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Abstract – A modeling approach is presented
that captures the dependence of the power dissi-
pation of a combinational logic circuit on its in-
put/output signal switching activity. The result-
ing power macromodel, consisting of a single three di-
mensional table, can be used to estimate the power
consumed in the circuit for any given input/output
signal statistics. Given a low-level (typically gate-
level) description of the circuit, we describe a char-
acterization process by which such a table model
can be automatically built. In contrast to other
proposed techniques, this can be done for any given
logic circuit without any user intervention, and ap-
plies to all possible input/output signal statistics;
it does not require one to construct specialized an-
alytical equations for the power dissipation. The
three dimensions of our table-based model are the
average input signal probability, average input transition
density, and average output zero-delay transition density.
This approach has been implemented and models
have been built for many benchmark circuits. Over
a wide range of input signal statistics, we show that
this model gives very good accuracy, with an RMS
error of under about 6%.

I. INTRODUCTION

With the advent of portable and high-density micro-
electronic devices, the power dissipation of very large scale
integrated (VLSI) circuits is becoming a critical concern.
Modern microprocessors are hot, and their power consump-
tion can exceed 30 or 50 Watts. This fact is evident from
the recent introduction of a 50 W 300 MHz implementa-
tion of the DEC Alpha architecture [1]. Due to limited bat-
tery life, reliability issues, and packaging/cooling costs, the
power consumption can be a more critical design concern
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than speed and area in some applications. Hence, to avoid
problems associated with excessive power consumption,
there is a need for CAD tools to help in estimating the
power consumption of VLSI designs.

A number of CAD techniques have been proposed for
gate-level power estimation (see [2] for a survey). How-
ever, by the time the design has been specified down to
the gate level, it may be too late or too expensive to go
back and fix high power problems. Hence in order to avoid
costly redesign steps, power estimation tools are required
that can estimate the power consumption at a high level
of abstraction, such as when the circuit is represented only
by Boolean equations. This would provide the designer
with more flexibility to explore design trade-offs early in
the design process, reducing the design cost and time.

In response to this need, a number of high-level power
estimation techniques have been recently proposed (see [3]
for a survey). Two styles of techniques have been proposed,
which we refer to as top-down and bottom-up. In the top-
down techniques [4, 5], a combinational circuit is specified
only as a Boolean function, with no information on the cir-
cuit structure, number of gates/nodes, etc. These methods
are still in their infancy, and they currently provide esti-
mates only of the switching activity, and not of the total
power. Top-down methods would be useful when one is
designing a logic block that was not previously designed,
so that its internal details are unknown.

In contrast, bottom-up methods [6, 7, 10, 11] are use-
ful when one is reusing a previously-designed logic block,
so that all the internal structural details of the circuit are
known. In this case, one develops a power macromodel for
this block which can be used during high-level power esti-
mation (of the overall system in which this block is used),
in order to estimate the power dissipation of this block
without performing a more expensive gate-level power es-
timation on it.

The method in [6] uses the power factor approxima-
tion technique, which treats all the circuit input bits as
digital “white noise” and due to this assumption can give
errors of up to 80% in comparison to gate-level tools. Al-
though [7] gives more accurate result, its main disadvan-
tage is that it treats different modules differently, requiring
specialized analytical expressions for the power to be pro-
vided by the user. Thus, depending upon the functionality
of the module, a different type of macromodel (analytical
equation) may have to be used.

The method in [10] characterizes the power dissipation
of circuits based on input transitions rather than input



statistics. Since the number of possible input transitions
for an n-input combinational circuit is 22n, they present
a clustering algorithm to compress the input transitions
into clusters of input transitions that have the same power
values (approximately). They use heuristics to implement
the clustering algorithm, but it is not clear how efficient
the method would be on large circuits.

In [11], the authors present a technique to estimate
switching activity and power consumption at the RTL for
data path and control circuits, in the presence of glitch-
ing activity. To construct a power macromodel, they use
both analytical equations and look-up tables. The method
is quite good and uses 9 or more variables in the power
macromodel. Our independent work has shown that it is
possible to construct a look-up table power macromodel
with much fewer variables (only 3 can be enough).

