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Abstract

Modern sub-micronVLSI designsinclude huge power grids
that arerequiredto distribute large amountsof current,at in-
creasinglylower voltages. The resultingvoltagedrop on the
grid reducesnoise mamgin andincreasegjatedelay resulting
in a seriousperformancempact. Checkingtheintegrity of the
supplyvoltageusingtraditionalcircuit simulationis not practi-
cal, for reason®f time andmemorycomplexity. We proposea
novel multigrid-like techniquefor the analysisof power grids.
The grid is reducedto a coarserstructure,andthe solutionis
mappedbackto the original grid. Experimentakresultsshov
thattheproposednethodis very efficientaswell assuitablefor
bothDC andtransientanalysisof power grids.

1 Introduction

In recentyears,therehasbeenan increaseddlemandfor high

performanceandlow powerVLSI designs.High performance
is achieved by technologyscaling,increasedunctionalityand

competitve designs.On the otherhand,a commontechnique
usedto obtainlow power designds to scaledown the supply

voltage.

Increasedchip functionality resultsin the needfor huge
power andgrounddistribution networks, herereferredto sim-
ply aspowergrids sincethey typically have a grid structure.
Lower supply voltages,on the other hand, make the voltage
variationacrossthe power grids very critical sinceit may lead
to chipfailures.Voltagedrop on thepower grid canreducethe
supplyvoltageatlogic gatesandtransistorcellsto lessthanex-
pected.This leadsto reducechoisemamins, higherlogic gate
delaysandoverall slower circuits. Consequentlyoncevoltage
drop exceedscertaindesignerspecifiedthresholdsthereis no
guaranteg¢hatthe circuit will operateproperly[1, 2, 3, 4].

Thus,it is clearthatin modernVLSI circuits,powergridsare
becomingperformancéimiting factors.Consequentlyeficient
analysisof the power grids[3, 4] of modernsub-micronVLSI
designds amust.

Thefirst stepin power grid analysisinvolvesmodelingthe
powergrids[3, 5]. Forpurpose®f ouranalysispowergridsare
modeledaslinear RC networks sinceon-chipinductance(in
the power grid) in today's technologyis too smallto affectthe
analysigesults.Pover sourcesaremodeledassimpleconstant
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time-varyingcurrentsourceg3, 4, 5].

The behaior of sucha systemcanbe expressedollowing
the modifiednodalanalysisMNA) [6] formulationasthefol-
lowing ordinarydifferentialequation:

Gx+Cx=u(t) 1)
wherex is a vectorof nodevoltages,and sourceandinductor
currents;G is the conductancenatrix; C includesthe capaci-
tanceandinductanceéerms,andu(t) includesthe contritutions
from the sourcesandthedrains.

Applying Backward Euler (BE) numericalintegrationto (1)
resultsin a setof linearequations:

(G+C/h)x(t+h) = u(t+h) +x(t)C/h 2

which canbe readily simplified to Ax(t + h) = b, whereA =
G+ C/handb = u(t + h) + x(t)C/h. It canbe shavn thatthe
systemof linearequationscanbe reformulatedn sucha man-
nerto producea systemmatrix, A, which canbe shavn to bea
nonsingular -matrix [7].

Dueto thelarge sizeof typical power grids, generalcircuit
simulatorssuchasSPICEarenotadequatéor powergrid anal-
ysis becauseof CPU time and memorylimitation. The inef-
ficiengy of standardsimulatorscomesaboutbecausda) they
requirea lumpedelementapproximationof the circuit which
requiresthe translationof a regular geometricaktructureto a
large setof equivalentcircuit elementsand (b) they usegen-
eralpurposesolutionmethodaneantto berobustin thefaceof
stiff system®f equationsBy contrastpowergridsarewell be-
havedspatially(nearlyregular)andtemporally(damped).This
motivatesa special-purpossimulatorfor power grids which
canmalke useof theseproperties.

In this paper we proposean efficientanalysistechniquethat
follows the lines of thoughtof multigrid methodswhich are
commonlyusedfor the solutionof smoothpartial differential
equationgPDESs). Specifically our methodis inspiredby the
algebraiamultigrid method(AMG) whichis onevariantof the
multigrid approachThus,section2 describeshe multigrid ap-
proachwith aspecificemphasignthealgebraianultigrid vari-
ation. After discussinghe multigrid techniquewe presenbur
proposednultigrid-like approachn section3. The efficiency
of our proposedechniqueis verified by the experimentalre-
sultsgivenin section4. Finally, conclusionsare providedin

voltagesourcesand power drainsare modeledasindependent section5.



2 Multigrid Method

Well-designedpower grids are characterizedy voltage dis-
tributions which are spatially smooth[3]. Furthermore the
analysisof power gridsresultsin a systemof linear equations
structurallyidenticalto thatof afinite elementdiscretizatiorof
a two-dimensionapartial differentialequation(PDE). Conse-
qguently efficient methodsfor solving smoothPDEsareworth
consideringaspotentialcompetitive solversfor the power grid
problem.

