PATTERN-INDEPENDENT CURRENT ESTIMATION FOR
RELIABILITY ANALYSIS OF CMOS CIRCUITS

by

Richard Burch, Farid Najm
Ping Yang, and Dale Hocevar

ABSTRACT

Accurate and efficient expected current estimation is required in circuit designs to an-
alyze electromigration failure rate, power consumption, voltage drop, etc. A new pattern-
independent simulation approach for estimating this expected current waveform drawn by
CMOS circuitry has been developed. Four original concepts, probability waveforms, proba-
bility waveform propagation, probabilistic circuit models, and statistical timing analysis, are
presented which allows an efficient and accurate estimation of expected current waveforms.

This approach is dramatically faster than traditional methods and yields comparable results.

Topics : 1, 16, 12.



[. INTRODUCTION

The quality of an integrated circuit is measured by both functional and reliability stan-
dards. Many simulation approaches exist to verify that a design will meet functional specifi-
cations; however, present capabilities for verifying that a design will meet reliability specifica-
tions are extremely limited. At Texas Instruments, much effort is being devoted to providing
the simulation tools and expertise to verify, prior to manufacturing, that chips will satisfy
reliability specifications. This is part of an overall strategy to reduce design cycle time.

A major reliability problem, electromigration, has been the subject of substantial model-
ing effort [1]. These models utilize the current density in a metal section to predict its median
time to failure due to electromigration. A simulation tool, SPIDER [2], has been developed
that will estimate the median time to failure for each section of metal corresponding to any
interconnect signal that the user designates. It requires the user to specify current sources
to load the signal at specified connection points. Using these contact points as electrical
nodes, SPIDER extracts an equivalent resistance network to represent the metal sections
of the interconnect signal, simulates the network using SPICE [3] to determine the current
density in each section, and then estimates the median time to failure of each section.

This approach works well; however, the user must obtain current sources to model the
loading of the extracted network. In CMOS, one serious electromigration problem occurs
on power (Vyy) and ground (V) lines; a method of automatically providing the current
sources to load these lines is necessary. Another problem associated with current density on
power (or ground) lines is excessive voltage drop (or rise) in the voltage on the line, caused
by the resistance of the power (or ground) line. Excessive voltage drop can prevent CMOS
chips from meeting functional specifications; however, since it is a chip level phenomenon,
traditional simulation tools do not detect the problem. SPIDER analyzes voltage drop as
well as predicting electromigration failures, but current sources are still needed to model the
loading of the circuitry. To provide these sources, either all possible input vectors need to
be exercised to derive a statistically meaningful “expected” current waveform or a particular
input vector need to be used to obtain the worst case current waveform. In general, the all
possible input vector approach with SPICE is computationally prohibitive and the designers

cannot provide the worst case input vector. This paper presents a new simulation approach



developed to estimate the necessary expected current waveforms, for Vg and V,, of CMOS
circuits. This approach is much faster than SPICE, especially when the user is uncertain

about the correct circuit inputs.

II. BASIC CONCEPTS

Current sources are required to model circuit operation under normal conditions (for
electromigration) or worst case conditions (for voltage drop). It is very difficult for the user
to specify input waveforms for either condition without examining a variety of inputs. For a
circuit with n inputs, the number of possible input patterns is 2* and the number of possible
transitions at the inputs is 22». An analysis of the current drawn for a given input is feasible,
although fairly expensive for a large circuit, using a circuit analysis program such as SPICE.
It is clear that redoing this analysis for all possible inputs is prohibitively expensive. Any
approach that avoids this pattern-dependence problem is called pattern-independent.

Even if one derives the worst case current drawn by small subcircuits inside a big circuit,
it is difficult to combine these currents to get the overall worst case current. A simple
sum is grossly inaccurate because the input that causes the worst case total current may
cause internal subcircuits to draw less than their maximum. An exact search algorithm that
searches for this particular input is also prohibitively expensive.

While a few published articles have looked at the average power consumption problem,
very little work has been done on the current estimation problem. The authors know of
one recent work by Tyagi [4] that tackles this problem for CMOS circuits. The pattern-
dependence problem is avoided in [4] by borrowing the concept of a stage from timing
verifiers such as TV [5] and CRYSTAL [6]. A stage is basically a series path of transistors
connecting a power or ground node to an output node. Based on this concept, Tyagi derives
the charging current drawn by a single gate. This approach is simple enough to be efficient for
large circuits, but is not sufficiently accurate. The stage is important in timing verification
because it causes the worst timing delay and, therefore, the least current to be drawn, not
the worst current.