In this paper, we propose a power macromodeling ap-
proach that (1) takes into account the effect of the cir-
cuit input switching activity and does not treat the cir-
cuit inputs as white noise, and (2) is based on a single
fixed macromodel template which does not depend on the
type of model being analyzed. Our model is table-based.
Specifically, we construct a three dimensional look-up table
whose axes are the average input signal probability (Pin),
average input transition density (Din) and average output
zero delay transition density (Dout). For a logic node, the
transition density is defined as the average number of logic
transitions per unit time [8]. The zero delay transition den-
sity refers to the case when the circuit gates are considered
to have zero delay, so that only truly required logic tran-
sitions (and no hazards or glitches) are observed. From a
high-level view, it is reasonable to assume that fast func-
tional simulation will be applied to measure signal switch-
ing statistics, so that only the zero delay output density
(and not the general delay output density) will be com-
puted. The main advantage of our approach is that all
types of circuits are treated in the same way, i.e., we do
not use different model equation types for different mod-
ules. As a result, the method is very easy to use, and
requires no user intervention. Indeed, we will present an
automatic characterization procedure by which the macro-
model can be built for a given circuit.

The paper is organized as follows. In section II we
will discuss the macromodeling problem in more detail. In
section III we will describe the characterization procedure
for the models. In section IV we will evaluate the accuracy
of the macromodels and in section V we will give some
conclusions.

II. POWER MACROMODELING

What should a power macromodel look like? Which
features are desirable and which are too expensive and in-
feasible? To begin with, it is clear that a macromodel
should be simple to evaluate, otherwise there would be
no advantage in using it and one might as well perform
the analysis at the gate level. Furthermore, it must ap-
ply over the whole range of possible input signal statistics.
Finally, it should consist of a fixed template, in which cer-
tain parameter values can determined by a well-defined and

automatic process of characterization, without user inter-
vention. We present a macromodel that has all these prop-
erties.

Since the power depends on the circuit input switching
activity, it is clear that a power macromodel should take
the input activity into account. The question is, exactly
what information about the inputs should be taken into
account and included in the macromodel. When the circuit
being modeled is small (one or a few gates), then a simple
modeling strategy is to create a table that gives the power
for every possible input vector pair. In this case, there is no
loss of accuracy. However, this strategy cannot be applied
to large circuits. A circuit with 32 inputs will have 264

possible input vector pairs, which would be prohibitively
expensive to store in a table.

This leads to a trade-off between the amount of de-
tail that one includes about the inputs and the accuracy
resulting from the model. One possibility is to consider the
signal probability P (xi) and transition density D(xi) at ev-
ery input node xi, and to build a model that depends only
on these two variables. Notice that any information about
correlations between the input nodes is lost when this is
done. Thus, for instance, one could consider building a
table which gives the power for every given assignment of
input P (xi) and D(xi) values. Even in this case, however,
such a table-based model would be too expensive, because
a circuit with 32 inputs would require a 64-dimensional
table.

Given the above observations, we have considered
what aggregate compact descriptions of the P (xi) and
D(xi) values would be sufficient to model the circuit power.
For instance, one could consider building a two-dimensional
table whose axes would be the average input P (xi), which
we will denote by Pin, and the average input D(xi), to be
denoted Din. In this case, two different input assignments
of P (xi) and D(xi) values, which may lead to different
power values, may have the same Pin and Din averages,
and the table would predict the same power for both as-
signments, obviously with some error.

Table I.
DETAILS FOR A NUMBER OF ISCAS85 CIRCUITS.

Circuit Function #inputs #outputs #gates
c432 Interrupt control 36 7 160
c880 ALU 60 26 383
c1908 Error correction 33 25 880
c2670 ALU and control 233 140 1193
c3540 ALU 50 22 1669
c5315 ALU 178 123 2307
c6288 Multiplication 32 32 2406
c7552 ALU 207 108 3512

We have studied how big this error can be, as follows.
Given a gate-level circuit and for a certain fixed Pin and
Din, we generate a large number (80 or more) of P and
D assignments at the circuit inputs that each have aver-
ages equal to the specified Pin and Din. We then perform
an accurate power estimation for each assignment using a
Monte Carlo gate-level (with a general delay model) sim-
ulation technique [9]. The average of the resulting power
values is a good candidate value to store in the table. For



each of the estimated power values, any deviation from this
average value is considered to be an “error” relative to this
table. The root-mean-square (RMS) and maximum errors
for ISCAS85 circuits (see Table I for details of these cir-
cuits) are reported in Table II, for Pin = 0.4 and Din = 0.4.
A density of 0.4 means that the node makes an average of
4 transitions in 10 consecutive clock cycles. The largest
RMS error is about 17% and the largest maximum error is
-40%.