Themultigrid method MG, is an efficient techniquewidely
usedfor solving smoothPDEs([8, 9, 10]. Initial interestin
multigrid resultedfrom a detailedanalysisof classicalitera-
tive methodsandthe reasondor their slow cornvergence.Let
e = X— X betheerrordefinedasthe differencebetweerthe ex-
actsolutionx andthe approximatesolution,X. It canbe shovn
thatthe error canbe expressedasa linear combinationof low
frequencyandhighfrequencyFouriermodeq8]. Furthermore
the analysisof classicaliterative methoddeadsto the follow-
ing obsenration[8, 11]: Classicaliterative methodseficiently
reducethe high frequencyerror componentsut are inefficient
in reducingthelow frequencyerror components.

In orderto avoid thelimitations of classicaimethodsmulti-
grid methodsconsistof two complementarycomponentd8,
10:

1. Relaxation'smoothingwhichreduceghehighfrequeny
errorcomponents.

2. Coarsegrid correctionwhich reduceghe low frequeny
errorcomponents.

Relaxationinvolvesrunning a few iterationsof a classical
iterative solver. Coarsegrid correctioninvolves mappingthe
problemto a coarsergrid, solving the mappedproblem,and
mappingthe solutionbackto the fine grid. The mappingbe-
tweenthe two grids (fine and coarse)requiresthe useof in-
tergrid transferoperators which arealsoreferredto asthe re-
striction and prolongationoperators.The restrictionoperatoy
R, is usedto maptheproblemfrom theoriginalfine grid, Q"
to the coarsegrid, Q2, b = ®2"b". On the otherhand,the
prolongation(alsoreferredto asinterpolation)operatoripzhh, is
usedto mapthe solutionbackfrom the coarsegrid Q2" to the
originalfinegrid, Q", x" = 2 x*". Oneintuitive motivationfor
coarseagrid correctionis thatthe solutionat a coarsegrid typi-
cally providesa goodinitial guesdor theiterative solver atthe
fine grid andthusresultsin rapid cornvergence.Anothermoti-
vationfor this approachs thatthelow frequeng errorcompo-
nentsatthefine grid Q" appeamshigh frequeng atthe coarse
grid Q2 [8]. Then,relaxationatthe coarsegrid reduceshose
components.

It is clearby now how the multigrid techniqueworks [8].
Startingwith afine grid, a few relaxationsteps(iterations)are
appliedto reducethe high frequeny modesof the error. Then
thelow frequeny (smooth)modesof the errorarereducedoy
coarsegrid correction.

2.1 Algebraic Multigrid

Two commonvariationsof the multigrid methodare: standard
multigrid, SMG, andalgebraicmultigrid, AMG. Both involve
relaxationandcoarsegrid correction. The efficiengy of either
methodrelies mostly on the choice of the multigrid compo-
nents: the relaxationoperatorand the inter-grid transferop-
erators. In SMG methods uniform coarseningandlinear in-
terpolationdefinethe coarsegrid andthe grid transferopera-
tors. Thus,the efficiency of SMG methodsis determinedby
thechoiceof therelaxationoperatoywhichis choserto reduce
thoseerror componentsot well approximatedy coarsegrid
correction12]. AMG methodspntheotherhand work theop-
positeway. Thatis, thechoiceof therelaxationoperatoliis first
fixedandthen,thecoarseningrocedurandinterpolatiortech-
niguearechoserto reducethoseerrorcomponentsiotwell re-
ducedby smoothing AMG methodis completelydefinedonce
the interpolationoperatoy 2, is defined. Given 2, AMG
definesthe restrictionoperatoy hah’ andthe reducedsystem
matrix, A?", asfollows:

R = (P)" and A = (25)T A, (3)

Then, the overall AMG procesdo solwe the linear system
A" = b canbe summarizeasfollows:

1. Reducetheoriginal grid Q" to obtainasmallergrid Q"

2. Definean interpolationoperatorszhh, to satisfythe AMG

requirementpointedoutabove. Once®l) is defined &2
andA?" arealsodefined.

3. Map the problemto the coarsegrid usingthe restriction
operatoyb? = g2"b".

Solve thereducedinearsystemA2'x?" = b?" for the vec-
tor, x2".

5. Map the solutionbackto the original fine grid usingthe

prolongatioroperatoyx" = 2§ x2".
Thus, it is clearthatthe efficiency of AMG methodss deter
minedby the choiceof the coarseningrocedureandtheinter-
polationmethod[12].

An erroris definedto bealgebraiclysmoothif it is character
ized by thefactthattheresidualyr = Ag is smallcomparedo
theerror r <« e[12]. Furthermoreit is expectedhatonaverage
Iri] < aiile| [12]. This obsenationprovesusefulin providing
a good approximationof the errorin termsof its neighboring
errorvalues:

O=aie—ri+ ) aje~aia+ y ajg (4)
JEN JEN
whereN; = {] #i: aj # 0} denotesheneighborhooafi. Ge-
ometrically N; denoteghe grid nodeswhich aredirectly con-
nectedo nodei.

