
Technology-dependent Transformations For Low-power Synthesis

Rajendran Panda, Advanced Design Technologies, Motorola, Inc., Austin, TX
Farid N. Najm, Coordinated Science Lab., University of Illinois at Urbana-Champaign, Urbana, IL

Abstract

We propose a methodology for applying gate-level logic
transformations to optimize power in digital circuits. Sta-
tistically simulated[14] switching information, gate delays,
signal arrival patterns, and signal probabilities are consid-
ered in reducing the switching activity-capacitance products.
Power reduction up to 45.4% (average 12.4%) is achieved,
with considerable improvements in area and delay, in pre-
optimized benchmarks. Also the effect of transformations
on the random pattern testability of the circuits is studied.

1. Introduction

Power reduction has become an important objective at
every level of digital circuit design. The problem of power
optimization has been considered at the system[12] and ar-
chitecture[2] levels. In this paper, we address the problem
at the logic synthesis level. Like the classical area and delay
optimization approaches, power optimization also has been
attempted through technology-dependent and technology-
independent methods. The technology-independent meth-
ods have targeted algebraic node simplification[4, 11] and
node optimization[5]. These methods use a ‘power cost’ of
Boolean expression associated with a node, based on the
fanout and input/output switching activities of the node.

The difficulty in optimizing power in a technology-
independent manner is that :

(1) accurate delays, necessary for accurate power estima-
tion, are unavailable until the network is mapped to a
technology.

(2) the coarse granularity of network representation (fewer
nodes, with large fan-in/fan-out) limits the accuracy
and effectiveness of the cost function. Besides, subse-
quent restructuring could drastically affect earlier opti-
mization efforts unpredictably.

In view of this, we propose our power optimization
transformations on technology-mapped networks. Earlier
proposed technology-dependent methods ([10] and [13]) ig-
nored the effect of delays on power. In contrast, we give a
detailed consideration of delay effects to effectively control
glitch power, an elusive component of total power that has
been neglected hitherto.

Permission to make digital/hard copy of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage, the copyright notice, the title of
the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50

The paper is organized as follows. Section 2 discusses
the power and timing models used in our work. The pro-
posed transformations are presented in section 3. In sec-
tion 4, experimental results are presented and a summary
conclusion is given.

2. Power and Delay Models

The methodology described here targets static CMOS
technology, and optimizes the average power dissipation re-
sulting from the dynamic (switching) component, which is
the dominant component. Thus, we attempt to minimize
the expression :

Pavg =
1

2
V 2

dd

∑
gatei

C(xi)D(xi) (1)

where xi refers to a node. C(xi) is the total capacitance at
xi, and D(xi) is the average switching activity of xi.

As we should be able to consider the delay effects on
switching, and hence on power, it is imperative that the
switching measure is based on a general delay model. Unfor-
tunately, much of the proposed power optimization methods
have chosen to use a zero-delay activity measure, based on
static probabilities.

Zero-delay activity of a gate refers to the transitions
at its output in a hypothetical situation when the gate has
no delays, and when all the inputs to the gate arrive si-
multaneously. It, thus, only provides a lower bound on the
activity. The total activity, however, includes glitching tran-
sitions that occur due to the gate inputs arriving at different
time instances within a clock period, and due to multiple
input transitions. These are further modified by the propa-
gation and inertial delays of the gates.

Our delay model makes use of user-specified values of
propagation delays (tpdlh and tpdhl) for the gate modules,
and rise and fall transition times (tr and tf) for their output
nodes, all of which are assumed to refer to unloaded modules,
with instantaneous (zero rise/fall times) transitions at the
inputs. These values are then scaled to take into account
the loading at the output, and the non-zero rise/fall times
at the inputs, as described in [8].

We use transition density, proposed in [7], as the gen-
eral switching measure. Through the statistical simulation-
based estimation procedure, described in [14], we obtain
accurately the zero-delay and glitching components of the
switching, using the general (scalable) delay model described
above.

While calculating the delays, using the above delay
model, and the power, using eq. (1), a suitable estimate
of the capacitances due to interconnects, Cwire , needs to be
used. The example results presented here do not include
this, though estimates based on suitable wire-load models of
a technology can be used, and these values refined through
an iterative process of synthesis and extraction.

