
 

  
Abstract— We introduce a wavelet-based framework to characterize circuit currents and compute worst-case supply/ground 

voltage fluctuations.  This framework is apt at determining the impact of the various stages of the power delivery network, enabling 
their co-design. 

I. INTRODUCTION 
The intense drive toward lower power designs has highlighted the need for robust design of a chip's power delivery network 

(PDN). The PDN, starting at the voltage regulation module (VRM), through the motherboard, package and finally the on-die 
power grid, must supply a reliable source of power that is fairly free from fluctuations over time. To determine the PDN 
response, designers typically model the PDN using either RLC elements or electromagnetic (EM) models. While modeling the 
PDN system is generally accurate, there remains a significant source of error in modeling the worst-case current draw of the die: 
The number of state transitions is astronomical and searching the current space for the worst case is a daunting task. Several 
attempts have been made to address this problem, including a more formal approach [1] that constrains the problem with known 
design bounds, rather than simulate or search through all possible scenarios.  

In this paper we introduce the concept of time-frequency descriptions of die currents using wavelets. Wavelet analysis of 
early-design die current profiles has been proposed previously in [2] to compute current statistics. In this work we show that 
wavelets are a natural way to comprehensively characterize die behavior in the time-frequency plane and that this description 
may be used to extract new relevant bounds that will serve in determining the worst-case current draw. The wavelet framework 
will allow us to find the worst-case current draw for a given PDN on a systematic and general basis, opening up the possibility 
of obtaining realistic and non-obvious worst-case die current waveforms that mimic complex circuit behaviors. The wavelet 
framework combines both the time and frequency domains.  Since finding worst-case voltage drop on the PDN has time and 
frequency dimensions, this framework will give us the best of both worlds. Purely time-domain techniques only deal with the 
simplest system descriptions, whereas purely frequency-domain methods lack accuracy, especially with state-of-the-art, 
multiresonant PDN systems. 

II. WORST-CASE STIMULUS CHARACTERIZATION USING WAVELETS 
 Our overarching aim is to use wavelet analysis to construct a synthetic worst-case PDN stimulus that maximizes voltage drop 
at a node of interest on the PDN, and to compute the resulting maximum drop. The node could be physically located on the chip, 
package or anywhere else on the PDN. We call the stimulus “synthetic” because we do not observe it in actual traces or 
simulations, but rather, we construct it by optimization to yield the worst-case voltage drop. 
 Assume the PDN is a linear time-invariant RLC circuit, with v nodes and q current sources. We define a PDN stimulus as a 
collection of current waveforms i1 (t),…, iq (t), that simultaneously load the PDN, such that  ij (t) attaches to the jth current source. 
Wavelet analysis enables us to write an arbitrary waveform ij (t) as [3]: 
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where idc,j is the DC component and ψm,n(t) are dilated and time-shifted versions of the same function ψ (t), such that ψ0,0(t)=ψ (t) 
and ψm,n(t) = 2-m/2ψ (2-m t - n). The choice of ψ (t), m0, and nm,j is dictated by the frequency band of interest and the properties of 
the PDN system (e.g., decay in the step response). The coefficients Tm,n,j  and the DC component idc,j are unknown and serve as 
variables in an optimization problem that maximizes voltage drop under a set of constraints, as discussed below. 
 ψm,n(t) are wavelets, which are basically time-functions satisfying certain finiteness and localization properties in time and in 
frequency [3]. Intuitively, one could think of m, referred to as the scale, as an inverse frequency, and of n, known as the 
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translation, as a simple time shift. If m is increased, the time span of ψm,n(t) would increase while its center frequency decrease 
and its bandwidth shrink, in accordance with the Fourier transform time-scaling property: ℱ{ψ (t/a)} = |a| Ψ(af), where Ψ (f) is 
the Fourier transform of ψ (t). Hence the name time-frequency analysis.    
 We illustrate our analysis with the simple Haar wavelet, which is a section of a square wave, defined by ψ (t) = +1, for 0 < t <   
u / 2, -1, for u / 2 < t < u, and 0 otherwise, with u being a suitably chosen time unit. We note that the analysis to follow can be 
extended to most other wavelet systems (technically, those having a scaling function [3], as do most wavelets in practice). The 
choice of u stems from the highest frequency of interest, fH, and can be shown to be u = 1.165/(π fH). The largest scale m0 
follows from fH and from the lowest frequency of interest, denoted by fL, and it can be further shown that m0 = ⎡log2 (2 fH / fL)⎤. 
The choice of fH   and fL in practice is guided by the PDN’s impedance plots, commonly available in the early design stages. 
 Computing the PDN response to wavelets at every scale and time shift is key to choosing the correct duration for ij (t) and to 
setting up the voltage-drop-maximizing optimization problem. Let hm,n,j,z (t) be the voltage drop waveform on some node z when 
the PDN has a single stimulus set to ψm,n(t) on current source j. We are interested in computing hm,n,j,z (t),∀z = 1,…,v, ∀j = 1, …, 
q, ∀n = 0,…, nm,j, and ∀m = 1,…, m0. A brute force approach is inefficient and would require simulation of the PDN with a 
single stimulus on different current loads consisting of wavelets at all scales and translations. 
 Instead, we leverage the linearity inherent in the wavelet system and the linearity and time-invariance of the PDN to require 
PDN simulation at only one scale and translation, and we compute all the needed hm,n,j,z (t) from the simulation results by 
efficient linear operations and time shifts. To achieve this, we introduce a companion function to the wavelet, known as the 
scaling function [3], denoted by ϕ (t). In the Haar system the scaling function ϕ (t) = ϕ0,0(t) is a unit-amplitude, unit-width square 
pulse starting at t = 0 (with ϕ0,n(t)= ϕ0,0(t-nu) ) which enables transitions from scale m to (m + 1) according to ψm+1,n(t) =     
(1/√2) (ϕm,2n(t)- ϕm,2n+1(t)) and ϕm+1,n(t) = (1/√2) (ϕm,2n(t)+ ϕm,2n+1(t)) (wavelets other than Haar have analogous expressions). 
Denote by sm,n,j,z (t) the voltage drop on node z when a stimulus of ϕm,n(t) is applied on ij (t). From the linearity of the PDN, it 
suffices to simulate for s0,0,j,z (t) (or for step responses, since ϕ (t) is a square pulse in the Haar system) to deduce hm,n,j,z (t) as 
follows:                ))()()(2/1()()2()( ,,1,1,,0,1,,0,,.0,,,1, tststsutsts zjmzjmzjm