Furthermore sincethe A matrix is an M -matrix, it canbe

shawn thatthe error satisfieghefollowing inequality[12]:

laij| (& —))?

A g qz
It canbe seenfrom (5) thatthe smootherrorvariesslowlyin
thedirectionof strongconnectionsThatis, if &

4.

<2 (5)

le is relatively



large,then(g — e;j) hasto besmallandthus,variationin theer-
ror valuesbetweemodes and | is small. In AMG, (4) and(5)
provideamechanisnfor definingagoodinterpolationoperator
aswell asguidemostgrid reductionalgorithms[12].

3 Proposed Multigrid-like Analysis

Our techniqueis inspired by the algebraicmultigrid method,
AMG. Indeed,we follow the exact AMG stepsto provide an
efficientsolutionfor thelinearsystemA"x" = b" corresponding
to the original fine grid, Q". Thatis, the grid is first reduced
andaninterpolationoperatoris defined. Then,the problemis
mappedo thecoarsegrid, solvedatthecoarsegrid, andthen,
thesolutionis mappedackto the original fine grid. However,
regular AMG, drivenby the needfor a goodinterpolationop-
erator[12], imposesa grid reductionmechanismwhich may
be inefficient for our needsbecauset yields a grid which is
not sufficiently coarseo yield the advantagesequiredfor fast
power grid analysis.

Instead,we cando betterthanthat by using a grid reduc-
tion algorithmwhich is similar to the SMG reductionmeth-
ods (seesection3.1 below). Then, oncethe grid is reduced,
our methoddefinesaninterpolationoperatorso asto maintain
theerrorrequirement®f AMG (seesection3.2 belav). Thus,
the proposedechniguecombineghe advantage®f bothSMG
and AMG, while avoiding someof their limitations. Finally,
our methodcompletelyignorestherelaxationstepof multigrid
whichis appliedto smooththe error. This is motivatedby the
factthatwell-designeghowergridsarecharacterizedy smooth
voltagevariationoverthegrid [3]. Consequentltheproposed
approachpromisessignificantspeed-up$or transientanalysis
(seesection3.3 below). As a resultthe geneal structue of
our techniqueconsistsof repeatedlycoarseningthe grid until
the problemis smallenoughto solveexactlyusinga directap-
proad, andthenmappingthesolutionbadk to theoriginal fine
grid. We noteherethatif the original grid is characterizedby
non-smoothvoltage variation, then the relaxationstep of the
mutligrid mustbeincludedin orderto maintaintheaccurag of
thesolution.

An interestingguestionis how to handlethe voltagesources
andthe currentsourcesvhich areplacedat nodesthatmay be
removed to reducethe grid. Our techniquehandlesvoltage
sourceshy always keepingthe nodeswhere voltage sources
are locatedat the reducedgrid. This is guaranteedy pass-
ing to the reductionalgorithm a list of nodesthat shouldbe
kept(seesection3.1). Notethatthis doesnt severelyaffectthe
efficiency of the reductionbecausdypical power grids have
a small numberof voltagesourcegthousandsn power grids
consistingof millions of nodes).As for the currentsourcesa
currentsourceplacedat a removednode,i, getssplit into cur
rent sourcesat thosenodesfrom which i will be interpolated.
Thisis takencareof automaticallyby ourtechniquéecausé¢he
problemis mappedo acoarsegrid usingtherestrictionopera-
tor, b?" = 2"b" wheretherestrictionoperatoiis thetranspose

Tablel: Meaningof statusflags.

StatusFlag | Indication

N No flag (default)

K Kept

H VisitedHorizontally
\% Visited Vertically

R Remawed

of theinterpolationoperator ®2" = (25)T.

3.1 Grid Reduction

A naturalmethodfor efficientgrid reductionjnspiredby SMG,
is to skip every otherwire, resultingin a situationasin Fig. 1.
Sucha reductiontechniquepromisessignificantreductionof
the grid becausédt reducessachdimensionof the grid by half
(roughly), thusreducingthe whole grid by almosta factor of
four. While it is straightforwardto applysuchareductiontech-
nigueto regular grids, it is not clearhow it canbe appliedto
geneal grids; specifically irr egular grids. Sincetypical power
gridsmaybeirr egular, we needto defineareductionalgorithm
which systematicallyeducesa geneal grid. Furthermorethe
algorithmshouldmaintainthe structureof the original grid (so
thatit includesonly horizontalor verticaledges)othatit can
berecursvely applieduntil a coarseenoughgrid is obtained.

