
Transition Density, A Stochastic Measure of

Activity in Digital Circuits

Farid N. Najm

Semiconductor Process & Design Center
Texas Instruments Inc., MS 369

Dallas, Texas 75265

Abstract

Reliability assessment is an important part of the design process of digital integrated circuits.
We observe that a common thread that runs through most causes of run-time failure is the
extent of circuit activity, i.e., the rate at which its nodes are switching. We propose a new
measure of activity, called the transition density, which may be de�ned as the \average
switching rate" at a circuit node. Based on a stochastic model of logic signals, we rigorously
de�ne the transition density and present an algorithm to propagate it from the primary
inputs to internal and output nodes. This algorithm may be thought of as a simulation of
the circuit, and has been implemented in a prototype density simulator. We present some
results of this implementation to verify the theoretical results and assess the feasibility of
the approach. In order to obtain the same density information by traditional means, the
circuit would need to be simulated for thousands of input transitions. Thus this approach
is very e�cient and makes possible the analysis of VLSI circuits, which are traditionally too
big to simulate for long input sequences.

ACM/IEEE Design-Automation Conference, 1991.



1. Introduction

A major portion of the design time of digital integrated circuits is dedicated to functional

veri�cation and reliability assessment. Of these two, reliability assessment is a more recent

problem whose severity has steadily increased in proportion to chip density. As a result,

CAD tools that evaluate the susceptibility of a design to run-time failures are becoming

increasingly important.

Chip run-time failures can occur due to a variety of reasons, such as excessive power

dissipation, electromigration, hot-electron degradation, voltage drop, aging, and others. In

CMOS logic circuits, the rate at which node transitions occur is a good indicator of the

circuit's susceptibility to run-time failures. For example, both power dissipation and elec-

tromigration in the power lines are directly related to the power supply current which, in

CMOS, is non-zero only during transitions. Hot-electron degradation is related to the MOS-

FETs substrate current, which, for CMOS, is also only signi�cant during transitions. Thus,

the rate at which node transitions occur, i.e., the extent of circuit activity, may be thought

of as a measure of a failure-causing stress.

This paper proposes a new way of quantifying activity in digital circuits and presents a

simulation technique to compute a measure of activity that we call the transition density.

The transition density may be de�ned as the \average switching rate" at a circuit node; a

more rigorous de�nition will be given in later sections.

To further motivate the notion of transition density, consider the problem of estimating

the average power drawn by a CMOS gate. If the gate has output capacitance C to ground

and generates a simple clock signal with frequency f , then the average power dissipated is

CV 2
ddf , where Vdd is the power supply voltage. In general, a node in a logic circuit may

not carry a periodic signal, and the notion of frequency cannot be used to write this simple

expression for average power. Instead, one may compute the power as follows. If x(t) is the

logic signal at the gate output and nx(T ) is the number of transitions of x(t) in the time

interval (�T2 ; +T
2 ], then the average power is :

Pav = lim
T!1

Vdd
CVddnx(T )=2

T
=

1

2
CV 2

dd

�
lim
T!1

nx(T )

T

�
(1:1)

It will be shown below (see (3.2)) that the last term in (1.1) is indeed the transition density.

1



If the transition densities at the circuit primary inputs are given, we will show that they

can be propagated into the circuit to give the transition densities at all internal and output

nodes. The propagation algorithm may be thought of as a simulation of the circuit, and has

been implemented in a prototype density simulator. It performs a single-pass over the circuit

to compute the transition densities at all the nodes. In order to obtain the same density

information by traditional means, the circuit would need to be simulated for thousands of

input transitions. Thus this approach is very e�cient and makes possible the analysis of

VLSI circuits, which are traditionally too big to simulate for long input sequences.

The analysis leading up to the notion of density and its propagation algorithm is best

cast in a stochastic (probability) setting. Thus, in the following sections, we will present

a stochastic model of logic signals, rigorously de�ne the transition density based on that

model, and then present algorithms that propagate the density into the circuit. We will

also describe our implementation of this approach and present some test cases to assess its

validity and feasibility.