3. Technology-dependent Transformations

3.1. Transformations

A circuit synthesized for optimal area and/or delay, without
regard to power, is likely to have sub-structures that are
highly power-dissipative, resulting from situations such as :

[1] The Boolean function at the node causing excessive
switching. The relation between (delay-decoupled)
transition density at a node, y, and the Boolean func-
tionality, y = f(x1, x2, ..., xn), is as given by the
relation[7] :

D(y) =

n∑
i=1

P
(

∂y

∂xi

)
D(xi) (2)

In the above, P
(

∂y
∂xi

)
is the probability of the Boolean

difference of y with respect to xi. Further,

∂y

∂x

4
= y|x=1 ⊕ y|x=0 (3)

where ⊕ denotes the exclusive-or operation.

[2] Highly active nodes driving large fan-outs.

[3] The arrival patterns and probabilities of the inputs to
gates are such as to cause excessive glitches at the out-
put.

The freedom available in the selection of Boolean func-
tions at the nodes, and hence the signals to drive the gates,
presents opportunities to transform these highly power-
dissipative sub-structures into normal ones. We deploy this
freedom in restructuring, using permissible function sets[6]
at the nodes, which correspond to the extent of Boolean don’t
cares available at a node. The full (external and implicit)
set of don’t cares at a node ui is given as :

DC(ui) =
∧

uj ∈ IS(ui)

(
∂uj

∂ui
+ DC(uj)

)
(4)

where IS(ui) refers to the set of immediate successors of ui,
i.e. the outputs of gates driven by ui.

Muroga, et. al,[6] proposed a transduction procedure,
wherein several gate-level transformations are iteratively ap-
plied to improve the traditional objectives of area and delay
of a network. We apply systematically a subset of these
transformations, viz. gate substitution, gate elimination, re-
wiring and inverter addition, so that the overall activity-
capacitance products at the nodes are reduced.

Figure 1 illustrates re-wiring of inputs to gates driven
by a gate (ui). Supposing ui is highly power dissipative,
the re-wiring eases off some or all of the fan-out from ui,
and moves them to other nodes of less activity. Often, gate
ui can be rendered redundant by a sequence of re-wiring,
as in Figure 1(a), resulting in larger power reduction. The
possible elimination of several other gates in the fan-in cone
of ui makes such gate elimination attractive even when the
switching rate of ui is low. Gate substitution is a special
case of gate elimination, where every fan-out of a node (ui)
is transferred to another node (uj).

ui ui

ui ui

(b) Rewiring without Area Reduction

(a) Rewiring with Area Reduction

Figure 1. Example of Re-wiring.

The quality of optimization through wire/gate substi-
tutions can be improved significantly by generating more
choices for substitution. This is achieved by adding to the
network nodes with new Boolean functions. By adding in-
verters to existing nodes, we create new functions for use in
the transformation. In this case, the resulting power reduc-
tion is required to pay for the cost of the inverter also.

3.2. Cost Function

The global effects of a local transformation, such as re-
wiring, on area or delay of a circuit can be easily evaluated.
However, this is not the case with power. We illustrate this
with the help of Figure 2. Suppose ui is a candidate in-
put to uj . As a result of a change at the input of uj , the
Boolean functions of uj and of other gates (uk) in its fan-
out cone, may change. Based on eq.(2), and the modified
signal behavior at uj , the activity at every uk in the fan-out
region can change drastically, estimating which will require
re-simulating the fan-out cone of uj . This is computation-
ally prohibitive, especially when several candidates (ui) are
to be evaluated for each transformation.

x

x

x

y
y

y

u
u

u

1

2

l

k

1

2

m

i

j

Figure 2. Local change affecting power globally.

We overcome this difficulty by :
(i) imposing certain restrictions on the Boolean functions

that can be used for substitution, so that the change in
power in the fan-out cone can be safely neglected. This
aspect is dealt with in Section 3.4.

(ii) using an analytical expression as a cost function, taking
into account the density, probability, glitch and arrival
time information of the substitute, to evaluate (predict)
the effect of the transformation on the total power.
In what follows, we explain the cost function for gate

substitution, where gate ui is substituted by gate uj . The
cost functions for other transformations can be similarly de-
rived. We consider 4 components of the cost.
[i] Power change due to transfer of loads from ui to uj :

S1(ui, uj) = (D(ui) − D(uj))
∑

v ∈ FO(ui)

Cg(v) (5)

where FO(ui) are the gates in the fan-out of ui and
Cg(v) is the gate (input) capacitance of gate v.