Themajor objective of thereductionalgorithmis to remove
asmary nodesaspossiblewhile maintainingtheability to esti-
matevoltagesattheremovednodeghy interpolation.Thealgo-
rithm takesasinputafine grid Q" andalist of nodesto bekept
andproducessoutputa reducedyrid Q2" with asmallermum-
berof nodes.Thelist of keptnodesshouldconsistof specific
nodesof interestto the user but our techniqueautomatically
generates defaultlist containingthe cornernodesandnodes
wherevoltagesourcesarelocated. To summarizepur reduc-
tion algorithmfollows the methodsof grid reductionemployed
by SMG (skippingevery otherwire). However, it alsosupports
generalirregular grids as well as handlesary userspecified
requiremenbf keepingcertainnodesat the coarsergrid. We
assumehatthe grid lines areeitherhorizontalor vertical. By
neighbos of a nodewe meanits immediateneighbors those
connectedo it by averticalor horizontaledge;therecanbe at
mostfour of these.By diagonalneighbos of anode,we mean
thosenodesthat canbe reachedrom it by makingtwo steps,
first horizontallyandthenvertically or first vertically andthen
horizontally; a nodecan have morethanfour diagonalneigh-
bors(asis the casefor noder in Fig. 4, for example).

The algorithm makes useof certainstatusflags, which are
shavn in Table 1, to decidewhethera nodeis to be kept or
removed. Furthermoretheseflagsindicatehow to interpolate
the voltageat a removed nodefrom its kept neighbors. The
gridreductionalgorithmmakesrepeatediseof aso-callechode
updateoperation,which is definedasfollows: Startingfrom
that node go along a horizontal (vertical) directionand flag
all visitednodeswith H (V). Flag extremitiesas kept. A node
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Figurel: Multiple resolutionpower grids.

whidh is visited both horizontally and vertically (flagged with

bothH and V), is flagged as kept The algorithm consistsof

four passeslescribedsfollows:

1. First Pass: Updateevery keptnode. Note thatif the up-
dateoperationon a keptnodei causesanothemodej to
be flaggedasK (kepd, thenthe updateoperationis also
performedon nodej.

2. SecondPass:Gothroughthegrid nodedn thegivenordet
In ourimplementationgrid nodesareorderedrom top to
bottom, left to right. However, this is not a limitation of
thealgorithm.If anodei is flaggedasH (V) afterthefirst
pass,flag that nodei asR (remwed, flag its neighbors
alongthesamerow (column)asK (kep?) andupdatethose
neighborsOntheotherhand,f anodei is notflagged(N)
afterthefirst passflag thatnodei asR (removed), flagits
diagonalneighborsasK (kepf), andupdatethosenodes.

3. Third Pass(definesreducedgrid): A nodei which is
flaggedas kept is a node of the reducedgrid; that is,
i € Q. A nodei which is flaggedasH (V) after the
first passandthenflaggedas R after the secondpassis
removed andits horizontal(vertical) neighbors,j andk,
areconnectedy anedge.Theresistancef thenew edge
betweenj andk is the sumof theresistancesf the edge
betweeni and j andthe edgebetweeni andk. As for
a nodei which is flaggedas N after the first passand
flaggedasR afterthe secondpassthatnodei is removed
togethemith its (horizontalandvertical) neighborswith-
out affecting the reducedgrid, Q2. Note that defining
the reducedgrid this way maintainsthe structureof the
original grid (sothatit includesonly horizontalor verti-
cal edges)which allows for recursve applicationsof the
reductionalgorithmto producecoarseiandcoarsegrids.

. FourthPass(definegnterpolation):Voltageof akeptnode
is the sameasthat computedat the coarsemrid. Voltage
of anodei whichis flaggedasH (V) afterthefirst pass
andflaggedasR afterthe secondhasss interpolatedrom
its row (column)neighbors'voltages. Voltageof a node
i which is flaggedasN afterthefirst passandflaggedas
R afterthe secondpassis interpolatedfrom its diagonal
neighborsvhich arekept

We next describehow the algorithm works and how the

flagsassociatedvith the differentgrid nodeschangeaswe go

throughthe differentpasse®f the algorithm. Initially, all grid
nodesareflaggedasN exceptfor thosenodesrequiredby the
userto bekept Nodesrequiredto bekeptareflaggedasK. Af-
terthefirst passof thealgorithm,anodei will beflaggedask,

H, V, or N. Nodei is flaggedaskK if nodei shouldbekeptatthe
coarsegrid. Thismayoccurif oneof thefollowing conditions
holdsfor nodei:

1. Nodei is anodepassedby theuserto bekept In thiscase,
theinitial flag of nodei is K andafter the first pass,the
flag of nodei is still K (kepi.

2. Nodei is theextremity of arow or columnthatconsistf
someothernodej whichis flaggedasK (kep.

3. Nodei is theintersectiorof arow anda columnthathave
beenbothvisited A row r (columnc) is saidto bevisited
if r (c) consistof atleastonenodej whichis updated

On the otherhand,a nodei is flaggedasH (V) afterthe first
passif nodei belongsto arow (column)thatis visitedduring
the first pass. Thatis, i belongsto arow r (columnc) which
consistsof someothernode j thatis updatedduring the first
pass.Finally, anodei is flaggedasN afterthefirst passif it is
theintersectiorof arow anda columnthatarebothnotvisited
duringthefirst pass.Notethatif anodei is flaggedasN after
thefirst passthenno othernode j which belongsto the same
row or samecolumnasi canbe flaggedasK (kep) afterthe
first pass.