Table II.
RMS AND MAXIMUM ERROR IN THE 2-DIMENSIONAL

TABLE APPROACH, WHEN TOTAL POWER IS ESTIMATED.

Circuit Pin Din RMS.Error Max.Error
c432 0.4 0.4 1.61% 34.88%
c880 0.4 0.4 1.77% 40.46%
c1908 0.4 0.4 1.74% 16.80%
c2670 0.4 0.4 2.43% -31.61%
c3540 0.4 0.4 2.96% 35.77%
c5315 0.4 0.4 1.76% 20.94%
c6288 0.4 0.4 16.6% -40.04%
c7552 0.4 0.4 3.37% 19.02%

The power estimator (simulator) used to generate this
table uses a scalable-delay timing model that depends on
fanout and gate output capacitance. Thus, it captures the
glitching power accurately (multiple transitions per cycle
due to unequal delay from the inputs to an internal node).
The glitching power is hard to account for in a high-level
model. This is why such a high RMS error is seen for c6288,
in which some internal nodes make up to 20 transitions
per cycle. The errors improve considerably if the power
estimates are based on a zero-delay timing model, in which
the glitches are excluded, as shown in Table III. The largest
RMS error is now 1% and the largest maximum error is
27%.

In any case, with such a high RMS error, the total
power estimation using Table II is too inaccurate. The sim-
ple 2-dimensional table approach is too simplistic. Another
parameter is needed by which we can accurately model the
variation of the power due to various input P and D as-
signments. We have found that if one more dimension is
added to the table, reasonably good accuracy can be ob-
tained. The third axis is the average output transition
density over all the circuit output nodes, measured from a
zero-delay (functional) simulation of the circuit, and which
we will denote by Dout. The stipulation that Dout corre-
sponds to zero-delay is not optional, but rather required
for the following reason. We envision that during high-
level, say RTL, power estimation, one would perform an
initial step of estimating the signal statistics at the visible
RTL nodes from a high-level functional simulation. These
(zero-delay) statistics would then be applied to the power
macromodel in order to estimate the power. Thus, the
power model will be given by:

Pz = f(Pin, Din, Dout) (1)

In order to study the accuracy in this 3-d approach,
and to perform a direct comparison with Tables II and III,
we will show the errors in the estimation for the same Pin =
0.4 and Din = 0.4 specifications as before. The value of
Dout will naturally be different in different runs. For each

circuit, we selected the largest subset of cases that has the
same value (approximately) and examined the errors based
on the results in that subset. It is clear from Table IV that
the errors are much less now, and the RMS error in c6288
is now reduced to an acceptable 6%. The largest error
of -33% is somewhat undesirable, but we will see later on
that the spread of the error values over a wide range of
input/output statistics is quite acceptable. For comparison
with Table III, the errors in the zero-delay power are given
in Table V. The RMS error is now below 0.77% and the
maximum error is under about 12%.

Table III.
RMS AND MAXIMUM ERROR IN THE 2-DIMENSIONAL

TABLE APPROACH, WHEN ZERO-DELAY POWER IS ESTIMATED.

Circuit Pin Din RMS.Error Max.Error
c432 0.4 0.4 0.59% 16.02%
c880 0.4 0.4 0.85% 27.5%
c1908 0.4 0.4 0.46% -7.28%
c2670 0.4 0.4 0.92% -18.82%
c3540 0.4 0.4 0.83% -19.07%
c5315 0.4 0.4 0.47% 10.88%
c6288 0.4 0.4 0.72% -16.82%
c7552 0.4 0.4 1.01% -15.54%

Based on the above and other data, we conclude that
the 3-dimensional table approach is superior, without re-
quiring much more computational or memory cost. When
the macromodel is used, i.e., during high level power es-
timation, we assume that a functional RTL simulation is
performed in order to measure the switching activity and
signal probability at every visible RTL node. These are
then averaged to get Pin, Din, and Dout, which are used
to look up the power value in the table for each combina-
tional circuit block. In the next section, we will describe
an automatic procedure by which a full 3-d look-up table-
based macromodel can be built.