[ii] Power reduction due to elimination of ui, and possibly
several other gates in its fan-in cone :

S2(ui,uj) = D(ui)Cd(ui) +
∑

v ∈ FI(ui)

D(v)Cg(ui)

+
∑

v ∈ R

(
D(v)Cd(v) +

∑
w ∈ FI(v)

D(w)Cg(v)
)

(6)
where R is the set of gates in the fan-in cone of ui that
are removable when ui is removed, and Cd(v) is the
drain capacitance of gate v.
While S1 and S2 are easy to evaluate, other compo-

nents, discussed below, pose difficulties.
[iii] The change in glitch power of fan-out gates of ui, due to

differences in the arrival times and signal probabilities
of ui and uj . This is very expensive to determine ex-
actly, as it would require simulation of the fan-out gates
of ui, for each candidate substitute uj . Instead, we use
a two-part heuristic measure, based on the arrival times
and probabilities of ui and uj . Thus,

S3(ui, uj) = S3,prob(ui, uj) + S3,arrival(ui, uj) (7)

S3,prob and S3,arrival are explained in Section 3.3. The
change in the arrival time of uj , due to the newly added
fan-out, is usually not drastic, and so its effect on the
glitches in the successors of uj can be ignored.

[iv] Power change at the transitive fan-out nodes of ui :

S4(ui, uj) =
∑

v ∈ TFO(ui)

Ctotal(v) ∆D(v) (8)

where Ctotal is the total capacitance and ∆D is the
change in the switching activity due to the transforma-
tion. Determination of S4 is prohibitively expensive as
said before. Assuming the changes in glitch power of
these nodes are negligible, S4 can be safely ignored if it
can be ensured that the zero-delay power at the transi-
tive fan-out nodes either remains the same or decreases
after the transformation. We, in fact, ensure this by
constraining the set of permissible functions that can be
used for the transformation. This is further explained
in Section 3.4.

3.3. Glitch Control

3.3.1. Effect of Probabilities

Figure 3 shows two implementations of a function, and
their input/output transitions. Implementation (b) gener-
ates excessive glitches as a result of the output NOR remain-
ing sensitive longer to the transitions in signal a. The lower
probability of signal a′b′ staying at logic ONE is undesirable
in this case. We, hence, use a notion of desired probability

of x w.r.t. u, denoted P̂ (x,u), which is the probability of x
that de-sensitizes a gate most to the transitions in u, given
the probabilities of other inputs. The probability cost of x
w.r.t. u is given as :

cprob(x,u) = Ctotal(u)×(∑
v∈inputs(u)

v 6=x

∣∣∣P (x) − P̂ (x, v)

∣∣∣ × [D(v) − D0(v)]
)

(9)

where D(v) − D0(v) is the amount of glitches at v. The
deviation in an input’s probability from its desired value
(weighted by input glitches and output load) is used to pe-
nalize unfavorable substitutions. In the above, we use signal
probabilities of the nodes, determined from the global func-
tions of the nodes. As we store the Boolean functions in
BDDs, the calculation of signal probabilities is easily done
through a scan operation on the BDD.

ua

b
b’

u
b

a

a

a’b’

a

b

a

u

b’

u

a’b’

b

Implementation (a) Implementation (b)

Figure 3. Effect of Probability on Glitching

The change in the glitches in the fan-out gates of ui

due to substitution by uj is then :

S3,prob(ui, uj) =
∑

u∈FO(ui)

(cprob(ui, u) − cprob(uj , u)) (10)

3.3.2. Effect of Arrival Times
A glitch can occur at the output of a gate if two inputs

transition non-simultaneously. To control glitches, we pe-
nalize substituting inputs with signals that switch outside
the switching windows of other inputs to the gate.

Definition. Activity window of a signal arriving at the
input of a gate is the time interval bounded by the minimum
and the maximum arrival times of the signal at the input of
that gate. It is the window within which all the transitions
of the signal at the input of that gate can occur.

x 1

x 2

x 2

total

a

b

c

t = 0 t = TCLK

b
a

c

x 1

C (u)
u

Figure 4. Considering Non-simultaneity
in Switching of Inputs

Definition. Critical windows of a signal, x, with respect
to a signal, y, are those segments of the activity window of
x that are not overlapping with the activity window of y.