2. Stochastic 0-1 Processes

In this section, we review some concepts from probability theory, present a model of random

logic signals, de�ne the transition density, and basically lay down the foundations for the rest

of the paper. Throughout this paper, we will use bold font to represent random quantities.

Let x(t), t 2 (�1;+1), be a stochastic process [1] that takes the values 0 or 1, tran-

sitioning between them at random transition times. Such a process is called a 0-1 process

(see [2], pp. 38{39).

A stochastic process is said to be strict-sense stationary (SSS) if its statistical properties

are invariant to a shift of the time origin [1]. Speci�cally, the mean of such a process is a

constant, independent of time. If a constant-mean process x(t) has �nite variance and is such

that x(t) and x(t + � ) become uncorrelated as � ! 1, then x(t) is mean-ergodic (see [1],

pp. 245{248). These conditions, which are satis�ed for most regular processes [1], are su�-

cient but not necessary for mean-ergodicity. However, in order to abbreviate the terminology,

we will, throughout this paper, simply use the term \mean-ergodic" to mean \mean-ergodic

and satis�es the two conditions of �nite variance and decaying auto-correlation."

2



In the sequel, we consider only 0-1 processes that are SSS and mean-ergodic. We will

show in the next section that, if the circuit primary inputs are represented by SSS mean-

ergodic 0-1 processes, then the 0-1 processes at all internal and output nodes are also SSS

and mean-ergodic.

To show that such processes exist and that the assumptions of SSS and ergodicity are in

fact mild requirements, we point out the important special case when x(t) has the Markov

(memoryless) property. In that case, x(t) is the well-known two-state continuous-time

Markov process (see [1], pp. 392{393). With an appropriate time-zero condition, such a

signal becomes SSS (see [3], pp. 272{273). It also has independent inter-transition times,

which makes it mean-ergodic.

Since x(t) is SSS, then the probability that it takes the value 1 at any given time t,

denoted by Pfx(t) = 1g, which is equal to its mean or expected value E[x(t)] at that time,

is a constant, independent of time. We refer to this value as the equilibrium probability of

x(t), denoted by P (x)
4
= Pfx(t) = 1g. Since x(t) is also mean-ergodic, then [1] :

lim
T!1

1

T

Z +T

2

�T

2

x(t)dt
1
= E[x(t)] = P (x) (2:1)

where we have used the symbol \
1
=" to denote convergence with probability 1. The reader is

referred to [1], pp. 188{191, for a discussion of the di�erent stochastic convergence modes.

Let nx(T ) denote the (random) number of transitions of x(t) in (�T
2
; +T

2
]. Since x(t) is

SSS, then E[nx(T )] depends only on T , and is independent of the location of the time origin.

Hence E[nx(T1+T2)] = E[nx(T1)]+E[nx(T2)]. This necessarily means that E[nx(T )] = kT ,

where k is a positive constant. The ratio E[nx(T )]=T is the expected number of transi-

tions per unit time. We will refer to it as the transition density of x(t), to be denoted by

D(x)
4
= E[nx(T )]=T . The name \transition density" is inspired by the density of random

Poisson points (see [1], page 58) : If you throw a large number of points on the time axis

at random, then the \number of points in a given interval" is a random variable with a

Poisson distribution whose density parameter � is the \expected number of points per unit

time." The points that we are concerned with in this paper are the time points at which

transitions occur, but we make no assumption about their distribution. The above remark

about Poisson points is meant only to motivate the terminology.

3



Let z(t)
4
= d

dt
mx(t) be the output of a di�erentiator (see [1], page 238), whose input

is mx(t) =\the number of transitions of x(t) in (0; t]," if t � 0, or \the negative of the

number of transitions of x(t) in (t; 0]," if t < 0. Since x(t) is SSS, it can be shown that

E[mx(t)]=t = D(x). The process z(t) is an impulse train that can be written as :

z(t) =
+1X

i=�1

�(t� ti) (2:2)

where the tis are the transition time points of x(t). Since a di�erentiator is a linear system,

we have that :

E[z(t)] =
d

dt
E[mx(t)] = D(x) (2:3)

Therefore, z(t) has a constant mean. In fact, since z(t) = j d
dt
x(t)j, which is a time-invariant

transformation, then (using [1], page 238) z(t) is also SSS. Since it is positive with �nite

mean then its variance must also be �nite, and we can further argue that, since x(t) and

x(t+ � ) are uncorrelated for large � , then the same must be true for z(t) and z(t+ � ). Thus,

z(t) is mean-ergodic and :

lim
T!1

nx(T )

T
= lim

T!1

1

T

Z +T

2

�T

2

z(t)dt
1
= E[z(t)] = D(x) (2:4)

Equations (2.1) and (2.4) are the main results of this section.

