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ABSTRACT
Transistor threshold voltages (Vth) have been reduced as part
of on-going technology scaling. The smaller Vth values feature
increased variations due to underlying process variations, with
a strong within-die component. Correspondingly, given the ex-
ponential dependence of leakage on Vth, circuit leakage currents
are increasing significantly and have strong within-die statisti-
cal variations. With these leakage currents loading the power
grid, the grid develops correspondingly large statistical voltage
drops. This leakage-induced voltage drop is an unavoidable back-
ground level of noise on the grid. Any additional non-leakage
currents due to circuit activity will lead to voltage drop which is
to be added to this background noise. We propose a technique
for checking whether the statistical voltage drop on every node is
within user-specified bounds, given user-specified statistics of the
leakage currents.

1. INTRODUCTION
Technology scaling requires reduction of the MOSFET thresh-

old voltage (Vth), to accompany the reduction in supply voltages
(Vdd) and oxide thickness. Over the years, Vth has been reduced
from about 1 V in 5 V technology (Vdd = 5 V) to about 0.3 V in
today’s 1.2 V, 0.13 µm, technology, and is forecast to be further
reduced at rate of 15% per generation in future [5]. Due to the
exponential dependence of transistor sub-threshold leakage cur-
rent on Vth, this leads to a much higher rate of increase of Ioff ,
reportedly as high as about 5X per generation [5]. As a result, it
is forecast [7] that, in the 0.1 µm generation, total chip leakage
current (for dense, high-performance chips) would be about half
of the total chip current.

Another consequence of technology scaling is that the reduced
Vth values exhibit increased statistical variations due to underly-
ing process variations [17, 12]. In 0.1 µm technology, it is possible
to get 30 mV standard deviation in Vth [3, 9]. Considering a sup-
ply voltage of, say, around 1 Volt, this means that a ±3σ interval
for Vth would span 18% of the supply! Due to the exponential de-
pendence of leakage current on threshold voltage, these variations
lead to much larger variations in leakage current. For individual
transistors, and individual logic gates, close to 3X variations have
been observed in leakage [17]. These variations are also known to
have a significant within-die component [4, 11, 2, 20, 12], so that
transistors in close proximity on the layout can have significant
variations in their leakage currents.

For whole chips, leakage variations have been measured at al-
most 20X [8]. If half the total current will, in future, be due
to leakage, and if that total leakage current is going to vary by
20X, then it is clear that this will cause strong statistical vari-
ations in the total chip current. This has many consequences
for chip design, especially for design of the power grid. In this
work, we consider the fact that, in response to these statistical
leakage currents, the grid will develop voltage drop at all the
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nodes that is correspondingly significant, and statistically vari-
able with a strong within-die component. This voltage drop is
unavoidable and manifests itself as a background level of noise on
the grid which will have an effect on circuit delay and operation.
This must be considered during circuit design. Any further (non-
leakage) current variations that may be due to circuit dynamic
operation will lead to voltage drop on the grid which is on top
of this background noise level. Thus, there is a need to verify
the grid by quantifying this background noise and making sure it
does not exceed certain user-specified values.

Being statistical, there are no good tools today to estimate this
voltage drop. Simply setting all leakage currents to their maxi-
mum possible values is overly pessimistic because local variations
in Vth will make this case extremely improbable. Instead, one
must consider all the leakage currents to be random and must
proceed to analyze the grid on that basis. In this paper, we focus
on within-die variations, which have been receiving a great deal
of attention due to the impact they are forecast to have in future
technologies. For within-die variations, a technique was proposed
in [6] for estimating the mean and variance of the (random) node
voltage drop at every grid node, using a statistical estimation
method. While that technique is efficient, it is not fast enough as
it stands to handle the multi-million node power grids that are
common today.

In this paper, we extend the approach presented in [6] to pro-
pose a way to verify the grid which can handle much larger grid
sizes. This is achieved by “changing the problem” being solved.
Rather than doing a variance analysis on the node voltages, we
will seek to characterize the distribution of the voltage drops, in
response to leakage current variations, as users may rather be in-
terested in verifying that each node voltage drop is within bounds.
This is partly motivated by the fact that, pure variance analysis
needs to be placed in a general framework where variances are put
to practical use in order to draw informative conclusions. There-
fore, one way to verify the grid is to check that the voltage drops
at all the nodes are less than certain user-supplied thresholds (for
node i, we will denote this threshold by VTi). The voltage drop
being statistical, we actually will check whether the “bulk of the
distribution” of the voltage drop at every node is below thresh-
old. The user can specify what exactly is meant by “the bulk of
the distribution,” by specifying a certain percentage of the dis-
tribution which must be below the voltage threshold. We denote
this percentage by (1 − βi). Thus, if one specifies 1 − βi = 90%,
we will check whether 90% of the distribution of the voltage drop
at node i is less than VTi. Such a node is declared safe, other-
wise unsafe. We will present an efficient statistical technique for
checking which nodes are safe and which are not.