We present a new technique for deriving a pattern-independent estimate of the power

supply and ground currents drawn by a CMOS circuit. To achieve pattern-independence,



accurate information about the current is sacrificed and only statistical information is de-
rived. More precisely, if one envisions the set of all possible transitions at the inputs of a
CMOS circuit, one can capture information about this set by considering each transition as
an event with a certain probability and then extracting statistical information about the cur-
rent drawn based on these probabilities. Over this probability space, the supply (or ground)
current waveform becomes a stochastic process [7]. An important second-order property
used to describe a stochastic process is its mean. In this case, the mean is a current wave-
form whose value at each time point is the expected value or mean of all the values that the
actual current can take at that time. It is precisely this mean that the approach we present
here can derive, and we will call it the expected current waveform. Future extensions of
the technique will aim at deriving another second-order property of the current, namely its
variance or standard deviation as a function of time.

We emphasize that the expected current waveform is not the same as a time-average of
the current, it is a waveform which, if the standard deviation of the actual current values
is small, will approximately match the real current waveform(s). Under this condition, it
can be used to estimate electromigration failure rates and voltage drops. If the standard
deviation is large, this waveform remains satisfactory for estimating electromigration median
time to failure (MTF). Using the electromigration model in [1], it can be shown that MTF
is related either to the expected waveform of J (the current density) or that of J2? (which we
estimate, having found the expected waveform of J). This is the motivation and justification
of our approach.

To derive the expected current waveform, E[:(¢)], we build on the concept of signal prob-
abilities [8], which has recently become popular in the testing field [9]. Given that different
input patterns may occur and that every pattern has a certain (user defined) probability
of occurrence, then every input signal line acquires a certain probability of being high (or
low). Internal circuit node probabilities can be derived from the input probabilities given
the connectivity of the circuit. This concept has recently been used to estimate the power
consumption of CMOS circuits [10]. The power consumption is closely related to the time-
average of the current which, as pointed out above, is different from our E[i(t)]. If P, is
the probability that node 2 is high, then the probability of a transition at z is taken to be
P, x (1 — Py,) in [10]. This assumes that the signal probability at ¢ before a transition is
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the same as after, and that the two signal values are independent random variables. In this
work we make no such assumptions, we extend the signal probabilities concept to include
transition probabilities. The transition probability of a signal ¢ at time ¢ is the probability
of a low-to-high transition from ¢~ (just before ¢) to t+ (just after ¢), denoted Py (¢). Given
these probabilities at the inputs then internal node transition probabilities can be derived
in the same way as signal probabilities.

Using transition probabilities we can compactly describe a large set of logic waveforms.
For example : input ¢ is high with probability .76 at time 0 (P;,(0) = .76), switches low-
to-high with probability .5 at time 2ns (Py,(2ns) = .5), is then high with probability .35
at time 3ns (P;,(3ns) = .35), etc... . The circuit inputs are described by giving such wave-
forms for every input node, the resulting input data is a sequence of vectors of probability
values, which we will refer to as probability vectors. It’s clear then that the signal prob-
ability concept is now extended to a probability waveform concept. Our probabilities are
themselves waveforms, functions of time. Formally speaking, such a probability waveform
defines a discrete stochastic process, whose individual outcomes are the different possible
logic waveforms. These powerful new concepts provide the originality in our approach and

make possible the derivation of accurate expected current waveforms.

ITT. PROBABILITY PROPAGATION AND CURRENT ESTIMATION

Our approach can be summarized as follows :

-1- Given probability waveforms at the primary circuit input nodes, derive the corresponding
waveforms at internal circuit nodes, this is probability propagation.

-2- With some convenient partitioning of the circuit examine every subcircuit and derive its
expected current waveform E[:(t)] based on the waveforms at its inputs.

-3- Add these current waveforms to get the total expected current waveform for the circuit.
This step is valid because E[i1(tg) + 29(¢9)] = Eli1(t0)] + Elza(to)], 21(tg) and 29(¢g) are
random variables.

