
Delay Estimation of VLSI Circuits from a High-Level View†

Mahadevamurty Nemani and Farid N. Najm

ECE Dept. and Coordinated Science Lab.
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

Abstract
Estimation of the delay of a Boolean function from
its functional description is an important step towards
design exploration at the register transfer level (RTL).
This paper addresses the problem of estimating the
delay of certain optimal multi-level implementations
of combinational circuits, given only their functional
description. The proposed delay model uses a new
complexity measure called the delay measure to esti-
mate the delay. It has an advantage that it can be used
to predict both, the minimum delay (associated with
an optimum delay implementation) and the maximum
delay (associated with an optimum area implementa-
tion) of a Boolean function without actually resorting
to logic synthesis. The model is empirical and results
demonstrating its feasibility and utility are presented.

1. Introduction
Rapid increase in the design complexity and re-

duction in design time have resulted in a need for CAD
tools that can help make important design decisions
early in the design process. To do so, these tools must
operate with a design description at a high level of
abstraction. Performance being an important design
criterion, there is an increasing need for high-level de-
lay estimation.

In this paper we will focus on the estimation of
the delay associated with a circuit from its high-level
description, i.e., given only a functional view of the
circuit, such as when a circuit is described only with
Boolean equations. We will estimate the minimum,
maximum and other feasible delay points, from a high
level description of the circuit. The advantages of es-
timating the delay of a circuit from a high-level view
are in the areas of high-level power estimation [1], high-
level timing analysis and logic synthesis.

Our delay estimation technique is based on the
novel concept of delay measure of a Boolean function,
to be defined later in the paper. Based on this com-
plexity measure we will provide a delay model which
makes predictions of the minimum and maximum de-
lays attainable by a circuit with reasonable accuracy.

† This work was supported in part by Intel, by Rockwell,
and by the NSF under CAREER Award MIP-9623237.

This will be demonstrated with experimental results
on a large set of benchmarks. An overall high-level
delay estimation flow is given in Fig. 1. In our work,
the model characterization is done using SIS, which
uses a simple static timing analysis to estimate the de-
lay. This, however, is not a limitation of the proposed
model, which can be used in conjunction with more
accurate timing models.

Simulation Probability

Complexity Measure
 Evaluation

Complexity
 Value Evaluation

 Model Delay

CharacterizationModel

 library
Technology

Transformed
 Boolean
 function

Transformation

Boolean
function

Figure 1. High-level delay estimation flow.
The proposed delay model, however, is inherently

limited to circuits which do not include large exclusive-
or arrays. One way around the problem of exclusive-or
arrays is to require that the Boolean function specifi-
cation explicitly list exclusive-or gates. In that case,
these can be identified up-front and excluded from the
analysis, so that the proposed method is applied only
to the remaining circuitry. In any case, in this pa-
per we will not consider circuits composed of large
exclusive-or arrays.

Before leaving this section, we should mention
some previous work on high-level delay estimation.
In [2], a delay model is proposed for randomly gen-
erated Boolean functions (RGBF) (functions in which
each point in the Boolean space is placed in the on- or
off-set in a random fashion) based on empirical data
collected on these functions (n = 8, 9, 10. Here n
is the number of primary inputs). Their model re-
lates the delay of a RGBF function to its entropy and
primary-input count and exhibits an exponential in n
behavior, leading to unrealistically large predictions
in delay on realistic circuits. In [3], the authors pro-
pose a hierarchical timing estimation method. Their
method relies on the concept of conditional delay ma-
trix, which along with the delay information also con-
tains conditions under which the delay information is
true. However, in order to build a hierarchical model,
each module is assumed to be accurately characteriz-
able, which is unreasonable for random logic modules
at higher levels of abstractions (as they are specified
as Boolean equations). In [4], an approach for early
layout-driven delay prediction is proposed, which in-
cludes the effect of wiring on the delay of a design.
For an RT level design, this approach assumes that

the pin-to-pin delays of the black-box combinational
circuits are already known. In [5], the authors per-
form technology-independent synthesis operations on
the RTL design to map it to a technology-independent
library. Curve fitting techniques, using representa-
tive previous designs, are then used to relate the de-
lays and areas of the technology-independent generat-
ing functions, and hence the overall function, to that
of their actual implementations. Several technology-
independent optimization steps may have to be per-
formed to obtain the area-delay trade-off curve. Our
approach does not resort to any optimization and is a
one-shot scheme to predict the area-delay curve.

2. The Delay Complexity Measure
The problem of estimating the delay of a Boolean

function pertains to estimation of the delay associated
with the slowest path (D), also called the critical path,
in an implementation of the function, given only its
high level description (Boolean equations) and a target
technology library. It must be noted here that by “im-
plementation” we mean a multi-level implementation
of the Boolean function, optimal in a certain sense.