Except for [17] and [12], there is not much prior work on the
study of statistical leakage currents due to within-die process vari-
ations. Other than [6], there is no work that the authors are aware
of on the study of the statistical grid voltages in response to the
statistical leakage currents.



2. PROBLEM STATEMENT
The background noise on the nodes of the power grid appears

as random voltage drops on the grid nodes. We will say that a
node is safe with regard to this noise if it is (highly) likely that
the voltage drop on this node is less than some threshold voltage,
and that a node is unsafe otherwise. This leads to a statistical
definition of safety, that we state as:

Definition 1. Node i is said to be safe if P{Vi < VTi} > 1−βi

Conversely, node i is said to be unsafe if P{Vi < VTi} < 1 − βi.

In the above, P{} denotes a probability, Vi the voltage drop at
node i, VTi the safety threshold voltage at node i, and βi a small
positive number between 0 and 1. The quantity 1−β specifies the
bulk of the voltage drop that is to be below a certain threshold to
assert that a node is safe, and we would refer to it as the safety
parameter. The choice of the safety parameter as well as the
safety threshold voltage at a given node takes into account how
critical a high voltage drop at that node is, and we made explicit
their dependence on the node.

Given safety parameters and threshold voltages at all nodes,
our objective is to verify each node in the grid, i.e., tell which
nodes/regions are safe with respect to the background noise, and
which present a hazard that must be accounted for during the
design/layout stages. Let V1−βi

be the 1 − βi percentile of the
voltage drop at node i, i.e., V1−βi

is such that P{Vi < V1−βi
} =

1 − βi. Clearly, Definition 1 can be restated in terms of V1−βi
:

Definition 2. Node i is said to be safe if V1−βi
< VTi and

unsafe if V1−βi
> VTi .

Thus, V1−βi
becomes a figure of merit of the verification proce-

dure. It can be viewed as a parametric measure of the voltage
drop at the nodes of the power grid taking into account pro-
cess variations on the leakage currents: if the safety parameter is
50%, this percentile is the median voltage drop, 90%, 95% repre-
sent more conservative measures, and 100% represents an upper
bound on the voltage drop. Characterizing the voltage drop by a
percentile accounts for the randomness in the leakage currents.

The verification problem reduces to determining whether the
1− β percentiles of voltage drops are greater or less than a given
safety threshold. The difficulty lies in the fact that both the
type and the parameters of the distribution of voltage drops are
unknown.

Our methodology is as follows. We will first argue that the
power grid node voltage drops due to within-die variations of
leakage currents are lognormally distributed (section 3.2). Thus,
we will be able to derive an expression for V1−βi

in terms of
the parameters of the lognormal distribution, namely, mean and
variance. We will show that computation of the mean is trivial
(section 3.3) which allows us to state the verification problem in
terms of the variances (section 3.4), for which we will derive an
analytical expression (section 4). Then, we will introduce up-
per and lower bounds on the variances that allow us to to have
100% confidence whether V1−βi

is greater or less than VTi for
some subset of the nodes (section 5). For the remaining nodes,
we will estimate the variances so as to achieve a high confidence
level on whether the percentile voltage drop is greater or less than
the safety threshold voltage (section 6). This step is a tradeoff
between accuracy and speed, in the sense that when it is com-
putationally prohibitive to ascertain (with confidence 100%) the
location of V1−βi

relative to VTi, we seek to know with a high
(but less than 100%) confidence what this relative position is.
Finally, in the case where some residual nodes have their V1−βi
so close to VTi that obtaining a high confidence on the relative
position of the two gets too expensive, we report an estimate of
V1−βi

, the figure of merit of safety/unsafety, to within a user-
defined resolution (section 6.3). The following sections elaborate
on the different steps involved in implementing this methodology.