3. Modeling Random Logic Signals

Let x(t) be a logic signal that transitions with zero rise and fall times between its 0 & 1

values. It is clear that x(t) can be thought of as a sample of a stochastic 0-1 process x(t),

i.e., x(t) is one of an in�nity of possible signals that comprise the family x(t).

If x(t) is SSS and mean-ergodic, then in view of (2.1) we have :

lim
T!1

1

T

Z +T

2

�T

2

x(t)dt
1
= P (x) (3:1)

which means : \P (x) is, asymptotically, the fraction of time that x(t) spends in the 1 state."

Similarly, in view of (2.4), we have :

lim
T!1

nx(T )

T

1
= D(x) (3:2)

4



Thus \D(x) is, asymptotically, the average number of transitions of x(t) per unit time." The

two results (3.1) & (3.2) provide the essential link between physical reality (the quantities

on the left hand side) and the stochastic measures P (x) & D(x).

We will use SSS mean-ergodic 0-1 processes to model the variety of logic waveforms

that may be applied at the primary inputs of a digital circuit. We further assume that the

processes at the circuit primary inputs are mutually-independent. Therefore, since these

inputs are individually SSS, they are also jointly SSS. We now examine the properties of the

corresponding 0-1 stochastic processes at the internal nodes of the circuit (we use the term

internal nodes to refer to the primary output nodes as well as other proper internal circuit

nodes).

One can think of a digital circuit as a nonlinear but time-invariant system that operates

on its input waveforms to produce its internal waveforms. Naturally, if both the system

and the statistics of its inputs are invariant to a shift in the time origin then so must be the

statistics of its outputs (see [1], page 238). Thus internal processes are also SSS. Furthermore,

since the circuit delays are �nite, then the correlations of internal processes also die out for

large � , and they are also mean-ergodic. Therefore, if the primary inputs are SSS and mean-

ergodic, the same is true of all internal signals. All the above results are consequently true

not only at the primary inputs but at every internal node as well.

The next two sections deal with the issue of propagation and give a computationally e�-

cient technique to propagate the densities and equilibrium probabilities through the circuit.

4. Propagation Through A Module

Consider a multi-input multi-output logic moduleM , whose outputs are Boolean functions

of its inputs, as shown in Fig. 1. M may be a single logic gate or a higher level circuit block.

We assume that the inputs to M are mutually-independent SSS mean-ergodic 0-1 processes.

We use a simpli�ed timing model of circuit behavior, as follows. We assume that an

input transition that does get transmitted to an output node is delayed by a propagation

delay time of �p. Di�erent propagation delays may be associated with di�erent input-output

node pairs. Implicit in this model is the simplifying assumption that the propagation delay

is independent of the values at other inputs of M .

5



M

Figure 1. Logic Module M.

In e�ect, we decouple the delays inside M from its Boolean function description by

introducing a new special-purpose delay block to model the delays between every pair of

input & output nodes, as shown in Fig. 2. The block M 0 is a zero-delay logic module that

implements the same Boolean function as M .

(non-zero-delay)

(zero-delay)

M

M’

Delay

Figure 2. Decoupling of delays.

Since the signals are SSS, then the output of the delay block has the same statistics as

its input, and therefore has the same probability and density. As for the zero-delay module

M 0, we now consider the problem of propagating equilibrium probabilities and transition

densities from its inputs to its outputs.