Let us, for now, assume that the function at hand
is a single-output function. Also, let us assume for now
that we are interested in predicting the minimum delay
associated with a Boolean function, given its high-level
description. In the results section (section 4), we will
show that the proposed complexity measure along with
the delay model (section 3) can be used to predict the
delay at any point on the area-delay trade-off curve.

We will define a delay measure of a Boolean func-
tion, in terms of delay complexity measures associ-
ated with the on and off-sets of the function. For a
single-output Boolean function f , let Con be a min-
imal cover [6] of the on-set of f . Also let ci ∈ Con

denote a cube of Con, i.e., a prime implicant, for
i = 1, 2, . . . , |Con|, where |Con| is the size of Con (num-
ber of cubes). Finally, let |ci| denote the size of cube ci,
defined as the number of literals in ci. With this, the
delay complexity measure of the on-set of f , denoted
M1(f), is defined as:

M1(f) = log2

(
max

ci∈Con
|ci|

)
+ log2 (|Con|) (1)

The intuitive reason for the above definition is the fol-
lowing. The size of a prime implicant of a function
directly influences the delay associated with the func-
tion, as the larger the number of literals in the impli-
cant, the longer the time it would take for a function
to be evaluated. Also, the number of prime impli-
cants that need to be evaluated influences the delay,
as the larger the number, the longer it would take to
combine the results of the individual prime implicants.
Likewise, we can define the delay complexity measure
of the off-set of f , denoted M0(f). Using the delay
complexity measures of the on and off-sets of f , we
define the delay measure of f as follows:

M(f) = min
{M1(f),M0(f)

}
(2)

This measure requires the computation of a minimal
cover of a (single output) Boolean function, which was
obtained using the heuristic minimizer ESPRESSO [6].

2.1. Extension to Multi-Output Functions
We now propose a method by which the above

delay complexity measure (defined for single-output
functions) can be extended to measure the delay of
multi-output functions. We transform an n-input, m-
output Boolean function, f , by the addition of an m to
1 multiplexor, into an equivalent (n + dlog2 me) input,
single-output function f̂ , where the dlog2(m)e inputs
correspond to the control inputs of the multiplexor re-
quired to control the m outputs of the Boolean func-
tion f .

Since f̂ is a single-output function, its delay com-
plexity measure can be computed. However, in order
to compute the delay of f from the predicted delay of
f̂ , we must be able to compute the influence of the
multiplexor on the delay of f̂ . This problem of recov-
ery of delay of f from that of f̂ will be discussed in
the next section.

3. The Delay Model
In this section we present the delay model to com-

pute the delay, D(f), of Boolean functions. The delay
model uses the delay measure of the Boolean function
along with its output entropy to estimate the delay
of the function at hand. We begin by presenting the
delay model corresponding to the prediction of delay
associated with the minimum delay implementation.

For a given n, consider the set of all Boolean
functions on n inputs and whose output entropy is
H(f) = 1, based on all inputs being independent and
with 0.5 probability. For a number of RGBFs from this
set, we computed their delay measure, M(f), using
our algorithm and obtained an estimate of the delay
D(f) from a minimum delay implementation of the
function using SIS. It was observed that the set of
RGBFs for each n is clustered around specific points.
Moreover, the variation of delay D(f) of a minimum
delay implementation with delay measure, M(f), was
linear. We have found that not only do RGBFs fall on
this linear curve, but also typical VLSI functions fall
on it or close to it, but spread all over the curve. Thus
these linear curves of D(f) (of minimum delay imple-
mentation) versus M(f) are very important and are
in fact the essence of our minimum delay prediction
model.

We generate a family of such curves capturing the
variation of D with M for various values of output en-
tropy. Hence given the output entropy of a Boolean
function and M(f), we use the curve corresponding
to that value of output entropy and predict D(f).
Note that these curves need to be generated only once,
which is an up-front once-only cost, and they can be
used to predict the minimum delay of various func-
tions. An important consideration is what the largest
n should be for which these curves need to be gen-
erated. Obviously, the curves are going to be more
difficult to generate for larger n because of the cost
of running synthesis to obtain the D(f) values. Luck-
ily, there are two reasons why this is not a problem
so that considering n ≤ 12 is sufficient. Firstly, we
have found that for typical VLSI functions, the value
of M(f) turns out to be much smaller than n in most

cases. Indeed, all the test cases that we will present
(for which n ranges from 4 to 70) had M(f) ≤ 13.
Secondly, the curves corresponding to minimum delay
seem to exhibit a linear variation of minimum delay
with delay measure and given by

D(f) = k1M(f) + k2 (3)
where k1 and k2 are the slope and intercept of the
minimum least squares fit.