Definition. Non-simultaneity factor of x w.r.t. y is the
ratio of the total width of the critical windows of x, w.r.t. y,
to the width of the activity window of x.

Given that x is an input to a gate u, the contribution
of x toward output glitches of u is taken as the amount of

glitches in x, weighted by the non-simultaneity factor of x
w.r.t. the other inputs of u. Thus, a cost measure based on
arrival times is heuristically taken as:

carrival(x, u) = α(x) [D(x) − D0(x)]Ctotal(u) (11)

where Ctotal(u) is the total capacitance at the output of u,
and D(x) and D0(x) are the total and zero-delay transition
densities of x. α is the average non-simultaneity factor of x
w.r.t. other inputs of u. Thus, S3,arrival(ui, uj) is given as :

S3,arrival(ui, uj) =
∑

u∈FO(ui)

(carrival(ui, u)− carrival(uj , u))

(12)
We illustrate the above approach through Fig. 4. Sup-

pose there are two possible inputs, x1 and x2, for a substi-
tution, and the activity windows of other inputs, a, b, and
c are as shown. It is seen that, though x2 has more glitches
than x1, it can be expected to cause less glitching at the out-
put as its activity window overlaps well with those of other
signals.

Note that, in the above, we are not considering the
fact that the gate may be de-sensitized to an input glitch.
Actually, this is accounted for in our consideration of the
probability effects, in Section 3.3.1.

In the above, the activity windows of signals are com-
puted from the statistical minimum and maximum arrival
times of signals, as recorded during the power estimation
simulation run. The statistical timing provides more realis-
tic activity windows than static-timed min. and max. ar-
rival times, as the false paths are eliminated, and moreover
the timing of most active paths that matter for power are
considered.

3.4. Permissible Functions For Power

The maximum set of permissible functions[6] provide the
most freedom in carrying out a logic transformation. How-
ever, this allows the Boolean functions of nodes in the trans-
formed network to change arbitrarily, making the S4 term
above very expensive to determine. We identify two subsets
of the maximum sets of permissible functions that eliminate
the need to compute S4.

3.4.1. Locally-derived Set of Permissible Functions
Consider a cascade of gates, shown in Figure 5(a). The

LSPF of the node ui is derived under the constraint that the
Boolean functions of its immediate successors (uj ’s) should
not change when the current function at ui is substituted
with a permissible function. This essentially amounts to not
considering the don’t cares of the immediate successors, and
so a smaller set of permissible functions is obtained. How-
ever, since Boolean functions of immediate successors, and
hence that of other successors do not change, the zero-delay
power in the fan-out cone of ui does not change when a
transformation is applied to ui using this set. As the change
in the glitch power at the successor nodes (but not imme-
diate successors) is negligible, the contribution of S4 can be
ignored altogether. The change in both the zero-delay and
glitch power of immediate successors are considered by cost
terms, S1 and S3.

3.4.2. Filtered Set of Permissible Functions
If the values of a signal in two consecutive clock cycles

are not correlated, then the transition probability (i.e. the
transition density minus glitches) of the signal can be given
by the relation :

D0 = 2p(1 − p) (13)

where p is the probability of the signal being HIGH. This
relation is shown graphically in Fig. 5(b). Note that the
switching activity is very high at probabilities close to 0.5,
with no significant variation in the range 0.4 – 0.6. When
considering the effect of a transformation on the transition
densities of successor nodes, but not immediate successors,
the change in glitches are negligible, as said before. Thus,
the transformations need be concerned primarily with the
zero-delay transitions of these nodes. As a result, we can use
the above probability-density relation to guide the transfor-
mations.

1.00.5
0.4 0.6

Unused DC

0.0

2p(1-p)

0.5
0.48

p

Current function

ijc

i

u
j

u

(i)

 p < 0.4

ON

DC
OFF

(ii)OFF OFF

DC

DC

0.4 < p < 0.6

p > 0.6

ON

ON

ON

OFF
(iii)

Appx. Max. DC

(a) A cascade of gates (b) Tr. Probability vs Signal Probability

(c) Filtering of don’t cares

Figure 5. Permissible Functions for Power

The idea is to let the Boolean functions of successors of
ui change such that their probabilities move further away
from 0.5, as a result of a transformation at ui. This is
achieved by trimming the don’t cares of the successors (uj)
as shown in Figure 5(c), before propagating them for the
calculation of the don’t cares of ui.