Since M 0 has zero delay, then the problem of propagating equilibrium probabilities

6



through it is identical to that of propagating signal probabilities through logic circuits, which

has been well-studied [4]{[8]. Since the internal structure of M 0 is not known, the problem

is actually even more generic than that, and can be expressed as \given a Boolean function

f(x1; : : : ; xn) and that each xi can be high with probability P (xi), what is the probability

that f is high?" Any number of published techniques can be used to solve this problem.

However, we have chosen (for reasons that will become clear below) to investigate a new

approach based on Binary Decision Diagrams [9, 10] (BDDs) which have recently become

popular in the veri�cation and synthesis areas. The appendix describes how we use BDDs

to compute the probability of a Boolean function.

We consider next the density propagation problem. Recall the concept of Boolean Dif-

ference. If y is a Boolean function that depends on x, then the Boolean di�erence of y with

respect to x is de�ned as :

@y

@x

4
= yjx=1 � yjx=0 = y(x)� y(x) (4:1)

where � denotes the exclusive-or operation. Note that, if x is an input and y is an output

of M 0, then @y=@x is a Boolean function that does not depend on x, but may depend on all

other inputs of M 0. Therefore, @y=@x and x are independent. A crucial observation is that

if @y=@x is 1, then a transition at x will cause a (simultaneous) transition at y, otherwise

not. Since all internal processes of a digital circuit are SSS, then @y=@x is also SSS, and has

an equilibrium probability, P (@y=@x). We are now ready to prove the following :

Theorem : If the inputs xi(t); i = 1; : : : ; n, of a zero-delay logic module are SSS independent

0-1 stochastic processes with transition densities D(xi), then the densities at its outputs

yj(t); j = 1; : : : ;m are given by :

D(yj) =

nX
i=1

P

�
@yj

@xi

�
D(xi) (4:2)

Proof : Let tik; k = 1; 2; : : : ;nxi(T ), be the sequence of transition time points of xi(t) in

(�T
2 ; +T

2 ]. Consider the sequence of random variables
@yj
@xi

(tik); k = 1; 2; : : : ;nxi(T ), de�ned

for every input-output pair (xi;yj) of M 0.

Since
@yj
@xi

(t) is SSS and independent of xi(t), then P
n
@yj
@xi

(tik) = 1
o
= P

�
@yj
@xi

�
is the

same for any k. Therefore, this is a sequence of identically-distributed (not necessarily

independent) random variables, with mean P
�
@yj
@xi

�
.

7



Since
@yj
@xi

(tik) = 1 if and only if the kth transition of xi(t) is transmitted to yj(t), then

the number of transitions of yj(t) in (�T
2
; +T

2
] is given by :

nyj(T ) =
nX

i=1

nxi
(T )X

k=1

@yj

@xi
(tik) (4:3)

Taking the expected value of both sides gives :

E
h
nyj(T )

i
=

nX
i=1

E

2
4
nxi

(T )X
k=1

@yj

@xi
(tik)

3
5 (4:4)

Since
@yj
@xi

(t) is independent of xi(t), and if n is some positive integer, then :

E

�
@yj

@xi
(tik)

���� nxi(T ) = n

�
= E

�
@yj

@xi
(tik)

�
= P

�
@yj

@xi

�
(4:5)

Using [1], p. 183, these facts lead to :

E
h
nyj(T )

i
=

nX
i=1

P

�
@yj

@xi

�
E
�
nxi(T )

�
(4:6)

which, dividing by T , leads to (4.2).

If the Boolean di�erence is available, then evaluating P
�
@yj
@xi

�
is no more di�cult than

evaluating the probability of a Boolean function knowing those of its inputs. Note that if

M is a 2-input AND gate, with inputs x1 & x2, and output y, then P
�

@y
@x1

�
= P (x2). In

more complex situations, the \compose" and \xor" functions of the BDD package [10] can

be used to evaluate the Boolean di�erence using equation (4.1). The BDD-based algorithm

given in the appendix (for computing the probability of a Boolean function) can then be

used to compute P
�
@yj
@xi

�
.

5. Overall Simulation Strategy

The propagation algorithm through a module presented above may be thought of as a

simulation of the module that yields the density and probability at its outputs, given those

at its inputs. Using this algorithm, one can simulate each module in the circuit, starting

from the primary inputs, and compute the density and probability at every circuit node.