3. STATISTICS OF NODE VOLTAGE DROPS
It is helpful to distinguish between two types of leakage in in-

tegrated circuits. A circuit certainly draws leakage current when
it is in standby or sleep mode, what may be referred to as the

standby leakage. The circuit also draws leakage current when it
is active. Indeed, a logic gate draws leakage current any time
that its supply is “on.” Even inside a switching window, part of
the current drawn from the supply may be attributed to leakage.
The leakage drawn by the circuit during its active (non-standby)
states, may be referred to as the dynamic leakage. The grid re-
sponse to standby leakage may be obtained by a DC analysis of
the grid, using only a resistive model, whereas response to dy-
namic leakage requires a transient analysis, using an RC or RLC
model of the grid.

3.1 System Equations
We consider an RC model of the power grid, where each branch

of the grid is represented by a resistor and where there exists a ca-
pacitor from every grid node to ground. In addition, some nodes
have ideal current sources (to ground) representing the current
drawn by the circuit tied to the grid at that point, and some nodes
have ideal voltage sources (to ground) representing the connec-
tions to the external voltage supply. Let the power grid consist
of N + p nodes, where nodes 1, 2, . . . , N have no voltage sources
attached, and nodes (N + 1), (N + 2), . . . , (N + p) are the nodes
with the voltage sources. Let ck be the capacitance from every
node k to ground. Let ik(t) be the current source connected to
node k, where the direction of positive current is from the node
to ground. We assume that ik(t) ≥ 0 and that ik(t) is defined
for every node k = 1, . . . , N so that nodes with no current source
attached have ik(t) = 0, ∀t. Let i(t) be the vector of all ik(t)
sources, uk(t) be the voltage at node k, and u(t) be the vector of
all uk(t) signals. Applying Modified Nodal Analysis (MNA) [16]
leads to:

Gu(t) + Cu̇(t) = −i(t) + GVdd (1)

where G is an N×N conductance matrix, C is an N×N diagonal
matrix of node capacitances, and Vdd is a constant vector each
entry of which is equal to Vdd. Let vk(t) = Vdd − uk(t) be the
voltage drop at node k, and let v(t) be the vector of voltage drops,
then (1) can be written as:

Gv(t) + Cv̇(t) = i(t) (2)

This is a revised system equation which one can solve directly for
the voltage drop values. Notice that the circuit described by (2)
consists of the original power grid, but with all the voltage sources
set to zero and all the current source directions reversed. In the
following, we will mainly be concerned with this modified power
grid and the revised system of equations (2). In cases when the
circuit is in a standby state, where all the currents are constant,
the circuit response is obtained using a DC analysis. The DC
equivalent of (2) is readily seen as:

GV = I (3)

3.2 Probability Distribution of Node Voltages
In order to characterize the distribution of voltages at the nodes

of the power grid, we have found it necessary to introduce the
following “pseudo-static” assumption:

Assumption 1. In response to within-die variations on the leak-
age currents, we assume that the grid may be solved as a DC
system at every/any time point.

This is purely a simplifying assumption which helps arrive at a
precise characterization for the voltage drop distributions. Notice
that this assumption is automatically true for the case of standby
leakage. Thus, our analysis is exact for standby leakage. For dy-
namic leakage, since the leakage current of a logic gate is constant
when it is not switching, then this assumption may be acceptable
in practice, especially since we will include in the analysis some
dynamics of the system through the computation of the mean
response (section 3.3 below).

With this assumption, the vector of node voltage drops V can
be written as a function of the vector of leakage currents I:

V = G−1I (4)



From (4), it is clear that the voltage drop at an arbitrary node i
can be expressed as:

Vi = qi1I1 + · · · + qiNIN , (5)

where qij is the (i, j)th entry of G−1. As (5) shows, the voltage
drop at any node is a linear combination of the leakage currents
loading the grid.

Process variations have both systematic and random compo-
nents [4, 18], and as is typically done with other parameters, we
will break down variations on the leakage currents as occurring
both on the wafer level and on the die level, plus a residual com-
ponent [18]:

I = Idd + Iwd + r, (6)

where Idd represents the die-to-die (or inter-die) variations, Iwd

the within-die (or intra-die) variations, and r the residual com-
ponent. Note that (6) confines the randomness to the residual
component, extracting the inter-die and the intra-die variations
in a systematic, deterministic way, according to a methodology
explained in [18].