The secondpassinvolves going throughthe nodesin the
givenorderandcheckingtheir flags(obtainedafterfirst pass).
If anodei is flaggedasK (kep?, nothingis doneandthe al-
gorithm moveson to the next node. If, on the otherhand,a
nodei is flaggedasH (V), thenthe algorithmflagsthat node
asR (removed), flagsits horizontal(vertical)neighborsaskept,
andupdateghoseneighbors.Hence becauséhereis a call to
an updateoperationat this stage,a nodei with a certainflag
after the first passmay be flaggedwith a differentflag at this
stage. However, this new flag may still be changedeforea
final flagis associateavith i afterthe secondpass.Finally, if a
nodei is flaggedasN, thenthe algorithmflagsthatnodeasR
(removed), flagsits diagonaheighborsasK (kepf, andupdates
thosediagonalneighbors.Thus, it is guaranteedhat afterthe
secondhassevery nodeof thegrid is flaggedaseitherK (kep
or R (remaved. A nodei flaggedasK is kept at the coarser
grid, Q% i € Q2. Ontheotherhand,a nodei flaggedasR is
remaed thatis, i ¢ Q2.

Thethird passsimply involvesgoingthroughthe nodesand,
basedntheirflagsafterfirstandsecondassesjecidehow to
build the reducedgrid Q2. As for the fourth pass,it decides
whichneighborsf aremosednodei areusedto interpolatethe
voltageati.

Beforedescribinghow thealgorithmworkswith anexample,
someobsenationsmay be helpful in explainingthe algorithm.
Following the algorithm, a nodei which is marked asH (V)
afterthefirst passandmarkedasR (removed afterthe second
passs anodewhosehorizontal(vertical)neighborsaremarked
askK (kep). Theothervertical(horizontal)neighborsf i would
bemarkedasR (remosed. Onthe otherhand,a nodei which
is markedasN afterthefirst passandmarkedasR (remoed
afterthe secondpassis a nodewhose(horizontalandvertical)
neighborsare marked asR (remaved. The voltageat sucha
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Figure2: Reductionof anirregulargrid.

nodewould be interpolatedrom its diagonalneighborsasex-

plainedin thealgorithm.Theonly exceptionto this scenarias

whenanodei is markedasN afterthefirst passandthenoneof

its neighbors,j, is markedasK (kepf duringthe secondpass.
Sincej is markedasK duringthe secondpassthis invokesan
updateoperationon j which causes to be flaggedasH (V)

assuminghati is ahorizontal(vertical)neighborof j. If thefi-

nalflag of i afterthesecondpassis R (remared, theni should
be treatedas a nodeflaggedasH (V) afterthe first passand
flaggedasR afterthesecondass.Thisis becaus¢hehorizon-
tal (vertical) neighborsof i areflaggedasK (kep?). Thegiven
exampleshavs sucha scenaricat the nodewhich is theinter

sectionof the fourth row andthe fifth column (the upperleft

corneris theintersectiorof thefirst row andfirst column).The
tagassociateavith thatnodeshows thatthis nodeis flaggedas
N afterthefirst passandasR afterthe secondpass.However,

thereis anintermediatdlag of H associatewvith thatnodeafter
the updateoperationis appliedto its right neighborduringthe
secondpassof thealgorithm.

Another point worth noting concernsbuilding the reduced
grid after the nodesare properly flaggedas kept or remored
AMG doesnt worry aboutbuilding the reducedgrid because
AMG handlesggrid reductionby consideringhe systemmatrix
only. Thatis, AMG defineswhichnodesareto beremovedand
whichareto bekeptby goingthroughthematrix entriesandap-
plying somereductionalgorithm. Oncethatis defined AMG
thendefinegheinterpolationoperatomwhichis thenusedto de-
fine the reducedsystemmatrix A?" asexplainedearlier Then
AMG reductionis simply appliedto A" directly. However, one
of themajorreasonsf theinefficiengy of AMG reductionis be-
causeAMG doesnt build a representatie grid of the problem
but ratherrelieson thematrix for grid reduction.