III. CHARACTERIZATION

We assume that the combinational circuit is embed-
ded in a larger sequential circuit, so that its input nodes
are the outputs of latches or flip-flops and that they make
at most one transition per clock cycle. We assume that
the sequential design is a single clock system and ig-
nore clock skew, so that the combinational circuit inputs
x1, x2, . . . , xn switch simultaneously.

At this point it is helpful to give some definitions. The
signal probability P (xi) at an input node xi is defined as
the average fraction of clock cycles in which the final value
of xi is a logic high. The transition density D(xi) at an
input node xi is defined as the average fraction of cycles in
which the node makes a logic transition (its final value is
different from its initial value). For brevity, in this section
we will write Pi and Di to represent P (xi) and D(xi). Both
Pi and Di are real numbers between 0 and 1.

Since the input signals xi make at most a single transi-
tion per cycle, there is a special relationship between prob-
ability and density, given by:

Di

2
≤ Pi ≤ 1 − Di

2
(2)

The derivation of this property is rather simple, but
it depends on a number of other definitions and facts that



are not relevant to this paper, so it will not be included.
Equation (2) can be rewritten as:

Di ≤ 1 − 2 |Pi − 0.5| (3)

so that for a given P (x), D(x) is restricted to the shaded
region shown in Fig. 1.

Table IV.
RMS AND MAXIMUM ERROR IN THE 3-DIMENSIONAL

TABLE APPROACH, WHEN TOTAL POWER IS ESTIMATED.

Circuit Pin Din Dout RMS.Error Max.Error
c432 0.4 0.4 0.44 0.97% 16.48%
c880 0.4 0.4 0.32 1.58% 27.87%
c1908 0.4 0.4 0.44 1.18% 12.71%
c2670 0.4 0.4 0.37 1.78% -18.82%
c3540 0.4 0.4 0.44 1.94% -20.33%
c5315 0.4 0.4 0.42 1.76% 17.16%
c6288 0.4 0.4 0.44 6.05% -33.54%
c7552 0.4 0.4 0.42 2.97% -15.67%

Table V.
RMS AND MAXIMUM ERROR IN THE 3-DIMENSIONAL

TABLE APPROACH, WHEN ZERO-DELAY POWER IS ESTIMATED.

Circuit Pin Din Dout RMS.Error Max.Error
c432 0.4 0.4 0.44 0.33% 4.90%
c880 0.4 0.4 0.32 0.55% 9.87%
c1908 0.4 0.4 0.44 0.19% -3.23%
c2670 0.4 0.4 0.37 0.65% -9.70%
c3540 0.4 0.4 0.44 0.47% -12.37%
c5315 0.4 0.4 0.42 0.45% 6.32%
c6288 0.4 0.4 0.44 0.45% -10.18%
c7552 0.4 0.4 0.42 0.77% -8.82%

0 10.5
0
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Figure 1. Relationship between density and
probability for discrete-time signals.

We also recall the definitions of the average input
probability, denoted Pin, and average input density, de-
noted Din, as follows:

Pin =
1

n

n∑
i=1

Pi and Din =
1

n

n∑
i=1

Di (4)

where n is the number of input nodes. It is clear from (2)
that similar bounds hold for Pin and Din:

Din

2
≤ Pin ≤ 1− Din

2
(5)

from which we also have:

Din ≤ 1 − 2 |Pin − 0.5| (6)

Thus, the 3 dimensional table with axes Pin, Din, and
Dout will not be completely full, and the choices of Pin and
Din during characterization will have to satisfy the above
constraints (5). We subdivide the probability and density
axes between 0 and 1 into intervals of size 0.1, so that we
form a 10 × 10 grid in the (Pin, Din) plane. This choice is

rather an arbitrary one, which we have found works well.
Only about half of these points are valid, namely those
that fall inside the shaded triangle in Fig. 1. Each valid
grid point will correspond to a column of cells in the table
along the Dout axis, as shown in Fig. 2.