Steps 1 and 2 constitute the major tasks in our technique, we will try in what follows to

explain the work and the problems involved in them.



ITI-A. Probability Propagation

For static signal probabilities (as opposed to probability waveforms) propagation has
been addressed by several researchers. The solution in [8] uses symbolic analysis, that in [9]
gives an algorithm with several suggested heuristics to improve efficiency, while [11] suggests
an efficient fresh approach that gives bounds on the probabilities rather than exact probabili-
ties. The problem is of linear complexity for circuits with no reconvergent fanout or feedback,
but becomes exponential otherwise. In fact, it’s easy to prove that if reconvergent fanout and
feedback are allowed then the problem becomes NP — hard. While the inputs to the circuit
can be assumed to be independent random variables, the existence of reconvergent fanout or
feedback causes internal nodes to be dependent, which complicates the propagation problem.
We have decided to adopt the approach in [9] as a first implementation. According to this
approach, a supergate is defined as a minimal subset of the circuit with independent inputs.
If the supergate is a single gate, then the gate’s inputs are independent, and propagation
through it is simple as detailed below. If the supergate has more than one gate, then some
of the inputs to the gates are dependent. Propagation through such a supergate is done
by considering all combinations of vectors at some (or all) of its inputs. For each of these
combinations, the internal gates of the supergate have independent inputs and propagation
through them is simplified. A variety of heuristic will be examined to reduce the complexity
in such cases.

For probability waveform propagation, the problem is even more complicated because
of the extra time dimension involved. The time dimension actually creates another kind of
dependency problem; for example, if Py, (¢t) = 0 (or 1) then the signals i(¢~) and (¢ 1) are
dependent random variables, equal (or opposite) in this case. Such dependency can also
arise in other situations, and needs to be properly dealt with. This kind of dependency will
be called temporal dependency while that described above, caused by reconvergent fanout
or feedback, will be called spatial dependency.

The propagation issues discussed so far have been related to the global problem of prop-
agation through a gate-level description of the circuit. We now discuss propagation through
a single gate. The approach in [10] involves assigning directions to the transistors and then
propagating the node probabilities along these directions, starting at the power or ground

nodes (which have known probabilities), to the gate output node. Even if the gate inputs are
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really (spatially) independent this approach neglects dependency resulting from reconvergent
fanout of the assigned directions inside the gate, such as a transistor in series with a parallel
combination of two other transistors.

We propose the following new solution to this problem. Using the supergate approach [9],
we can limit our attention to gates with spatially independent inputs as explained above.
Given such a CMOS gate, we want the probability that its output is high (or transitions),
knowing the signal (or transition) probabilities at its inputs. Represent the p (or n) block
of the gate as a graph. Each MOSFET generates a graph edge with a probability of being
on (or transitioning off to on) determined by the signal (or transition) probability at its
gate. We reduce the graph to a single equivalent edge between the output and Vi (or
V,s)- This edge contains the probability that there is a conducting path between the output
and Vg (or V,,), and the probability that this path goes from off to on. If the graph is
series/parallel, then it’s a simple matter to perform series/parallel reductions that generate
the equivalent edge, the primitive operations involved are those of combining two transistors
in series (intersection of two events) and combining two transistors in parallel (union of
two events), and can be carried out using simple probability theory. As discussed above,
the approach in [10] suffers from a dependency problem in series/parallel networks. Our
approach has no such problem. For bridge circuits we make use of the node elimination
technique which is the graph-domain operation corresponding to Gaussian Elimination on
the graph’s adjacency matrix [12]. These eliminations can introduce the same dependency
problem because an edge may be split into two or more edges. Eventually, solutions to this
problem will be investigated.

This propagation is done every time one or more of the signal probabilities at the inputs

of the gate changes, and constitutes probability waveform propagation.

III-B. Current Estimation

With the ability to propagate signal and transition probabilities through each gate of
the circuit, we are now ready to discuss the current estimation procedure at each gate.
We will focus on standard CMOS fully complementary gates; this is the extent of our first
implementation and is being extended to more general circuits. Furthermore, a gate will be

assumed to have spatially independent inputs. The general case is properly handled using



the concept of a supergate, described above, with the independent-inputs-gate-solver used
as a subroutine. If at least one input has a non-zero transition probability at ¢, the gate
draws a current pulse depending on the specific input node and transition; we’d like to find
the expected waveform or pulse of all these possible pulses. The expected gate current pulse
will be modeled by a triangular pulse that starts with a peak of E[pk i] = E[¢(t1)] at time
t and decays linearly to zero at time ¢ + 7. In what follows we’ll explain how E[pk 1] and 7
are derived.