In Figure 5, a set of permissible functions is represented
as a unique partitioning of the Boolean space into three dis-
joint sets - ON, OFF and DC. The shaded set covering the
entire ON set and a part of the DC set represents the cur-
rent Boolean function. Suppose the signal probability of an
immediate successor (uj) is more than 0.6, then the current
function at uj is specified as the ON-set of uj , so that any
new function at uj , as a result of a transformation at ui, can
only have higher signal probability than the current func-
tion. In calculating the don’t care of ui, the don’t cares of
uj filtered in the above manner is used. Likewise, the OFF-
set is expanded in the case of probability being less than 0.4.
When the probability is in the range 0.4 - 0.6, no trimming
is done, so that larger don’t care sets are available. The bet-
ter optimality obtainable with larger don’t cares more than
outweigh the risk of slightly increasing the power at a node,
should its probability change from 0.4 to 0.5.

[5] originally proposed a similar procedure to filter the
don’t cares, but the procedure described above usually re-

TABLE 1. Performance Results of Proposed Optimization
Circuit Size Reference Glitch Pwr. Percentage Reduction in Run Time
Name #i #o #nodes Power (%Total) Power Delay Area ZDPwr. Glitch Pwr. cpu sec.

z4ml(A) 7 4 27 42.4 8.1 10.94 2.90 5.10 10.7 14.0 9.3
z4ml(D) 44 74.9 11.3 19.70 17.06 9.40 18.5 29.4 12.4

cm163(A) 16 5 33 68.4 18.2 3.44 18.99 3.45 1.9 10.3 7.9
cm163(D) 42 78.6 18.4 32.08 40.43 14.77 23.3 71.3 18.6

apex7(A) 49 37 133 227.5 8.3 1.23 -1.56 0.86 1.2 1.7 289.1
apex7(D) 184 335.8 8.2 0.59 0.00 -0.16 0.7 -0.2 297.4

ex2(A) 85 66 250 387.3 12.5 11.92 1.67 3.73 9.4 29.3 135.7
ex2(D) 250 387.3 12.5 11.92 1.67 3.73 9.4 29.3 169.5

x4(A) 94 71 225 314.7 12.7 1.99 0.00 0.40 1.4 6.0 213.6
x4(D) 261 408.1 11.8 0.86 8.08 -0.22 0.2 6.1 246.7

x1(A) 51 35 195 328.9 10.4 2.93 7.00 -0.29 3.1 1.1 566.3
x1(D) 270 552.2 8.9 2.18 0.00 1.51 2.0 4.1 614.6

i3(A) 132 6 160 636.1 5.7 30.66 0.00 28.57 28.7 63.4 52.1
i3(D) 312 915.1 8.7 45.44 0.00 32.14 42.1 80.6 68.5

alu2(A) 10 6 196 395.4 29.1 12.93 34.72 1.65 12.2 14.7 747.9
alu2(D) 278 506.0 25.3 15.73 31.71 7.91 14.7 18.9 870.7

C432(A) 36 7 142 78.6 29.2 11.70 20.28 5.44 6.1 25.2 918.8
C432(D) 187 92.6 20.9 25.89 25.36 20.97 19.8 49.0 913.2

vda(A) 17 39 376 568.1 29.6 0.48 -1.88 -0.16 1.8 -2.6 1631.6
vda(D) 469 596.3 20.1 4.97 3.13 1.28 4.1 8.5 1201.3

i9(A) 88 63 297 346.8 31.0 10.83 28.68 0.62 3.5 27.1 770.2
i9(D) 374 784.8 23.3 7.60 26.86 0.72 3.8 19.9 745.9

alu4(A) 14 8 372 746.3 32.0 5.44 12.84 1.08 5.3 5.8 4149.3
alu4(D) 511 941.5 31.5 11.14 19.41 1.43 6.4 21.4 5423.4

x3(A) 135 99 458 796.1 15.8 15.87 3.03 5.81 13.1 30.4 2019.8
x3(D) 657 1290.0 15.5 16.58 -0.82 7.03 14.1 30.1 3063.5

t481(A) 16 1 480 484.0 19.7 18.63 10.96 6.87 18.4 19.4 7431.4
t481(D) 611 582.2 17.4 21.75 19.39 9.92 19.9 30.4 2286.5

i8(A) 133 81 527 700.6 19.5 4.17 0.41 0.61 0.8 18.0 3395.5
i8(D) 740 1033.7 17.3 13.27 -0.26 4.82 14.5 7.7 4536.4

sults in larger don’t care sets. Moreover, since only a part
of the don’t cares of successors is rejected, the filtered max-
imum sets are considerably larger than the LSPF discussed
in the previous section when the number of fan-outs is small,
but only slightly larger when the fan-out is large.