Pin

Dout

Din0 1

1

1

Figure 2. Three dimensional power macromodel.

For each valid grid point in the (Pin, Din) plane, we
randomly generate a large number of P and D assignments
at the circuit inputs, all of which have average P and D
values equal to the specific Pin and Din at this grid point,
and all of which satisfy the constraint (2). We will refer
to such assignments to the circuit inputs as the “P vec-
tor” and the “D vector”. For a given pair of P and D
vectors, the circuit power is computed using Monte Carlo
power estimation [9], and the value of Dout is computed
as the average of the individual (zero-delay) density values
at the circuit outputs, also found during the Monte Carlo
analysis. The value of Dout is rounded to the nearest grid
point on the Dout axis, and the power value obtained is
associated with the resulting cell location (Pin, Din, Dout)
in the table. Eventually, a number of power values may
be associated with a single cell in the table. At the end
of the characterization, every cell is filled with the aver-
age of the power values associated with it. Some cells may
have no power values associated with them, in which case
their contents are left at zero. When it comes time to use
the table, interpolation and extrapolation can be used to
find the power for a (Pin, Din, Dout) combination which
does not exist in the table. In the next section, we will
show a number of results that demonstrate the accuracy
of this approach over a wide range of input statistics, in
which interpolation and extrapolation were used whenever
required.

The above characterization process is straightforward,
except for the generation of the P and D vectors for a given
Pin and Din, which is explained below.

First, we randomly generate an input D vector such
that the average of its components is equal to Din, as fol-
lows. Based on a uniform distribution between 0 and 1, we
use a random number generator to make an initial guess
D0

i for i = 1, . . . , n. The average of these D0
i values will

probably be different from Din, so we will scale them in a
special way to make their average equal to Din while keep-
ing each of them between 0 and 1. To see how this works,



define the following sum:

SD =

n∑
i=1

D0
i (7)

and notice that both SD and nDin are bounded by 0 and
n. If SD > nDin, then we can find a value 0 < λ < 1 such
that:

λSD = nDin (8)
and the desired Di values can be easily obtained as:

Di = λD0
i (9)

so that they remain between 0 and 1, and their average
is equal to Din. If SD < nDin, then we can find a value
0 < λ < 1 such that:

λn + (1 − λ)SD = nDin (10)
and the desired Di values can be easily obtained as:

Di = λ + (1− λ)D0
i (11)

so that their average is clearly equal to Din. To see that
the Di values remain between 0 and 1, the above can be
written as Di = D0

i + λ(1 − D0
i ), which is clearly between

0 and 1.
Given the D vector, we then generate the P vector so

that its components have the specified average value Pin,
and so that (2) is satisfied. The process is similar, but
slightly more involved, than the generation of the D vector
given above. Based on a uniform distribution between 0
and 1, we use a random number generator to make an
initial guess P 0

i for i = 1, . . . , n. The average of these P 0
i

values will probably be different from Pin, so we will scale
them in a special way to make their average equal to Pin

and so they satisfy (2). To do this, we start by randomly
choosing the values of n parameters, β1, . . . , βn, such that:

Di

2
≤ βiP

0
i ≤ 1 − Di

2
(12)

The choice of each βi is done using a random number
generator based on a uniform distribution between the two
bounds Di/2P 0

i and (1−Di/2)/P 0
i . We then compute the

sum:

SP =

n∑
i=1

βiP
0
i (13)

Notice that both SP and nPin are bounded between
nDin/2 and n−nDin/2, due to (12) and (5). If SP > nPin,
then we can find a value 0 < λ < 1 such that:

λ
nDin

2
+ (1 − λ)SP = nPin (14)

and if we set:

Pi = λ
Di

2
+ (1 − λ)βiP

0
i (15)

then it is clear that (2) is satisfied (since βiP
0
i < 1− Di/2

and because 0 < λ < 1 ) and that the average of the Pi

values is equal to Pin, due to (14).
Similarly, if SP < nPin, then we can find a value

0 < λ < 1 such that:

λ
(

n − nDin

2

)
+ (1 − λ)SP = nPin (16)

and we can set:

Pi = λ
(
1 − Di

2

)
+ (1− λ)βiP

0
i (17)