In order to avoid that, we proposeworking with the ac-
tual grid to definean efficientreductiontechnique. Thus, we
needto definea mechanisnfor building the reducedgrid Q2"
Onestraightforvardtechniques to considerthe reducedsys-
tem matrix A2 and accordinglybuild the reducedgrid, Q2.
This is always possiblebecausdhereis a one-to-onecorrela-
tion betweeractualgrids andmatrices.However, building the
reducedyrid this way may producea rathercomplex grid Q2
with diagonal(non-horizontabind non-\ertical) edges.Given
sucha reducedgrid Q2", it becomesardto efficiently reduce
that grid. Furthermore|t becomesalmostimpossibleto de-

i

Figure3: BasicMultigrid operator

fine a grid reductionalgorithmthancanberecursvely applied
to producecoarserand coarsergrids. For thesereasonswe
proposea simplermethodfor building the reducedgrid, Q2"
whichmaintaingthegrid structure(sothatit includesonly hor-
izontalor verticaledges}husallowing therecursveapplication
of thereductionalgorithm. As explainedin thereductionalgo-
rithm, the methodinvolvesfirst decidingwhich nodesarekept
andwhich nodesareremwoed andthensimply addingedges
betweerkepthorizontalandverticalneighbors.

Next weillustratehow thegrid reductionalgorithmworkson
theexamplegivenin Fig. 2. Initially, all nodeshave the default
statusof N exceptfor the nodeswhich shouldbe kept. In this
example thesewouldbeall thecornemodesof thegrid (dashed
nodesin Fig. 2). A tag consistingof two fieldsis associated
with every nodeof the grid. Theleft field indicatesthe status
of the nodeafter the first passandtheright field indicatesthe
statusof thenodeafterthe secondass.

As showvnin Fig. 2, afterthefirst pass,an edge(row or col-
umn) consistingof at leastone kept node,hasits extremities
flaggedaskept Theremainingnodeson thatedgeareflagged
with H orV basednwhethertheedgeis horizontalor vertical.
Note that somenodesstill have a statusflag of N which indi-
categhatthesenodeshave notbeervisitedduringthefirst pass.
Thenafterthe secondpassnodeswith aK flag arekeptwhile
thosewith anR flag areremoved. Then,thethird passinvolves
addingedgedetweerthe keptnodeswhich areneighborghus
resultingin the coarsegrid Q2".

Finally, we notethatif our grid reductionalgorithmis ap-
pliedto aregulargrid, thenit produce®ptimalreduction.That
is, it reduceghe sizeof the grid by almosta factorof four as
illustratedin Fig. 3.

3.2

AMG interpolationis guidedby (4) and(5). Thus,theinter-
polation operatorshouldbe chosento relatethe voltageof a
remarednode,i, to the voltagesof thosekeptnodeswhich are
stronglyconnectedoi. Typically, AMG considersaconnection
betweentwo nodesto be strongwhen |ajj|/ max; |aj| > 6,
where0 < 8 < 1 (0 is typically chosento be 0.25in prac-
tice [12]). With sucha choiceof the interpolationoperatoy
thecoarsegrid correctionwould efficiently reducetheerror.

In our reductionalgorithm, the statusflags indicate which
neighborsof a remosednodeareto be usedfor interpolation,
basedon the factthatthey are keptandstrongly connectedo
aremoednodem. As for theinterpolationweights,theseare
obtainedby consideringthe valuesof conductancesetween

I nterpolation



the nodes. Thus,if the voltageat a removed nodem is inter-
polatedfrom the voltagesat nodesA and B, thenthe (linear)
interpolationfunctionINT () is definedas:

V(m) = INT(V(A),V(B)) =aV(A)+a1V(B)  (6)
whereap = —Jma da; = . Here,gmait isthecon-
ductanc&e?%AggmmBodem angcmf%"ﬁBd Oms is the conductance
betweennodesm and B. Note that our techniquefor choos-
ing theinterpolationweightsis similar to thetechniqueusedin
AMG. To illustrate,considera remarednodem whosevoltage
will beinterpolatedrom the voltagesat the kept nodesA and
B. AMG useshefollowing interpolationschemd12]:

9mB

V(m) = %V(A) + %V(B)

(7)
whereana is the entry of the A matrix relatingnodesm andA,
and ang is the entry of the A matrix relatingnodesm and B.
As for anm, one AMG approachs to defineit asthe diagonal
entry of the A matrix correspondingo nodem. Anothercom-
mon AMG methoddefinesamm as: amm= |ama| + |ams|. For
the power grid problem, |amal = gma and |amg| = gms, which
shavsthatour interpolationtechniqués motivatedby AMG.

However, this is not the full story Recallthatour grid re-
ductionalgorithmdiffers from AMG grid reductionmethods;
it is actuallybasedon SMG reduction- it usesonly geometric
informationandremovesasmary nodesaspossible.Hence, it
is possibleo comeacrosasesvherearemovednodei hasall
thenodeghatarestrongly connectedo it removedaswell. To
illustratethis, considerrFig. 4, wherea filled nodeindicatesa
remwednodeandablanknodeindicatesanodethatis kept In
this example,we assumehat every horizontalor vertical link
represents strongconnectiorbut two nodeshatareseparated
by two or morelinks arenot stronglyconnectedThis situation
is typical of power grids. Thus,r is strongly connectedo m
andm is stronglyconnectedo B, but r andB arenot strongly
connected.NodessuchasB that are separatedby two strong
links from r, but which arethemselesnot stronglyconnected
to r, aresaidto be two-level stronglyconnectedo r. Our re-
ductionwould remove noder, aswell asall thenodesthatare
strongly connectedo it, m, n, p, andg. However, it canbe
shavnthatouralgorithmguaranteethat,if anodei isremoved,
eithersomenodesthat are stronglyconnectedo i arekeptor
somenodesthataretwo-level stronglyconnectedo i arekept.
Therefore,in our interpolationtechnique|f all strongly con-
nectedneighborsof a nodehave beenremoved alongwith it,
we useits two-level strongly kept neighborsfor interpolation.
This s clearlyillustratedin Fig. 4 wherethe voltageat noder
is interpolatedfrom thosenodeswhich are two-level strongly
connectedo r; specifically nodesA, B, C, D, andE. Notethat
this approachmaintainsthe advantageof efficient grid reduc-
tion aswell as meetsthe requiremenbf a goodinterpolation
operator