Inter-die variations are modeled as a shift in the mean of a given
parameter and can usually be dealt with using conventional sta-
tistical analysis techniques, such as Monte-Carlo simulations, or
worst-case analysis [4]. Within-die variations, on the other hand,
arise due to a variety of independent factors related to the en-
vironment, process, and layout [14]. These factors may not be
fully comprehended, especially in the early or pre-layout stages
of the design. Hence, it is argued in [13] that characterization
of these variations as random is necessary, so as to include in
the residual term of (6) all variations that cannot be accounted
for on a systematic basis. Within-die variations cause device and
interconnect mismatches on the chip, described in [4] as “uninten-
tional”. They are known [18] to have high spatial frequency trends
across the surface of the chip, reflecting strong local variations.
In this work, we will neglect spatial correlations between within-
die leakage current variations and lump these variations into the
residual “noise” term in (6) to lay the following assumption on
the statistical properties of intra-die leakage currents, which will
subsequently prove very useful in simplifying the problem:

Assumption 2. All intra-die leakage currents may be modeled
as statistically independent random variables.

We now consider intra-die variations in leakage currents, due
to variations in the transistor threshold voltages. The latter vari-
ations are modeled as Gaussian [12] leading to lognormal [10]
variations on the leakage currents [17], by virtue of the exponen-
tial relation between the transistor leakage current and its thresh-
old voltage. Trivially, if the Ij are independent and lognormal,
then so are the qijIj . Hence, the (random) node voltages (5) are
summations of independent lognormal RVs. Sums of independent
lognormal variables have been extensively studied and character-
ized in the literature pertaining to communications engineering,
and it was found that such sums can be accurately captured by
another lognormal RV [1], hence the basis for characterizing the
distribution of the node voltage drops as lognormal. We shall
provide empirical data to corroborate this argument in section 7.

Since Vi is modeled as a lognormal RV, the distribution of Vi

has two parameters, mean and variance. By virtue of lognormal-
ity of Vi, ln (V i) is a Gaussian RV, and the cumulative density
function (cdf) of Vi is given by [10]:

FVi
(V ) = P{Vi < V } = Φ

�
ln (V ) − µln (Vi)

σln (Vi)

�
, (7)

where Φ(.) is the cdf of the Gaussian distribution with 0 mean
and unit variance, and µln(Vi)

and σln (Vi)
are respectively the

expected value and the standard deviation of ln (Vi). It can be
shown that the parameters of ln (Vi) can be expressed in terms
of the mean and variance of Vi, as follows:

µln (Vi)
= ln (µV i) − 1

2
ln

�
1 +

σ2
Vi

µ2
Vi

�
, (8)

and

σln (Vi)
=

����ln

�
1 +

σ2
Vi

µ2
Vi

�
, (9)

where µVi
and σVi

are the expected value and standard deviation
of the voltage drop at node i, respectively.

We can now derive an expression for the 1−βi percentile of the
voltage drop. Notice that V1−βi

is such that FVi
(V1−βi

) = 1−βi,
so we can write:

Φ

�
ln (V1−βi

) − µln (Vi)

σln (Vi)

�
= 1 − βi, (10)

so that:
ln (V1−βi

) − µln (Vi)

σln (Vi)

= z1−βi
, (11)

where z1−βi
is such that Φ(z1−βi

) = 1 − βi, and can be easily
calculated given βi. Therefore, we have:

V1−βi
= e

z1−βi
σln (Vi)

+µln (V i)

= µVi

e
z1−βi

����ln

�
1+

σ2
Vi

µ2
Vi

�

�
1 +

σ2
Vi

µ2
Vi

(12)

Equation (12) provides an expression for the 1−βi percentile of
the voltage drop at any node, in terms of the mean and variance
of the voltage drop at that node.

3.3 Mean Estimation
Since the system (2) is linear, then due to linearity of the mean

(E[·]) operator [15], one can write:

GE [v(t)] + C
d

dt
E [v(t)] = E [i(t)] (13)

Thus, if we solve the system (2) once, using simply the current
means as inputs, the solution gives the voltage means at all the
nodes, obtained from the dynamic model of the grid. This leaves
the variances as the only unknowns in determining the percentile
voltage drops as per (12).

3.4 Verification Equations
From Definition 2, safety/unsafety of node i is determined by

the relative position of V1−βi
and VTi. Note that (12) can be

viewed as expressing V1−βi
as a function of σ2

Vi
, i.e., V1−βi

=

f(σ2
Vi

). One can easily show the following:

1. f(0) = µVi

2. f(.) admits one local maximum for σ2
Vi

= µ2
Vi

(e
z2
1−βi − 1)

and the maximum value of f(σ2
Vi

) is µVi

�
e
z2
1−βi

3. lim
σ2

Vi
→∞

f(σ2
Vi

) = 0.