So far, we have discussed the delay model for pre-
dicting the minimum delay. A similar reasoning can
be applied to derive the model for predicting the max-
imum delay or any other delay. For example, we found
that the maximum delay versus delay measure curves
exhibit a slightly nonlinear variation, for which the
best fit was an exponential:

D(f) = k1β
M(f) (4)

where k1 and β are constants (β ≈ 1.3), which can be
obtained by performing a least squares fit.

For a multi-output function, we apply the delay
model on f̂ . We recover the delay of f from that of f̂
by using the following empirical model:

D(f) = D(f̂) − αDmux (5)
where Dmux is the delay of an m to 1 multiplexor,
and 0 ≤ α ≤ 1 is a coefficient that represents the
contribution of the multiplexor to the delay of f̂ .

Let Ai denote the number of (multiplexor) control
inputs in the ith prime implicant, and define Aon to
be the average number of control inputs in a prime
implicant belonging to the on-set of f̂ , so that:

Aon =
∑Kon

i=1 Ai

Kon

where Kon is the number of prime implicants in the
on-set of f̂ . Similarly, one can define Aoff . It can be
shown [1] that the delay measure of an m to 1 multi-
plexor is given by:

Mmux = log2(dlog2 me + 1) + log2 m

and that the delay measure of a reduced multiplexor
(in an optimized version of f̂) is given by [1]:

Mred
mux = log2

{
min{Aon, Aoff}+1

}
+min{Aon, Aoff}

Then α, at the minimum-delay point, can be computed
as [1]:

α =
k1Mred

mux + k2

k1Mmux + k2
(6)

The same approach can be used to compute the delay
contribution of the reduced multiplexor at the maxi-
mum or any delay point.

4. Implementation and Results
Empirical results on delay estimation will be re-

ported for three delay points on the area-delay trade-
off curve, namely, the minimum, maximum and 50%-
delay (delay point midway between minimum and
maximum delays) points. The proposed delay mod-
els corresponding to these three points were tested on

31 ISCAS-89 [8] and MCNC [9] benchmark circuits,
which are listed in Table 1. For each circuit, the table
also includes the total execution time (in CPU sec-
onds) required to predict the delay for that circuit
using our approach, on a SUN Sparc-5 machine with
32MB RAM. Also, it includes the time taken by SIS to
synthesize the circuits at the minimum area and mini-
mum delay points. It must be noted that while a new
run of SIS is required to synthesize a circuit to a new
point on the area-delay curve, only one run of our tool
would suffice to make predictions regarding the delay
and area [1] at any point on the area-delay curve.

TABLE 1.
Benchmarks and run-times (sec).

Circuit Circuit #I #O CPU SIS time SIS time
Name Function time min-area min-delay

s298 Controller 17 20 4.4 18.1 44.9
s386 Controller 13 13 4.2 22.1 58.3
s400 Controller 24 27 8.5 20.7 59.3
s444 Controller 24 27 8.5 20.6 60.3
s510 Controller 25 13 6.9 37.1 118
s526 Controller 24 27 10.4 26.3 72.6
s526n Controller 24 27 10 26.0 71.3
s641 Controller 59 43 41.4 29.1 83.5
s713 Controller 58 42 42.3 29.1 88.4
s820 Controller 37 24 16.3 57.3 168.8
s832 Controller 37 24 16.5 57.3 160.4
s953 Controller 39 52 38.8 64.5 223.5
s1196 Logic 28 32 163 284 670.9
s1238 Logic 28 32 141 323 782.1
s1494 Controller 27 25 26.8 155.4 601.2
s1488 Controller 27 25 29.3 136.8 432.1

b9 Logic 41 21 5.7 10.6 29.8
c8 Logic 28 18 4.9 9.9 32.1

frg2 Logic 143 139 268 201.6 501.0
vda Logic 17 39 39.3 278 497.2
i7 Logic 199 67 23.1 54.8 221.1
i6 Logic 138 67 17.5 40.2 151.5

example2 Logic 85 66 28 23.6 97.8
cht Logic 47 36 6.5 10.8 35.4
x1 Logic 51 35 12.8 27.0 89.4
ttt2 Logic 24 21 6.25 20.4 65.9
x3 Logic 135 99 53 76 278.7
x4 Logic 94 71 28.6 50.0 108.1

apex6 Logic 135 99 45.3 62.0 236.9
apex7 Logic 49 37 20.3 17.8 61.0

k2 Logic 45 45 170.1 591.0 1352.6

In practice we have found that there is a trade-
off between run-time and the value of m (number of
outputs to which the transformation is applied). A
heuristic is to partition the outputs of a function into
groups of 16 outputs each (of course, one group may be
left with less than 16 outputs), and to apply the delay
prediction to the resulting sub-functions, one at a time,
before recombining the results to get the delay of the
whole function. If we denote by gi the sub-function
corresponding to the ith group of m = 16 outputs,
we propose the following model for recombining the
results:

D(f) = max
i

{D(gi)} (7)

In order to generate the minimum delays, the cir-
cuits were optimized in SIS using script.rugged fol-
lowed by script.delay [6, 7] for delay optimization, and
mapped using the library lib2.genlib. A comparison of

the actual delay with the predicted delay obtained us-
ing the model (7), for the benchmark circuits, is given
in Fig. 2. It can be seen that the overall delay can be
predicted with reasonable accuracy. In order to gen-
erate the maximum delay, the circuits were optimized
in SIS using script.rugged for area optimization, and
mapped using the library lib2.genlib. For the 50%-
delay point, this was followed by speeding up the cir-
cuit using the command speed up [7] in the SIS envi-
ronment. A comparison of the actual maximum and
50%-delays with the predicted delays obtained using
the model (7), for the benchmarks, is given in Fig. 3
and Fig. 4, respectively. The overall delay prediction
is reasonably accurate for all except two circuits (i6
and i7). This is due to the fact that these circuits
have a small amount of control logic which controls all
the outputs. Thus this method may not be suitable
for circuits which have both control and data in them.
Also note that the above is not a problem for the min-
imum delay point because the best way to reduce the
delay is to ensure that the same control circuit is not
overloaded by feeding multiple outputs.

0 4 8 12 16 20
Actual Optimum Delay (nsec)

0

4

8

12

16

20

P
re

di
ct

ed
 O

pt
im

um
 D

el
ay

 (
ns

ec
)

Figure 2. Actual versus predicted optimum delays.

0 10 20 30 40 50
Actual Delay Under Optimum Area (nsec)

0

10

20

30

40

50

P
re

di
ct

ed
 D

el
ay

 (
ns

ec
)

i6 and i7

Figure 3. Actual versus predicted maximum delays.

5. Conclusions
In this paper, we have presented a new delay

model to predict the delay of combinational logic,
given only its functional specification and no struc-
tural information. This was achieved through a new
delay complexity measure called delay measure. Em-
pirical evidence showing the utility of the proposed ap-
proach in estimating any feasible delay from the given
high-level description has been presented. While this
approach is being further developed, certain potential
limitations of this method were pointed out for circuits
with control and data, with the same control logic con-
trolling all outputs.

0 5 10 15 20 25 30
Actual 50% Delay (nsec)

0

5

10

15

20

25

30

P
re

di
ct

ed
 5

0%
 D

el
ay

 (
ns

ec
)

i6 and i7

Figure 4. Actual versus predicted 50% delays.

References
[1] M. Nemani, “High-Level Power Estimation,” Ph.D. disser-

tation, University of Illinois at Urbana-Champaign, 1998.
[2] K-T Cheng and V. Agrawal, “An entropy measure for

the complexity of multi-output Boolean functions,” 27th
ACM/IEEE Design Automation Conference, pp. 302–305,
1990.

[3] H. Yalcin, J. Hayes and K. Sakallah, “An approximate
Timing Analysis Method for Datapath Circuits,” IEEE
International Conference on Computer Aided Design,
pp. 114-118, 1996.

[4] C. Ramachandran and F. Kurdahi, “Combined Topo-
logical and Functionality-Based Delay Estimation Using
a Layout-Driven Approach for High-Level Applications,”
IEEE Transactions on Computer Aided Design of Inte-
grated Circuits and System, vol. 13, no. 12, pp. 1450-1460,
Dec. 1994.

[5] A. Srinivasan, G. D. Huber and D. P. LaPotin, “Accurate
Area and Delay Estimation from RTL Descriptions,” IEEE
Transactions on VLSI systems, vol. 6, no. 1, pp. 168-172,
March 1998.

[6] G. De Micheli, Synthesis and Optimization of Digital Cir-
cuits, New York, NY: McGraw-Hill Inc., 1994.

[7] SIS-1.2, Reference Manual, University of California,
Berkeley, 1992.

[8] F. Brglez, D. Bryan and K. Koźmiński, “Combinational
profiles of sequential benchmark circuits,” IEEE Inter-
national Symposium On Circuits and Systems, pp. 1929-
1934, 1989.

[9] S. Yang, “Logic Synthesis and Optimization Benchmarks
User Guide Version 3.0,” Rep. Microelectronics Center of
North Carolina, 1991.