The analysis given here will focus on the charging current component and leave out
the direct component which may be drawn through a path of p and n channel transistors
during the transition. We have adopted this policy as a first implementation based on
Veendrick’s [13] work which basically says that if the gate is “well designed” then the direct
current component may be neglected. In the future, we will extend our approach to include
this current.

Consider the generic CMOS gate structure shown in Fig. 1. The figure shows the
p-transistor block, the n-transistor block, and the output node capacitance split into two
lumped capacitors Cp to Vyq and C), to V,,. Similarly, each internal node n; has two capaci-
tances C;, and C;;,. On a low-to-high transition, the currents flowing through C, and C, at
the output node are ¢, and ¢,, respectively, as shown in the figure. The corresponding 1,4
and 1,y for a high-to-low transition are also shown. The currents 1,5 and 1,5 are discharging
currents that redistribute locally, and we are interested in 1 = 1,; + %,;. Of course these
currents are only to the output node and the total gate current i;,; will be larger than 2,
however the output current plays a central role in the derivation.

Let 1, = 1,1 + 1y and 4, = 1,1 + 1,9. It’s easy to verify that 1,y =1, x (C, / C, + (),
and 4,y = 1, X (Cp / Cp + C,,). Therefore :

C C
E[i(t)] = Eli,(t)] X =——— + Ein(t)] x —2— 1
And in particular, the value at the peak is :
C C
Elpk ] = Elpk © —"  { El[pk 1 —r 2
[pk 2] = Elp Zp]><0p+0n+ [p Z"]XCerCn (2)

The values of E[pk i,] and E[pk i,] are derived as follows. For i,, consider the p part

p?

of the gate, and let every transistor 7} be represented by a switch of on-conductance g,
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where Vg X gj is the current that flows in T} with Vg volts across it (drain to source) and
0 volts at its gate (7}, in saturation). This is taken to be the definition of g; because we’re
interested in the peak current drawn, which occurs during saturation. We derive g;, from the
transistor model parameters given by the user. Now let G,(¢) be the conductance between
the output node and V44, G,,(t) is a random variable (at every time point ¢) and depends on
which transistors are actually on. If an event occurs at the gate at time ¢, then the value
of E[G,(t*)] and the previous state of the output node, V,(t), will determine E[pk 1,)].
Formally, we have E[pk 1,] = E[(V4q — V,(t7)) x Gp(tT)], which becomes :

Elpk ] = Vag x E[G,(t7)|Gy(17) = 0] x P(Gy(t7) = 0) (3)

Where E[A|B] is the conditional expected value of A given B, and P(B) is the probability
of the event B. The formula is correct because G,(t~) = 0 (1) means V,(t7) = 0 (Vyq).

Similarly for the n part of the gate, we get :
E[pk 'Ln] = Vig X E[Gn(t+)|Gn(t_) = 0] X P(Gn(t_) = 0) (4)

The value of E[G,] (or E[G,]) may be derived from the graph as follows. If the gate
terminal of every transistor 7}, is 3, and if G}, is the random variable describing the transistor
conductance, then E[Gj] = g x P,,; for a p transistor, and g3 x P, j; for an n transistor.
Consider the graph for the p part of the gate with each edge labeled with its E[G}]. Perform
series/parallel reductions and node eliminations to reduce the graph to a single edge so that
at every step in the reduction the value E[G] between the output node and Vy; remains
unchanged. The same can be done for the n part of the gate.

Now, to find the conditional expected value of G,, E[G,(tT)|G,(t~) = 0], we perform
the same graph reduction using E[G(t1)|G,(t~) = 0], instead of E[Gy(t1)], for every
transistor. If the values of the inputs at time ¢ are independent of their values at ¢~ then
E[G,(t1)|Gp(t™) = 0] = E[G,(tT)] and the problem would be simplified. However this is
not true in general and the values E[Gj(t1)|G,(t7) = 0] need to be computed every time
the gate gets an event. Exactly how these are computed will not be included here for lack

of space, suffice it to say that it takes one graph reduction to evaluate each of them.