m
zjmzjm −− +=−=    

         )2()())()()(2/1()( ,,0,,,,,,1,1,,0,1,,0,
m

zjmzjnmzjmzjmzjm nththtststh −=−= −−  

 We use the hm,n,j,z (t) in two ways. First, we choose nm,j based on the decay in hm,n,j,z (t), i.e., we set nm,j to be such that               
hm,n,j,z (nm,j2m) has died down to some negligible value. Second, the hm,n,j,z (t) will serve in the objective function of the voltage-
drop-maximizing optimization problem, to be discussed next. 

III. OPTIMIZATION PROBLEM FORMULATION 
 In this section we formulate a linear program (LP) that maximizes voltage drop at a node of interest on the PDN. Consider an 
arbitrary time point t0. Our objective is to construct, for every node z, a worst-case stimulus which maximizes voltage drop on 
that node at t = t0. It will be clear in our formulation that t0 is indistinguishable from any other time point. Therefore, maximizing 
voltage drop at t = t0 is tantamount to maximizing voltage drop at any arbitrary time point during circuit operation. This point 
is key: although our problem is that of maximizing voltage drop, a transient quantity during circuit operation, we approach it by 
a single-time-point optimization. We work backward from t0 and construct indirectly the waveforms i1(t),…, iq(t) that make up 
the PDN stimulus, computing for each a set of coefficients Tm,n,j and DC components, therefore fully specifying each waveform 
ij(t) as per (1). 
 Leveraging once more the linearity and time invariance of the PDN, denoting by kj,z the DC gain from the jth load to node z 
(i.e., the voltage drop on node z when the stimulus is ij(t) = 1A DC), and using he PDN response to wavelet functions, hm,n,j,z (t), 
discussed in the previous section, we can write the voltage drop on node z at time t0 as: 

                                                      ∑ ∑∑∑
= = = =

−+=
q

j

q

j

m

m

n

n
jnm

m
jmzjmjdczj

jm

Tunnhiktv
1 1 1 0

,,,,,0,,,0

0 ,

)2)(()(                                                   (2) 