The assumption was made at the beginning of the previous section that the inputs to a

module are independent. Even if this is true at the primary inputs (as assumed in section 3),

8



it may not be true for internal nodes. Circuit topologies that include reconvergent fanout and

feedback will cause internal nodes to be correlated, and destroy the independence property.

This problem is central to any circuit analysis based on a statistical representation of signals,

and can usually be taken care of by using heuristics that trade-o� accuracy for speed [4-8].

Based on our experience with the propagation of probability waveforms [11], we have

found that, if the modules are large enough so that tightly coupled nodes (such as in latches

or small cells) are kept inside the same module, then the coupling outside the modules is

su�ciently low to justify an independence assumption. Of course, one can model the whole

circuit as a single module, but then performance would be sacri�ced because the BDD can

become too large. The next section will investigate this speed-accuracy trade-o�.

6. Implementation and Results

We have implemented the above ideas in a prototype density simulator that takes a descrip-

tion of a circuit in terms of its boolean modules and gives the transition density at every

node. The simulator requires values for the transition density and equilibrium probability

at the primary inputs. The units of density are arbitrary; they may be \transitions per sec-

ond" or \million transitions per second," as long as one is consistent. We present below the

results of two test cases that we have used to investigate the validity of the technique and the

speed-accuracy trade-o� mentioned above. All execution times are for a SUN Sparcstation 1.

To study the validity of this approach, we have devised a test by which randomly gener-

ated sequences of inter-transition times are fed to the circuit primary inputs and propagated

into the circuit (by logic simulation based on the BDD). From these, we estimate the number

of transitions per unit time. For a large number of input transitions, this number should

converge to the transition density, according to equation (3.2). We also estimate the per-

centage of time that the signal spends in the high state and check if that converges to the

equilibrium probability, in accordance with (3.1). As a test case, we constructed a logic mod-

ule with 8 inputs (A;B; : : : ;H) and one output (Z), that implements the boolean function :

Z = ABFD+CFD+ABHD+CHD+ABFG+CFG+ABHG+CHG+AFE+ADE+

CFE + CDE. The results, showing the correct convergent behavior at the output Z, are

shown in Fig. 3. The run took only 0.38 seconds, was based on input values of P = 0:5 and

D = 2:0, and resulted in P (Z) = 0:476562 and D(Z) = 3:71875.

9



Figure 3. Density and probability convergence plot.

Figure 4. ALU / function generator example.

10



To investigate the speed-accuracy trade-o�, we considered an ALU circuit (SN54181)

from the TI TTL Data Book which has 75 logic gates, shown in Fig. 4. We simulated this

circuit in two ways : (1) using a single module to model the whole circuit (this took 15

seconds), and (2) using the 19 modules indicated in the �gure (this took 1.0 seconds). The

density results are compared in Fig. 5 for all nodes that are module outputs. By \accurate

density," we mean the density from the �rst run, while \approximate density" refers to that

of the second run. The error resulting from the independence assumption in the second run

is re
ected in the deviation from the dashed diagonal line. In this case there was a \< 20%"

loss in accuracy for a gain of 15X in speed.

Figure 5. Speed-accuracy trade-o� in the ALU.

7. Summary and Conclusions

To summarize, we have observed that a common thread that runs through most causes

of run-time failure is the extent of circuit activity, i.e., the rate at which its nodes are

switching. Based on a stochastic model of logic signals, we have de�ned a new measure

11



of circuit activity, called the transition density. We have also presented an algorithm to

propagate the density from the primary inputs to internal nodes. This algorithm may be

thought of as a simulation of the circuit and has been implemented in a prototype density

simulator. We have presented some results of this implementation that verify the theoretical

results and establish the feasibility and e�ciency of the approach.

Appendix : Using BDDs for Probability Propagation

We will brie
y review the concept of a Binary Decision Diagram [9, 10] (BDD) and then

present a new application for BDDs as tools for computing the probability of a boolean

function.

x3

x2

x1

0
1

1

0

1

0

10

Figure 6. Example BDD representation.

