . . , Xn be independent zero-mean RVs that rep-
resent the electrical parameter variations. The independence as-
sumption is a simplification; in practice, if one is dealing with
electrical parameters that are not independent, one can use tech-
niques like principal components analysis to express them in terms
of certain independent factors. Let Z be an RV that represents
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some performance metric, say chip frequency, so that:

Z = g(X1, X2, . . . , Xn) (1)

where g(·) is some function which in general can be non-linear. If
A is the acceptability region in the performance space (the space
of Z), then the yield is given by the probability: Y = P{Z ∈ A}.
When Z is single-dimensional, as in this case, then A is typically
an interval on the Z axis, and the yield can be expressed as:

Y = Fz(Amax) − Fz(Amin) (2)

where Fz(·) is the cumulative distribution function (cdf) of Z and
A = [Amin,Amax]. When two performance metrics Z1 and Z2

are under study, then A is typically a rectangle in the (Z1, Z2)
plane. For simplicity, and without loss of generality, we will focus
on the single dimensional case.

2. CORNER ANALYSIS
In practice, one rarely has enough information to be able to

construct the distribution of Z with any certainty during the de-
sign phase of an IC. Instead, and in order to ensure a good yield,
a traditional approach is to apply corner analysis, as follows.

For a specific electrical parameter variation Xi, say transis-
tor channel length, it is common to assume certain bounds on
its magnitude, Xmin

i and Xmax
i . Transistors whose length falls

within these bounds are considered normal and viable. Transis-
tors outside these bounds are considered to be the result of serious
deviations of the process; chips with such large variations would
typically fail due to any number of reasons, not necessarily re-
lated to a performance metric. If X∗

i is a variable that can take a

value of either Xmin
i or Xmax

i , then the vector [X∗
1 , X∗

2 , . . . , X∗
n]

represents a corner in the parameter space. If, during chip de-
sign, one finds that the circuit meets the performance constraints
for all such corners, i.e., for all assignments Xi = X∗

i , then the
design is deemed acceptable. This is corner analysis.

Straightforward application of corner analysis can be time con-
suming and expensive, because the number of corners is exponen-
tial in the number of electrical parameters, n. However, the situ-
ation is often simplified through some knowledge of how certain
parameters affect circuit speed. Thus, if Z is circuit delay, it is
known that Zmin may be obtained by setting transistor length
to a minimum, rather than a maximum. Through considerations
of this type, corner analysis has been applied for many years to
design chips that are robust in the face of process variability.

When variations are modeled as RVs, it is common to think
of the bounds Xmax

i and Xmin
i as being the ±3σ limits of the

normal distribution of Xi. In other words, if σ2
i is the variance

of Xi then Xmax
i = +3σi and Xmin

i = −3σi. For any normal

distribution with mean µ and variance σ2, the interval µ ± 3σ
covers 99.73% of the distribution:

Φµ,σ(µ + 3σ) − Φµ,σ(µ − 3σ) = Φ(3) − Φ(−3) = 0.99731 (3)

where Φµ,σ(·) is the cdf of the normal distribution with mean
µ and variance σ2, and Φ(·) is the cdf of the standard normal
distribution (i.e., the normal distribution with a mean of 0 and a
variance of 1). Thus, for all practical purposes, almost all of the
distribution lies within the ±3σ limits. In many cases, engineers
consider the 99.73% value (what one may refer to as the 3σ yield)
to be a desirable yield that one should target.



Let Zmax and Zmin be the largest and smallest values of Z that
are observed (say, by using a circuit simulator) upon checking all
the corners. If Zmax ≤ Amax and Zmin ≥ Amin, then the design
is acceptable. Typically, design margins are very tight, so that
one is often dealing with Zmax ≈ Amax and Zmin ≈ Amin, and
one may write:

Y ≈ Fz(Zmax) − Fz(Zmin) (4)

In any case, the yield is at least as large as the value given by (4)1.
A word of caution: knowing that the corners are defined by the
3σ limits of the Xi’s is not enough to conclude that Zmax and
Zmin are the 3σ limits of Z. There is more to it than that, as we
will see below, so that (4) does not necessarily give a high yield
value of 99.73%. Thus, when the limits on Xi are interpreted as
the 3σ limits, a failing of corner analysis is that we do not know
what performance yield is being guaranteed.

3. STATISTICAL ANALYSIS
Recently, with the increasing variability in the manufacturing

process, traditional corner analysis has been viewed as inade-
quate, and statistical analysis has been proposed as a replacement
approach. Specifically statistical static timing analysis (SSTA)
has been proposed as an alternative to traditional static timing
analysis (STA). However, SSTA represents a major overhaul of
the design flow, and there is no universal agreement yet as to
exactly what SSTA is, and whether it is actually needed.