Equation (2) is our objective function, and is linear in terms of the optimization variables Tm,n,j and idc,j. Maximizing (2) yields  
the maximum voltage drop on node z. We distinguish two types of constraints that can be imposed on the problem: 
power/current constraints and wavelet/frequency constraints. 
  A broad range of current/power bounds can be imposed on the PDN stimulus, given specifications known about the design at 
an early stage. Such bounds have been used in prior art [1], and can be easily embedded into our wavelet framework. The 
simplest bounds are on the minimum and peak-currents, such as: 0 < ij(t) < imax,j, where imax,j is known by specification or 
simulation of the design block represented by ij(t). Another bound commonly available from design specification is a global 
power envelope Pmax for a given chip, which can be expressed as Σ ij(t) <  Pmax / Vdd. A third type of constraints that designers 
can infer is in the form of max delta, i.e., a bound on the change in current between successive time units. It can be written in the 
form -δ < ij(t) - ij(t-u) < +δ. Since the expression (1) of every ij (t) is linear in the optimization variables, expanding bounds such 
as peak envelope, power envelope, or max delta results in linear constraints on the problem.  Evidently, these three types of 
constraints are not the only ones possible: any bounds which can be expressed as linear combinations of circuit currents will do. 



 

 Wavelet analysis yields further bounds in the time-frequency domain. From the perspective of PDN design, we would want to 
analyze commonly used high-level benchmark power simulation traces (architectural, RTL or logic) in order to generate time-
frequency constraints that would complement current and power bounds. One such constraint is the wavelet frequency envelope 
that we derive by applying a wavelet transform algorithm (such as the Discrete Wavelet Transform [3]) on the available traces 
and taking the maximum observed values of the resulting transforms for every scale, resulting in new optimization constraints in 
the form: -Tm,max,j < Tm,n,j < Tm,max,j, n = 0,…, nm,j – 1. m = 1,…, m0, and j = 1,…, q. The Tm,max,j thus obtained form a wavelet 
frequency envelope for die currents and are a proxy for the maximum energy burst observed in these currents at a given 
frequency band (the wavelet's pass-band at each scale). A wavelet frequency envelope obtained after analyzing 50 power traces 
of an early-stage microprocessor design is shown in Fig. 1. 

IV. EXPERIMENTAL RESULTS 
We tested the proposed approach on several models of a high-performance microprocessor design where the PDN was 

modeled from the VRM down to the die. Fig. 2 illustrates a worst-case current stimulus lasting t0 = 387 nsec and covering a mid-
to-high frequency band. Our approach covers arbitrary frequency bands by generating waveforms of various durations. As a 
general trend, worst-case stimuli were characterized by fairly regular, low-frequency variations at the beginning, with higher-
frequency components (wavelets) progressively kicking in, creating local fine patterns that intensify near the end point, t0.  

Our approach may be construed as a generalization of the reverse pulse technique RPT [4]. While RPT works backward from 
t0 to construct a worst-case stimulus simply as a sequence of full-swing step functions Imax to Imin and Imin to Imax, our approach 
yields finer patterns in the current waveform, as visible on Fig. 2. The reason is that it embeds sophisticated constraints in ways 
RPT can't, but when we stripped our optimization formulation from these constraints, the worst-case waveforms matched with 
RPT, but overestimated the maximum voltage drop versus their constrained counterparts by 16-25%. Therefore, our technique 
has the benefit of offering less pessimistic predictions, and broader user-characterization of currents than is possible with RPT.  

Our approach can help designers predict voltage drop trends in an early design stage. By that, we are referring to the ability to 
systematically quantify the relative magnitudes of different voltage drop components. To illustrate this idea, we applied our 
analysis on a 4-core early-stage design, and measured the contribution of leakage, IR-drop, and di/dt switching activity for each 
core, on the worst-case voltage drop on Core 1. Fig. 3(a) shows sample results: IR-drop was found to contribute 18.2% of the 
total drop (with a separate 1.5% share for leakage). And while it is expected that the largest individual contributor to di/dt drop 
on Core 1 is switching activity on the same core (30.8%), the combined impact of the other cores exceeds that individual 
contribution (51.5%), thereby firmly establishing the need for an integrated cross-core analysis.  