Fig. 1 shows a typical plot of f(σ2
Vi

). In order to translate the

safety/unsafety criteria on V1−βi
to conditions on the variances,

nodes will be divided into three groups according to the values of
VTi, µVi

, and z1−βi
.

Group 1. Includes all nodes i such that:

VTi > µVi

�
e
z2
1−β .

These nodes will all satisfy V1−βi
< VTi for all possible values of

the variance of their voltage drop (0 < σ2
Vi

< ∞), and therefore

are safe irrespective of their variances.
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Figure 1: A typical plot of f(σ2
Vi
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f(σ2
Vi

)

µVi

�
e

z2
1−βi

µVi

µ2
Vi

(e
z2
1−βi − 1) σ2

Vi

Group 2. Includes all nodes i such that:

µVi
< VTi < µVi

�
e
z2
1−βi .

A node in this group is safe if and only if the variance of its
voltage drop, σ2

Vi
, is such that: σ2

Vi
< σ2

1,i or σ2
Vi

> σ2
2,i, where

σ2
1,i = µ2

Vi

�
�	e

2

�
z2
1−βi

−ln
VT i
µVi

−z1−βi

�
z2
1−βi

−2 ln

�
VT i
µVi

��
− 1



��

(14)
and

σ2
2,i = µ2

Vi

�
�	e

2

�
z2
1−βi

−ln
VT i
µVi

+z1−βi

�
z2
1−βi

−2 ln

�
VT i
µVi

��
− 1



�� .

(15)
Conversely, a node in this Group is unsafe iff σ2

1,i < σ2
Vi

< σ2
2,i

(see Fig. 2a).

Group 3. Includes all nodes i such that: VTi < µVi
. A node

in this group is safe iff σ2
Vi

> σ2
3,i and unsafe iff σ2

Vi
< σ2

3,i, where

σ2
3,i = µ2

Vi

�
�	e

2

�
z2
1−βi

−ln
VT i
µVi

+z1−βi

�
z2
1−βi

−2 ln

�
VT i
µVi

��
− 1



�� .

(16)
(see Fig. 2b).

With this, determining whether a node is safe or unsafe re-
duces to knowing where the variance of the voltage at that node
is located with respect to σ2

1 and σ2
2 for Group 2 nodes and with

respect to σ2
3 for Group 3 nodes; Group 1 nodes are deemed safe,

irrespective of the variance of their voltages. Observe that the
group of each node is known automatically, and requires no a-
priori knowledge of the variance of the node voltage drop, since
z1−βi

is directly obtained knowing βi, VTi is a user-defined pa-
rameter, and the means of the voltage drops are easily calculated
using (13).

4. VARIANCE COMPUTATION
In this section, we derive an analytical expression for the vari-

ance of the voltage at every node. Under the pseudo-static as-
sumption, the system (13) is simplified to its DC version:

GE [V] = E [I] (17)

We now combine (3) and (17) to yield:

G (V − E [V]) = I − E [I] (18)

(a) Group 2 nodes

Node is unsafe iff

is in this interval
the variance of its voltage 

σ2
2,i

µ   < 
Vi

< V 
Ti

 µ  ez2
1-β i

σ2
3,i

Node is unsafe iff

is in this interval
the variance of its voltage 

(b) Group 3 nodes

Ti
V

Ti
V

Vi

σ
1,i
2

Ti
V

Vi
< µ 

f(σ2
Vi

) f(σ2
Vi

)

σ2
Vi

σ2
Vi

Figure 2: Illustration of safety/unsafety conditions
on the variances for Group 2 and Group 3 nodes.