Figure4: Interpolationfrom reducedyrid nodes.

3.3 TimeDomain Analysis

Well-designegower gridsarecharacterizetly smoothvoltage
variation.Thus,it is quitefeasibleto ignoretherelaxationstep
of AMG withoutjeopardizingthe accurag of the solution. By
adoptingthis approachpur techniqueactuallybecomesa di-
rectsolverasopposedo regularmultigrid whichis aniterative
solver. Direct solversoffer significantspeed-upsver iterative
solverswhentransientainalysidgs performed1, 3, 4]. However,
themajorproblemwith directsolversis their high memoryre-
quirement[1]. As a matterof fact, it may be impossibleto
solve a very large systemusinga directsolver. In suchcases,
aniterative solver hasto be usedandthe problemis seriously
aggraatedwhenperformingtransientanalysisbecauseaniter-
ative solver hasto be usedat every time step.

However, our approachoffers an efficient solutionto this
problembecausét usesa directsolverto solve areducedsys-
tem of much smallerdimension. Thus, our techniqueavoids
thememorylimitation of directsolverswhile maintainingtheir
speed-umdwantage Of coursetheadvantage®f theproposed
techniqguecomeat a slight costin the accurag of the solution
sincethe relaxationstepis ignoredand interpolationis used.
However, theresultsin the next sectionshav thatthis erroris
small enoughto maintainthe efficiency and suitability of the
proposedechnique.

4 Experimental Results

The proposednultigrid methodhasbeenimplementedandin-
tegratedinto alinearsimulatorwrittenin C++. All experimen-
tal resultsreportedn this sectionwereobtainedoy runningthe
simulationoona400MHzULTRA 2 Sunworkstationwith 2GB
of RAM andrunningthe SunOSb5.7 operatingsystem.
Thepracticalityandefficiency of theproposedechniqueare
illustratedby applyingit for the analysisof the power grids of
two realindustrialASIC designsWe will referto thesedesigns
asC; andC,. BothdesignsC; andC; are0.181CMOSdesigns
andhave a supplyvoltageof 1.8 V. Giventhe power grid, the
techniquerequiresasinputthecurrentsassociateavith the dif-
ferentpowerdrainsonthechip.
Differentcurrentmeasureganbe usedfor the analysisde-
pendingontheapplicationof interest.For instancewhile peak
currentis a goodrepresentatie measurdor IR drop, average
currentis a bettermeasureor electromigratioranalysis. On



Table2: Grid reductionandCPUtimes(sec)usingexactsolve
aswell asour multigrid-like (MG) technique.

Design

# of nodes| Exacttime | MG time
318074
187630
128864
101209
86883
671088
421460
310143
258591

231982

Level

C1 456.79 21.6

C 1114.13 69.28
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Figure5: Errorin nodesvoltagesfor theC; design.

0.4 0.6 0.8

theotherhand,a currentwaveformis the suitablecurrentmea-
surefor transieninalysis A straight-forvardtechniquédor ob-
tainingary currentmeasuref interestis to simulatethe power
drainsundemominalloadsandrealisticswitchingfactors.This
is how the currentmeasuresve usedfor our analysiswereob-
tained.In all ourexperimentgor DC analysiswe usedhepeak
currentdrawvn by the power drainsasour currentmeasure As
for transientanalysisthe currentmeasureisedwasthe current
waveformassociateavith the differentpower drains.

Theirregularpowergridsof thetwo designsC; andC,, were
simulated.Theviasbetweerconsecutie layersaremodeledas
ideal shortsandthe proposedapproachs appliedonly to the
two lowestmetallayers(M1, M3). This is motivatedby the
factthatthe lowestmetallayerscontritute the largestnumber
of nodes.Thenodescontritutedby the highermetallayersare
maintainedasthey are.