A key advantage of our framework is frequency-awareness. Modern PDNs have several resonant modes, each influenced by a 
set of electrical and design parameters. For example, the resonant mode at the highest frequency, commonly referred to as “first 
droop”, is a strong function of package inductance and die capacitance. Lower frequency resonance, i.e., second and third 
droops, depend on other parameters including motherboard and bulk capacitors. Designers of different stages of the PDN will 
therefore be interested in gauging voltage drop across specific frequency ranges. While current methods for this end are tedious 
or measurement-heavy, ours naturally incorporates these considerations by specifying fH and fL and leveraging the wavelet time-
frequency properties. Fig. 3(b) shows the breakdown of the three resonant modes in terms of their share of worst-case di/dt 
voltage drop. It is worth noting that each core required about 500 optimization variables to cover the frequency range of first, 
second, and third droop. 

We also applied our approach to optimize the package inductance Lpkg for an early-design microprocessor model. The idea 
was to vary Lpkg around the design point and compute the expected worst-case voltage drop with die constraints unchanged .The 
alternative for designers is to discover the optimal Lpkg by simulating the PDN for given traces and candidate Lpkg values. These 
simulations, however are not guaranteed to uncover the worst-case corner, and simulating the PDN for several (we used 50) 
multi-million-cycle traces becomes impracticable. In this respect, our approach is both faster and more accurate. Fig. 4 is a plot 
of the predicted maximum voltage drop versus Lpkg, revealing that designers have approximately 30% headroom in their choice 
of Lpkg without incurring a voltage drop penalty. In fact, the figure predicts a slight improvement in the worst-case voltage drop 
if Lpkg were to be increased by about 25% from its planned value. This, somewhat surprising finding, stems from the fact that a 
change in Lpkg changes the PDN frequency response, and the interplay between the new frequency response and the wavelet 
envelope bounds (which are frequency constraints), results in a net decrease in the maximum possible  voltage drop.  

We also tested our approach on on-die power grids. We carried out an experiment where we fixed the dimension of a grid      
(5 mm x 5 mm), total power budget (1 W), and die capacitance (200 nF), then progressively added metallization layers and 
verified the grid with every new layer. The grid was modeled as an RC network and the power budget non-uniformly distributed 
over 182 current loads. Grid verification consisted of finding the worst-case voltage drop in the 50 MHz - 1 GHz range, over the 
182 nodes with loads attached. Table 1 shows the results, obtained on a server with two dual-core, 2.6 GHz processors. We 
divided runtime into two components: 1) simulation of step-responses (see section II), carried out with HSpice, and 2) solution 
of the optimization problem (section III) done with PCx, a freely available LP package. It is clear that simulation is the 
overwhelming bottleneck. However, simulation is a pre-characterization step: users need to do it only once for a given PDN and 



 

can re-run the verification with different constraints or over different frequency bands. More importantly, these results show that 
the cost of maximizing voltage drop, which essentially searches  the feasibility space of currents in time, came down to the 
computation of step responses.  The second highlight is the efficiency of the optimization itself, due to the relatively small 
number of variables per optimization problem (column 4 reports the average number over the 182 problems solved). This 
follows from the grid’s spatial locality, which our framework picks up seamlessly: if hm,n,j,z (t0) is negligible, then the 
corresponding variable Tm,n,j is dropped from the optimization problem, leaving for every node only the set of relevant sources 
and scales (frequencies) as optimization variables. 

V. CONCLUSION 
We introduced the concept of time-frequency description of circuit currents using wavelets, and formulated an optimization 

framework that solves for the worst-case supply voltage drop. We applied this framework on an early-stage design process, for 
package-die co-design, and on power grids, showing how it naturally fills designers' needs for systematic predictions and 
characterizations of the power delivery network. 
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Fig.3. Predicted trends in voltage drop  
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Fig.1. Wavelet frequency envelope in an early-design microprocessor. 
Scale m = 1 represents a wavelet lasting 10 clock cycles. 

 
Fig.2. Sample worst-case current stimulus and resulting voltage drop 
waveform. 
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Fig.4. Application to Lpkg optimization 
 

Grid size (#nodes) Simulation time Optimization time Average #variables Max Vdrop 
11,100 1.6 hrs. 11 sec. 675 59 mV 
14,300 1.7 hrs. 8 sec. 604 35 mV 
26,000 3.6 hrs. 5 sec. 543 20 mV 
36,500 11.3 hrs. 4 sec. 522 13 mV 

Table 1. Application to power grid verification. 