IV. MODEL ACCURACY EVALUATION

We have implemented this approach and built the
power macromodels (3-dimensional look-up tables) for a

number of combinational circuits. In order to study the ac-
curacy over a wide range of signal statistics, we randomly
generated P and D vectors at the circuit inputs without
specifying Pin and Din up-front. Since equation (5) must
be enforced, any case that violated this constraint was re-
jected. Approximately 200 valid P and D vector assign-
ments were generated this way, for which the power was es-
timated from gate-level Monte Carlo simulation. For each
vector pair, the averages Pin and Din were computed; the
Monte Carlo simulation also provides accurate estimation
of Dout. The power values predicted by the look-up table
were compared to those from simulation, and the RMS and
maximum errors were computed.

The results are summarized in Table VI. Since Pin

and Din were not specified up-front, one should not make
a direct comparison between this and Tables II–V. Over a
wide range of statistics, it is seen that the RMS error is
very good, under about 6%. The largest maximum error is
at 33% for c6288, but it can be seen from the scatter plot in
Fig. 3 that this and the second largest maximum error value
of 31% occur only in two (of about 1,600) cases, while all
other cases have much better accuracy. An enlarged view
of the lower section of that plot is given in Fig. 4. Both
these plots report the normalized power values, so that the
results for all the circuits can be examined on the same
plot. For completeness, the accuracy of the macromodels
when zero-delay power is estimated is shown in Table VII
and in the scatter plot in Fig. 5. Over a wide range of signal
statistics, the RMS error is below 0.83% and the maximum
error is under 13%. The scatter plot also shows excellent
agreement.

Finally, we should comment on the time required to
do the characterization. Since the characterization needs to
be performed only once, one can afford to spend some time
on it. Nevertheless, at the time of this writing, the total
time required to build the macromodel is not as small as
one would like - it can take a few hours (SUN Sparc ELC)
to build the macromodel for a circuit with a hundred or
more input nodes. We are currently addressing this issue.

V. CONCLUSION

Since gate-level power estimation can be time con-
suming and because power estimation from a high level of
abstraction is desirable so as to reduce design time and
cost, we have proposed a power macromodeling approach.
Our macromodel consists of a 3-dimensional look-up ta-
ble with axes for average input signal probability, average
input transition density, and average output (zero-delay)
transition density. A novel and significant aspect of this
approach is that we use the same model template for all
types of combinational circuits, and no specialized analyti-
cal expressions are required. Another important fact is that
this model works for all possible signal switching statistics.

We have shown why it is advantageous to use a 3-d
rather than 2-d table, and described an automatic proce-
dure for building the 3-d macromodel, without the need
for user intervention. Once the model for a combinational



block has been built, it can be used to estimate power dur-
ing high-level power estimation, based on signal statistics
that are computed from a high-level functional simulation.
Over a wide range of input/output signal statistics, we have
shown that this model gives very good accuracy, with an
RMS error of under about 6%. Except for two out of about
1,600 cases, the largest error observed was under 20%. If
one ignores the glitching activity, then the RMS error be-
comes under 1% and the largest maximum error (in all
cases) under 13%.

Table VI.
ACCURACY OF THE 3-D LOOK-UP TABLES,

WHEN TOTAL POWER IS ESTIMATED.

Circuit RMS.Error Max.Error
c432 1.31% -16.46%
c880 1.65% 31.4%
c1908 0.64% -10.4%
c2670 1.825% -17.03%
c3540 0.85% 19.21%
c5315 1.84% -18.36%
c6288 6.06% 33.54%
c7552 2.60% 17.69%
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Figure 3. Agreement between the 3d table and accurate
power estimation, when total power is estimated.
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Figure 4. Agreement between the 3d table and accurate
power estimation, when total power is estimated.

Table VII.
ACCURACY OF THE 3-D L00K-UP TABLES,

WHEN ZERO-DELAY POWER IS ESTIMATED.

Circuit RMS.Error Max.Error
c432 0.33% -7.16%
c880 0.73% 12.54%
c1908 0.24% 4.14%
c2670 0.52% -10.13%
c3540 0.36% -11.54%
c5315 0.55% 8.33%
c6288 0.25% 12.6%
c7552 0.83% 10.23%
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Figure 5. Agreement between the 3d table and accurate
power estimation, when zero-delay power is estimated.