Severalgrid reductionsareappliedandthe problemaccord-
ingly mappedo the coarsemrids (asexplainedearlier there-
ductionis repeatedintil the grid is coarseenoughasspecified
by theuser).Specifyingfour levelsof reduction,Table2 showvs
the numberof nodesof the grid at every level. Table 2 also
shavs the CPUtimesfor solvingthe givenlinearsystemusing
botharegulardirectsolver (shavn in column4) aswell asthe
proposedmultigrid-like technique(shavn in columnb). It is
clearthatthe proposedechniques almost16x to 20x faster

Number.of nodes
o,

o
Ox

10t}

10°
—0.4

-0.2 o 0.2 0.4 1 1.2

0.6 0.8
Percentage error in node voltages

Figure6: Errorin nodesvoltagesfor theC, design.

Table3: Grid reductionandCPUtimesfor transientanalysis.

Design| Exacttransientime | MG transientime
Ct 921.16seconds 28.32seconds
C 14.3hours 86.36seconds

thantraditionalsimulation. Note thatthe samedirect solveris
usedfor solvingboththeoriginal systemaswell asthereduced
systemwhich verifiesthatthe speedups not dueto anadwan-
tageof onesolver overanother In orderto verify theaccurag
of theresults,the exact solutionis comparedo the estimated
solutionreturnedby our technique Thehistogramf percent-
ageerrorsin the voltagesof the differentnodesof the power
grids correspondindo the two designsCi; andC,, areshown
in Figs.5 and6 respectiely.

For thedesignCs, thedistribution of the nodevoltageerrors
hasameanof —0.0077%anda standardleviation of 0.0333%.
For C,, the error distribution hasa meanof —0.0026%anda
standardieviationof 0.0167%.Furthermoreligs.5 and6 also
shaw thattheerrorsatall the power grid nodesof bothdesigns
lie in the —1.0% to 1.0% range. In fact, designC; haserrors
thatrangefrom —0.93% to 0.66% while designC, haserrors
that rangefrom —0.30%to 1.0%. Thus, it is clearthatthe
proposedechniqueprovidesanaccuratesolutionto the power
grid problemat a significantspeed-upver regularsolvers.

As explainedearlier the proposednultigrid-like technique
is evenmoreadwantageousvhenappliedfor transientanalysis.
This s illustratedin Table3, which shavs thetime requiredto
runatransiensimulationof thepower grids of thetwo designs
usinga regularsolver andthe proposedechnique.The power
gridsaresimulatedor adurationof 4 nswith 0.4 nstime steps.
The speedumdwantageis clearin both cases.However, it is
moresignificantin the caseof the C, designandthereasons
thatdesigrC; is simulatedusinganiterative solverdueto mem-
ory limitations, requiringa total of 14.3 hours.Our technique,
on the otherhand,usesa directsolver to solve the problemat
thereducedgrid. Thus,only oneinitial factorizationis needed
andonly forward/backvardsolvesareneededht theremaining
time steps.Thetotal time requiredfor transientanalysisusing
the proposednultigrid-like techniques 86.36 secondsrepre-
sentinga speed-umf 600x for transientanalysis.
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Other methodsto speed-upgpower grid analysishave been
proposed4]. In [4], a hierarchicalpower grid analysistech-
nigueis proposedvhich givesspeed-updetweer2x and5x
for DC analysis.Theauthorsalsoproposeutilizing parallelism
which increaseghe speed-upgo the rangel10x to 23x [4].
However, their proposedmethod offers no speed-upsvhen
transientanalysisis appliedin serialmode.Smallerspeed-ups
betweerl.8x and5.1x canstill beobsenedwhenparallelex-
ecutionis usedfor transientanalysis. Note that the speed-up
comparisonis a function of the linear solvers being usedas
well asthesizeof the problemsbeingsolved. However, experi-
mentalresultsshov thatour methodpromisesnoresignificant
speed-upst a minimal costin accurag. Furthermorethese
speed-upareevidentfor bothDC aswell astransientanalysis.

Finally, it remaingo verify theaccurag of theresultingtran-
sientsolution. Thisis illustratedby Figs.7 and8 which shav
the voltagewaveform at one node of the power grids of de-
signsCy andC; respectiely. It is clearthatthe multigrid-like
techniqueaccuratelytracksthe exact voltagewaveform at the
givennode. Comparisonst othernodesshow similar results.
Figs.7 and8 shav anerrorin the nodevoltageof under0.17%
orabout3 mV (wefind avoltagedropof 23mV, while theexact
waveformshovs adropof 20 mV).

Thus, the multigrid-like techniqueprovides very accurate
simulationresultsfor both DC aswell astransientanalysisof
the power gridswith the addedadvantageof significantspeed-
up overregularanalysigechniques.

5 Conclusion

An efficient PDE-like methodfor power grid analysisis pre-
sented. It follows the basiclines of thoughtof the multigrid
techniquenhichis widely usedfor the solutionof smoothPDE
problems However, the proposedechniqueallsunderthecat-
egory of direct solversandthus, significantlydiffers from the
regularmultigrid methodwhichfallsunderthe cateyory of iter-
ativesolvers.Experimentatesultsonreal designshow speed-
upsof oneto two ordersof magnitudeover currentmethodgor
both DC andtransien@analysis.
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