Having found E|[pk 1] for the output node, the expected value of charge delivered to (or

from) the output node capacitors is easily found as follows :
Elg] = Vag x Cp X Pyp(t) + Vgg x Cp X Pop(2) (5)

where o is the output node. We now make the assumption that the time constant for charging
the output node is the largest of the internal gate nodes. We let the time span of the output
node current represent the time span 7 of the total gate current. By the triangular pulse
approximation :

T=2X

6
E[pk 1] (©)
Next the expected value of the charge delivered by the total gate charging current, E|[g;0]

is derived using the capacitances at each internal node j as follows :

Elg104) = Z V1dCinPiin + Z ViaCipPini (7)
JEP block j€n block

Strictly speaking the probabilities P;j, and Pjj; are hard to find. We have therefore opted
to use an upper bound of these probabilities to replace them in the equation. An upper
bound of Pjj, (Pjp), for a node in the p (n) block, is the probability that the conduction
state between j and V4 (V,,) goes from off-to-on. This is found by a graph reduction that

repeats the work done to find P,;;, for the output node o for every internal node j. Finally,

the peak total current is found as :

Blpk ] = 27 = F i ®)

Having derived the expected gate current pulse, the new event at the output of this gate
(the possible occurrence of a transition) needs to be properly placed in time. The time of this
event can be derived follows. If one considers a resistor R charging a capacitor C from a power
supply V, then the current and voltage at the capacitor both reach their half-point at time
.693 x RC. If we assume that the individual current pulses i(¢) are exponentially decaying,
rather than linear, then the switching time at the output, t,, is 0.693 x (C, + C,,) / G, for
a low-to-high transition, and 0.693 x (C, + C,) / G, for a high-to-low transition. This ¢,

is, again, a random variable, and one is interested in E[t,|V, transitions|. Knowing that the



duration of 4, (or 4,) determines the gate delay, and that these currents deliver charge to

both C}, and C,, then if g, and g, are the charges delivered, we have :
E[qp] = Vdd X (Cp + Cn) X Polh R and (9)

Elg,] = Via X (Cp + Cp) X Popy (10)
The duration of the two pulses is derived as before, as :

E E
Tp = 2 X 7[%1 , and 7, =2 X 7[(]”] (11)
E[pk 1] Elpk iy)

Having found these values, the time delay is :

Tp ><})olh—l_’rn ><})ohl
Poin + Pont

E[t,|V, transitions] = 0.35 x

(12)

It is important to note that 7, and 7, are independent of the particular partitioning of

C. + C_ ), which makes the timing estimate reliable.
( P n/s g

IV. PROBABILISTIC SIMULATION FOR CURRENT ESTIMATION

Now that we have developed the capabilities to propagate signal and transition probabil-
ities, and to estimate a gate’s expected current pulse and its delay for these probabilities, we
are ready to integrate these tools into a useful simulator for estimating the expected current
waveform drawn by CMOS circuitry under normal operating conditions. In this section, we
describe the input requirements of such a simulator, the partitioning algorithm, the overall
simulation approach, and the modifications to the basic simulator required to accurately
handle spatial dependency and feedback.

The proposed simulator would require three forms of input from the user. First, the
user must supply a SPICE, or equivalent, description of the CMOS circuitry for which he
wishes to estimate the current drawn. Second, he must supply a list of the nodes which
represent connections to the power lines of the chip and a list of the nodes that represent
ground connections. Finally, he must supply probability vectors (see section II) for nodes
that are primary inputs to the circuitry.

The first step is to construct a representation of the circuit from the SPICE input, with
any subcircuit hierarchy removed. Two structures are used to represent the circuit: elements

and nodes. For each MOSFET in the SPICE deck, an element is created. The element joins
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the source and drain nodes of the MOSFET; these become the connection nodes of the
element. It is composed of a switch in series with a conductance. The switch is controlled
by the gate node of the MOSFET; this node is the input node of the element. Nodes are
used to represent the electrical nodes of the circuit. In addition to containing connectivity
information, each node contains an estimate of the total capacitance connected to the node,
including MOSFET capacitances. This capacitance is used in current estimation.