Multiplying each side by its transpose and applying the expected
value operator to each side, leads to:

GE

(V − E [V]) (V − E [V])T

�
GT =

E

(I − E [I]) (I − E [I])T

�
(19)

We recognize the expectations as being simply covariance matri-
ces [15], so that the above result can be rewritten as:

GCov(V)GT = Cov(I) (20)

Since G is symmetric, so is G−1. Therefore, (20) becomes:

Cov(V) = G−1Cov(I)G−1 (21)

The assumption of statistical independence of leakage currents
implies that Cov(I) is diagonal, and since G−1 is symmetric, it
can be seen from (21) that:

[Cov(V)]ii =
��

G−1
�
i1

�2
[Cov(I)]11

+ · · · + ��G−1
�
iN

�2
[Cov(I)]NN , (22)

where [.]ij is the (i, j)th entry of the corresponding matrix. Let
ΣV and ΣI represent the vectors of standard deviations of volt-
ages drops and currents, respectively, and Σ2

V and Σ2
I the corre-

sponding variance vectors, and define a matrix G−1(2) such that:

[G−1(2)]ij =
�
[G−1]ij

�2
, (23)

so that (22) can be written as:

Σ2
V = G−1(2)Σ2

I (24)

The solution of (24) requires full knowledge of the inverse of G,
which is impractical for large grids, hence the difficulty in evalu-
ating the variances of node voltages.

5. DIRECT CRITERIA
In this section, we will make use of bounds that may directly de-

termine whether V1−βi
is greater or less than the safety threshold

VTi, without having to compute the variances. From the previ-
ous section, if a node is in Group 1, then this node is safe for all
possible values of the variance. The following provides similarly
useful checks.

5.1 Bounds on the Variances
As in section 3.2, let qij denote the (i, j)th element of G−1,

σIj
the standard deviation of the current source at node j and

σVj
the standard deviation of the voltage drop at node j. Since

σIj
≥ 0 and qij ≥ 0, ∀i, j, then from (24):

σ2
Vi

=
�

j

q2
ijσ2

Ij
=
�

j

(qijσIj
)2 ≤

�
	�

j

qijσIj



�

2

. (25)



This leads to an upper bound on ΣV , as follows:

ΣV ≤ G−1ΣI . (26)

Given an LU-factorization of G, the cost of computing this upper
bound is only one forward/backward solve.

Now let S =
�

j σ2
Ij

and let pj = σ2
Ij

/S. Since 0 ≤ pj ≤ 1,

then pj < p2
j , ∀j. Then we can write:

σ2
Vi

= S
�

j

pjq2
ij ≥ S

�
	�

j

pjq2
ij



� =

1

S

�
	�

j

qijσ2
Ij



�

2

. (27)

This leads to a lower bound on ΣV , as follows:

ΣV ≥ 1√
S

G−1Σ2
I . (28)

Also, given an LU-factorization of G, the cost of computing this
lower bound is only one forward/backward solve.

Putting (26) and (28) together yields the following interval on
ΣV :

1√
S

G−1Σ2
I ≤ ΣV ≤ G−1ΣI . (29)

The above inequality provides an upper and a lower bound
on the standard deviations, and hence the variances, of the volt-
age drop at each node on the power grid, at the cost of 2 for-
ward/backward solves.

To put these results to work, let u2
i and l2i be respectively the

upper and lower bounds on the variance of the voltage drop at
node i. If node i is in Group 2, with corresponding σ2

1,i and σ2
2,i,

then this node can be deemed safe if (u2
i < σ2

1,i or l2i > σ2
2,i)

and unsafe if (l2i > σ2
1,i and u2

i < σ2
2,i). Similarly, if node i is in

Group 3 with a corresponding σ2
3,i, then it can be deemed safe if

l2i > σ2
3,i and unsafe if u2

i < σ2
3,i.

6. ITERATIVE CRITERIA
If none of the checks proposed in section 5 succeeds in estab-

lishing whether some nodes are safe or unsafe, and since solving
the system (24) to get the variances is computationally expensive,
we will trade off some accuracy in the knowledge of the voltage
variances in order to arrive to an efficient way of verifying these
remaining nodes. Short of knowing with certainty whether V1−βi

is less than or greater than VTi, we will seek to know this informa-
tion with high confidence. Specifically, we will extend Definition 2
to consider that a node is safe if P{V1−βi

< VTi} ≥ 1 − α and
unsafe if P{V1−βi

> VTi} ≥ 1 − α, where α is a small number
between 0 and 1. In this perspective, for the nodes successfully
checked in section 5, α = 0.

Establishing the desired confidence level on the relative posi-
tion of V1−βi

and VTi for node i translates to establishing that
same confidence level on the relative position of the variance of
the ith node voltage and some known constants (σ2

1,i and σ2
2,i if

i is in Group 2 and σ2
3,i if i is in Group 3).