Consider the boolean function y = x1 � x2 + x3, which can be represented by the BDD

shown in Fig. 6. The boolean variables xi are ordered, and each level in the BDD corresponds

to a single variable. Each level may contain one or more BDD nodes at which one can branch

in one of two directions, depending on the value of the relevant variable. For example,

suppose that x1 = 1, x2 = 0, and x3 = 1. To evaluate y, we start at the top node, branch to

12



the right since x1 = 1, then branch to the left since x2 = 0, and �nally branch to the right

since x3 = 1 to reach the terminal node \1". Thus the corresponding value of y is 1.

The importance of the BDD representation is that it is canonical, i.e., that it does not

depend on the Boolean expression used to express the function. In our case, if the function

was expressed as y = x3 + x1 � (x2 + x3) (an equivalent representation), it would have the

same BDD. BDDs have been found to be an e�cient representation for manipulating Boolean

functions, both in terms of memory and execution time. For example, checking if a boolean

function is satis�able can be done in time that is linear in the size of the BDD.

Let y = f(x1; : : : ; xn) be a Boolean function. We will show that, given signal proba-

bilities for the variables xi, and that these variables are independent (random variables),

then the probability of the function f can be obtained in linear time (in the size of its BDD

representation). By Shannon's expansion :

y = x1fx1 + x1fx1 (A:1)

where fx1 = f(1; x2; : : : ; xn) and fx1 = f(0; x2; : : : ; xn) are the cofactors of f with respect

to x1. Since x1x1 = 0, then :

P (y) = P (x1fx1) + P (x1fx1) (A:2)

Since the cofactors of xi do not depend on xi, and since all variables are independent, then :

P (y) = P (x1)P (fx1) + P (x1)P (fx1) (A:3)

This equation shows how the BDD is to be used to evaluate P (y). The two nodes that

are descendants of y in the BDD correspond to the cofactors of f . The probability of the

cofactors can then be expressed in the same way, in terms of their descendants. Thus a depth-

�rst-traversal of the BDD, with a post-order evaluation of P (�) at every node is all that is

required. We have implemented this using the \scan" function of the BDD package [10].

13



References

[1] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd Edition. New
York, NY: McGraw-Hill Book Co., 1984.

[2] E. Parzen, Stochastic Processes, San Francisco, CA: Holden-Day Inc., 1962.
[3] D. R. Cox and H. D. Miller, The Theory of Stochastic Processes, New York: John Wiley

& Sons Inc., 1968.
[4] K. P. Parker and E. J. McCluskey, \Probabilistic treatment of general combinational

networks," IEEE Trans. Computers, pp. 668-670, June 1975.
[5] S. C. Seth, L. Pan, and V. D. Agrawal, \PREDICT - probabilistic estimation of dig-

ital circuit testability," IEEE 15th Annual International Symposium on Fault-Tolerant

Computing, Ann Arbor, MI, pp. 220-225, June 1985.
[6] J. Savir, G. S. Ditlow, and P. H. Bardell, \Random pattern testability," IEEE Trans.

Computers, pp. 79{90, January 1984.
[7] G. Markowsky, \Bounding signal probabilities in combinational circuits," IEEE Trans.

Computers, pp. 1247{1251, October 1987.
[8] S. Ercolani, M. Favalli, M. Damiani, P. Olivo, and B. Ricc�o, \Estimate of signal probabil-

ity in combinational logic networks," 1989 IEEE European Test Conference, pp. 132{138,
1989.

[9] R. E. Bryant, \Graph-based algorithms for Boolean function manipulation," IEEE Trans.

Computer-Aided Design, pp. 677{691, August 1986.
[10] K. S. Brace, R. L. Rudell, and R. E. Bryant, \E�cient implementation of a BDD pack-

age," 27th ACM/IEEE Design Automation Conference, pp. 40{45, June 1990.
[11] F. N. Najm, R. Burch, P. Yang, and I. N. Hajj, \Probabilistic simulation for reliability

analysis of CMOS VLSI circuits," IEEE Trans. Computer-Aided Design, pp. 439{450,
April 1990 (Errata in July 1990).

14