Next, a simple partitioner joins together all elements that have common connection
nodes, that are not power or ground nodes, to form gates. The circuit is now represented by
a network of gates joined together by nodes.

Once the partitioned circuit has been constructed, it must be simulated over a time
interval specified by the user to estimate the expected current waveform during that interval.
Current estimation by the methods we propose is similar to logic and timing simulation, and
we borrow the event driven simulation approach from there. Each time there is a non-zero
chance of a transition on a node, an event is created. These events are kept in an event queue,
and store the transition time, the probability of transition, and a pointer to the affected node.
When an event occurs, all gates that have the event’s node as an input are examined. The
expected current pulse, the gate delay, and the signal and transition probabilities at the
output node of each gate are calculated with methods previously described. A new event is
added to the event queue at the current time plus the gate delay, indicating a transition on
the output node with the signal and transition probabilities determined during propagation.
The process is repeated until the event queue is empty of events that fall within the specified
simulation interval.

Since the gate takes a finite amount of time to draw its current, events that are very close
together on different inputs of the gate should be treated as simultaneous. When a gate is
simulated for a scheduled event, the next events that affect the other inputs of the gate are
checked. If any of them occur before the output would transition, estimated from a reference
gate delay, then that event is considered to occur simultaneously with the scheduled event
for this gate only.

Spatial dependency presents particular problems, as previously discussed. Spatially de-
pendent sections of the circuit must be split into supergates, whose inputs are independent.

These supergates must then be simulated for every possible combination of transitions on
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the nodes that caused the spatial dependency inside the circuit. This can be simplified since
events that no longer have any effect on the supergate do not require separate simulations;
however, the complexity is still exponential. Various heuristics are being investigated to
determine if an acceptable compromise between accuracy and simulation simplicity can be

found for supergates.

V. RESULTS

The probabilistic simulation approach just described has been implemented in a program
called CREST (CuRrent ESTimation program). Circuits with spatial dependency are not
allowed, but this capability is presently being added. Our goal is to approximate the expected
pulse drawn by the circuit for known signal and transition probabilities on the inputs of the
circuit. For comparison, we generated the expected current pulse for a variety of examples
by running SPICE on every input voltage waveform allowed by the probability vectors,
weighting each pulse by the probability that the waveform producing it would occur, and
summing the weighted pulses to produce the expected pulse. Figs. 2-6 show some of the
results obtained. When the circuit title is not sufficient to define the circuit, a sketch is
included.

In all examples tested, the results were excellent. Peak currents were within 20%, average
currents were within 10%, and, as clearly shown in Fig. 6, timing estimates were within 10%
of SPICE.

To be used to estimate current of today’s large VLSI designs, this approach must be
much faster than SPICE. Table 1 compares CREST simulation speed to SPICE simulation
speed for all vectors necessary to generate the expected pulse and the SPICE simulation
speed divided by the number of vectors. In overall simulation speed CREST is dramatically
faster than SPICE, due to the exponential number of vectors that must be simulated for
multiple inputs. CREST simulation speed is still significantly faster than the SPICE time
per vector and the trend we observed was for the speed gain of CREST over SPICE to grow
with circuit complexity (Fig. 7). Since each test circuit had to be specially designed to

prevent spatial dependency, only relatively small examples have been tested.
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VI. CONCLUSION

In this paper, we have described a pattern-independent simulation approach for current
estimation. This approach provides expected current waveforms appropriate for predicting
the median time to failure from electromigration, analyzing voltage drop, and estimating
power consumption. The speed for simulation of a single input vector is dramatically faster
than SPICE. Moreover, the combined effects of a variety of input patterns, each of which
would require separate SPICE simulations, can be derived with a single simulation at no
more expense than the simulation for a single vector. As such, our approach is pattern
independent and provides a dramatic speed-up over the the conventional approach using
SPICE. The waveforms produced with our approach agree well with results obtained from
SPICE: peak currents are within 20%, average currents are within 10%, and timing estimates
are within 10%.

CREST will be expanded to include the algorithms necessary to handle spatial depen-
dency and more complex gates, such as pass transistor structures. Evaluation of the complete
approach can then be performed, and it can be extended to other technologies; NMOS, bipo-

lar, etc.
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