3.5. Transformation Procedure

The transformations are attempted at every node in an it-
erative manner, starting from the primary outputs, and pro-
ceeding toward the primary inputs. A node is optimized only
after all its successors have been attempted, to minimize the
need to recalculate the don’t cares, which are otherwise ex-
pensive to do. This strategy, combined with the trimming of
the permissible functions as explained in Section 3.4, elim-
inates the need to re-simulate the circuit often for power
estimation.

Before each iteration, the capacitances, global Boolean
functions, signal arrival times and probabilities are calcu-
lated for all the nodes. The transition densities and glitches
at the nodes are estimated through statistical simulation[14],
and the statistical minimum and maximum arrival times are
stored.

As a gate is visited, the set of permissible functions of
the gate’s output, and also of its input connections are calcu-
lated, and candidate substitutes for them are then identified
from the nodes in the network. The candidate with the best
power cost is then used to substitute the gate or its input,
provided that no feed-back is formed and that the speed of
the circuit is not degraded. The latter condition is checked
using the static timing information calculated at the begin-
ning of the iteration.

The procedure is repeated until either no more useful

transformation is identified, or no more reduction in power
is achieved.

4. Results

Table 1 shows the performance of the proposed tech-
nique applied to a subset of pre-optimized MCNC bench-
marks. The pre-optimization consisted of an initial node
minimization using SIS[1], followed by a minimal-activity
decomposition described in [9], and later a mapping to a li-
brary(lib2.genlib). Except C432, all circuits were minimized
using full set of don’t cares. The mapping was done for both
minimal area and minimal delay, and thus two sets of refer-
ence circuits (marked (A) or (D) in column 1) were obtained.

The proposed optimization was then applied using fil-
tered set of permissible functions (section 3.4.2). The power
estimation was done with random input vectors having sig-
nal probability of 0.5, and 0.5 transitions per clock. Since the
transformations can shift loads from internal nodes to pri-
mary inputs, and vice-versa, for a fair comparison, the total
power values reported in the table include also the power
required to switch the primary inputs, although this power
will be dissipated outside the circuit being optimized.

An average power reduction of 15.3% (9.5%) in delay-
mapped (area-mapped) circuits, with significant improve-
ments in the case of decoder(C432), adder (z4ml) and
alu(alu2) circuits, was achievable. The area of the circuits
further decreased by 7.7% (4.3%) on average as a result of
eliminating gates, and the speed improved by 12.8% (9.2%).
This latter part was, in fact, achieved by respecting the delay
constraints during the transformations.

The high glitch contents (column 6) justify our detailed
treatment of glitches. The effectiveness of shifting of fan-
outs, elimination of gates, and glitch control, are brought
out in columns 9 – 11. A comparison of columns 11 and 9
shows the effectiveness of the glitching considerations (cost
term S3). In almost all examples, the reduction in glitches is
much higher than the reduction in area. For instance, exam-
ple2(D) recorded a 29.3% reduction in glitch power against
only 3.7% reduction in area, implying that the bulk of re-
duction in glitch power came from the reduction in glitching
activity, rather than reduction in capacitances (as indicated
by the reduction in area). In some circuits with very regular
structure (e.g. i3 and C432), very high reduction of glitches
was possible.

Similarly, the larger reduction in the zero-delay power
(column 10) in comparison to area reduction is attributed to
the shifting of fan-out loads from high-activity nodes to low-
activity nodes, and to the transformation of high-activity
Boolean functions into low-activity ones. In few examples
(e.g. apex7 and vda) the transformations had a slight nega-
tive effect on glitches, possibly due to the inexactness of our
heuristic measure for glitch control.