Most SSTA proposals involve propagating distributions of de-
lay through the logic network. Specifically, with the signal ar-
rival time viewed as an RV, one propagates the pdf (probability
density function) of that RV (typically a Gaussian) through the
logic network. Path-based SSTA does this for a given path, while
block-based SSTA generates the pdf for the maximum delay of the
block. What is often ignored (or not spelled out) is exactly what
the user should then do with these pdf’s. Ideally, one would per-
haps “chop off” that pdf at a point corresponding to the desired
timing yield, and thereby determine the timing margin available
for that path or block. However, if the pdf is for a single path
(or for a single block), there is no way for the user to know what
yield is desired for that path (or block), without knowledge of all
the circuitry in the rest of the chip (the root cause for this fact
is the presence of within-die variations). This effectively means
that a block or a path cannot be “timed” in isolation. One needs
to first design the whole chip, and run the SSTA on the whole
chip, before knowing whether the chosen sizing for transistors on
a given path are acceptable or not! This is contrary to the way
static timing analysis is used today, where individual paths or
blocks are “timed” in isolation (perhaps by different people), and
iteratively improved until the stringent timing specs are met.

Designers expect that SSTA would somehow magically allow
them to “deal with variability.” However, tool developers seem
to be working on tools that simply propagate delay pdf’s. There is
a disconnect between the two communities! A different approach
to SSTA is required.

Perhaps the search for a better SSTA can be guided by the
weaknesses of existing corner analysis. However, upon examina-
tion, these weaknesses don’t seem insurmountable. There may be
ways to develop statistical techniques, other than the proposed
SSTA approaches, for solving the variability problem by exten-
sions of classical corner analysis. To see this, consider that some
commonly perceived weaknesses of corner analysis are as follows:

1. There are too many corners
Due to the increasing number of electrical parameters whose

variability must be considered, the number of corners has gradu-
ally increased over the years. However, although the number of
variables may be large, many practitioners are content to focus
on only the key transistor parameters, such as channel length and
threshold voltage, in order to study the impact on timing, which
significantly reduces the number of corners that one should look
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In case of multiple performance metrics Z1, Z2, . . ., this approxima-

tion is not necessarily good and all we can say about (4), in that case,
is that the yield is at least that much.

at. In any case, there have been proposals made [1] for merging
corners (corner clustering) and reducing the number of corners,
and more work along these lines can be worthwhile.

2. Corner analysis cannot take care of within-die variations
This is true; corner analysis sets the value of a variable, at

all its instances and across the whole die, to a specific extreme
value. However, not everyone agrees that the impact of within-die
variations is very big. Indeed, in [2], it is shown that the impact of
within-die variations is small and manageable. In any case, there
may be ways of factoring in the effect of within-die variations as
part of a process by which new virtual corners are identified. This
was illustrated in [3], where a technique is proposed by which a
“factor of sigma” term, δ, is found (to replace the factor of “3”
in “3σ”). The new corner value at δσ is obtained by taking both
die-to-die and within-die variations into account.

3. Corner analysis is overkill
This objection is usually raised because a corner becomes a

very improbable occurrence in case of a large number of vari-
ables. While it is true that the probability of a corner decreases
as the number of variables increases, this is not, however, a valid
objection to corner analysis. Indeed, whether corner analysis is
overkill or not depends, not on the corner probabilities, but on
whether the implicit yield target, given by (4), is too large or not.
It is reasonable perhaps to consider a good target value for this
yield to be:

Y0 = Φ(3) − Φ(−3) = 99.73% (5)

If much larger than this (i.e., if much closer to 1), then the yield
may be called too large and the analysis an overkill. If lower than
this, then the analysis is definitely not overkill. We will illustrate
that this depends on the nature of the function g(·) in (1). For
the case when g(·) is the simple sum function, Z =

�n
i=1 Xi,

then Zmax = 3nσ and Zmin = −3nσ, and, because Z is normal
with zero mean and variance nσ2, it follows that:

Y = Φ
�
3
√

n
�− Φ

�−3
√

n
�

(6)

which indeed becomes increasingly larger than Y0 (closer to 1), for
large n, so that the analysis is indeed overkill. However, consider
the case when the function g(·) is the max(·) function, so that:

Z = max
i=1,2,...,n

(Xi). (7)

In this case, the cdf of Z is given by Φn(z/σ), and, with Zmax =
3σ and Zmin = −3σ, it follows that:

Y = Φn(3) − Φn(−3) (8)

which is gradually less than Y0 for larger n. Thus, for the max
function, the analysis is definitely not overkill. Since circuit delay
is a mix of both the sum and the max functions, it becomes
impossible to make a blanket statement as to whether corner
analysis is overkill or not. In this regard, the approach in [3]
provides a way by which the corner location, δ, is chosen to give
a desired yield, thus bypassing the “overkill” objection.

4. CONCLUSION
We find that it is unclear at this point whether an overhaul

of the timing verification flow, as in many proposals for statis-
tical timing analysis, is warranted or not. It should be possible
to develop other kinds of statistical approaches to overcome the
weaknesses and failings of traditional corner analysis.
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