TABLE 2. Effect of Optimization on Testability
Before optimization After optimization

Circuit Total Redun. RT-covered Total Redun. RT-covered
Name Faults Faults Faults % Faults Faults Faults %

cm163(A) 190 4 172 92.47 186 5 169 93.37
cm163(D) 184 8 158 89.77 174 2 164 95.35

apex7(A) 724 1 699 96.68 725 1 698 96.41
apex7(D) 723 1 686 95.01 723 1 676 93.63

ex2(A) 956 0 912 95.40 940 6 886 94.86
ex2(D) 956 0 881 92.15 940 6 901 96.47

x4(A) 1121 0 1103 98.39 1112 0 1077 96.85
x4(D) 1235 0 1203 97.41 1234 0 1204 97.57

x1(A) 1025 0 861 84.00 1023 6 837 82.30
x1(D) 957 0 801 83.70 949 0 797 83.98

i3(A) 526 0 406 77.19 334 0 231 69.16
i3(D) 574 0 393 68.47 334 0 260 77.84

alu2(A) 1009 11 980 98.20 979 20 941 98.12
alu2(D) 1013 10 974 97.11 970 12 937 97.81

vda(A) 1205 0 1077 89.38 1205 2 1037 86.20
vda(D) 1214 0 1077 88.71 1212 2 1076 88.93

i9(A) 1823 0 1819 99.78 1815 3 1806 99.67
i9(D) 1724 0 1716 99.54 1716 0 1711 99.71

x3(A) 2622 52 2405 93.58 2506 17 2333 93.73
x3(D) 2670 35 2506 95.10 2506 13 2342 93.94

t481(A) 2061 209 1096 59.18 1934 168 1036 58.66
t481(D) 2080 203 1118 59.56 1934 147 1050 58.76

i8(A) 3409 21 3347 98.79 3378 21 3303 98.39
i8(D) 3390 19 3335 98.93 3262 20 3196 98.58

As the transformations alter the node probabilities,
which relate to the testability measures, viz. controllabil-
ity and observability[3], it is of interest to study the effect
of the transformations on the random pattern testability of
the circuit. A comparison of the number of total, and redun-
dant faults, and the random test coverage of testable faults
is given in Table 2.

We observed only very marginal decrease in the test
coverage in about 60% of the cases. But in many cases, (e.g.
i3(D), cm163a(D)), the coverage, in fact, improved appre-
ciably. The number of redundant faults also decreased in
most cases due to elimination of more redundancies. This

is highly noticeable in the case of t481. There are, however,
few cases where the optimization introduced new redundant
faults. This is due to the transformations rendering some
connections redundant, but which redundancies are not be-
ing subsequently exposed due to the use of subsets of the
maximum don’t cares for optimization.

In conclusion, the proposed method provides a solution
for power optimization, as an ’add-on’ to an existing de-
sign flow centered around traditional area/delay optimiza-
tion. Based on technology-dependent restructuring, it pro-
vides much accuracy, and better confidence level for the re-
sults achieved, which the designers very much desire.

REFERENCES

[1] Brayton, et. al. Multilevel logic synthesis. Proc. of the
IEEE, 1990.

[2] Chandrakasan, et. al. Optimizing power using transfor-
mations. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 1995.

[3] Goldstein. Controllability/observability analysis of dig-
ital circuits. IEEE Trans. on Circuits and Systems,
CAS-26(9):685–693, 1979.

[4] Iman, et. al. Logic extraction and factorization for low
power. DAC-95.

[5] Iman, et. al. Multi-level network optimization for low
power. ICCAD-94.

[6] Muroga, et. al. The transduction method – design of
logic networks based on permissible functions. IEEE
Trans. on Computers, 1989.

[7] Najm. Transition Density : A new measure of activ-
ity in digital circuits. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 1993.

[8] Panda. Synthesis Techniques for VLSI Low-Power Cir-
cuits. PhD thesis, University of Illinois at Urbana-
Champaign, 1996.

[9] Panda, et. al. Technology decomposition for low-power
synthesis. CICC, pages 627–630, 1995.

[10] Rohfleisch, et. al. Reducing power dissipation after tech-
nology mapping by structural transformations. DAC-
96.

[11] Roy, et. al. SYCLOP: Synthesis of CMOS logic for low-
power applications.

[12] Tiwari, et. al. Compilation techniques for low energy:
An overview. Symposium on Low Power Electronics.

[13] Ueda, et. al. Low power design and its testability. Proc.
Fourth Asian Test Symposium, India, 1995.

[14] Xakellis, et. al. Statistical estimation of the switching
activity in digital circuits. DAC, pages 728–733, 1994.