6.1 Variance Estimation
In the following, we make use of a technique introduced in [6] to

estimate the variances of node voltages. In order to simplify the
notation, let rij denote the (i, j)th entry of the matrix G−1(2)

(i.e., rij = q2
ij , where qij is defined in section 3.2), and define

σ2
Ii

, σ2
Vi

, S, and pi as in section 5.1 . As in (27), we have:

σ2
Vi

= S
N�

j=1

pjrij (30)

Since
�N

i=1 pj = 1, then we can view the pj weights as being
probability values associated with the rij values, so that the sum-
mation above becomes the mean (weighted average) of all the rij

elements in the ith row. If we define an RV ri as being a discrete

RV that takes the values rij with probabilities pj , j = 1, 2, . . . , N ,
then we can write (30) as:

σ2
Vi

= SE[ri] (31)

Let the mean of ri be µi = E[ri] and its variance be σ2
i . We can

now use methods of mean estimation from statistics, basically
Monte Carlo random sampling [10, 19], in order to estimate the
population mean µi using the mean of a much smaller sample
(say, of size n � N) from the population, i.e., using the sample
mean.

The process is simple. Using a weighted random number gen-
erator, we generate according to the probabilities pj a sequence of

indices of columns of G−1(2) to be included in the sample. From
these, we form the following sample mean for every row i:

r̄i =
1

n

�
j∈J

rij (32)

where J is the set of indices included in the random sample. We
also compute the sample standard deviation, si ≥ 0 given by:

s2
i =

1

n − 1

�
j∈J

(rij − r̄i)
2 =

n

� �
j∈J

r2
ij

�
−
� �

j∈J
rij

�2

n(n − 1)
(33)

Note that r̄i itself can be considered as an RV, with mean µi

and variance s2
i /n (for large n). Since r̄i, the sample mean, is an

unbiased estimator of E[ri] [10], then

σ̂2
Vi

= Sr̄i (34)

is an unbiased estimator of σ2
Vi

, with variance S2s2
i /n. Further-

more, by the central limit theorem [10], r̄i will be normally dis-
tributed, so that the RV:

σ2
Vi

− σ̂2
Vi

Ssi√
n

is normal with 0 mean and unit variance [19], for large n.

6.2 Error Bounds
As we are sampling columns of G−1(2), σ̂2

Vi
may fall to the

left of σ2
1,i, to the right of σ2

2,i, or between the two, if the node

is in Group 2, or to the left or to the right of σ2
3i

if the node is

in Group 3. We thus have intervals defined with respect to σ2
1,i

and σ2
2,i, or σ2

3,i. We recognize that the probability of the true

variance being outside the interval where the variance estimate
lies is not very high, and indeed for 1−α large enough, less than
1−α. Based on this, in the sampling process, we shall seek to find
the smallest number of samples n that verifies, with confidence
1 − α, whether the node is safe, according to the interval where
the variance estimate lies.

Assume node i is in Group 2, then as was shown in section 3.4,
V1−βi

< VTi is equivalent to σ2
i < σ2

1,i or σ2
i > σ2

2,i, and

V1−βi
> VTi is equivalent to σ2

1,i < σ2
i < σ2

2,i.

If σ̂2
Vi

< σ2
1,i, 1 − α confidence on the safety is reached when:

P{V1−βi
< VTi} ≥ 1 − α,

The above can be written as:

P{σ2
Vi

< σ2
1,i} + P{σ2

Vi
> σ2

2,i} ≥ 1 − α,

leading to:

P

���
��

σ2
Vi

− σ̂2
Vi�

Var(σ̂2
Vi

)
<

σ2
1,i − σ̂2

Vi�
Var(σ̂2

Vi
)

���
��

+P

���
��

σ2
Vi

− σ̂2
Vi�

Var(σ̂2
Vi

)
>

σ2
2,i − σ̂2

Vi�
Var(σ̂2

Vi
)

���
�� ≥ 1 − α.



Knowing that (σ2
Vi

− σ̂2
Vi

)/
�

Var(σ̂2
Vi

) is standard normal, this

condition reduces to:

Φ

�
(σ2

2,i − σ̂2
Vi

)
√

n

Ssi

�
− Φ

�
(σ2

1,i − σ̂2
Vi

)
√

n

Ssi

�
≤ α. (35)

That is, if σ̂2
Vi

< σ2
1,i, then a 1−α confidence level that node i is

safe is attained iff n satisfies (35). Note that (35) does not give a
closed-form solution for n, but it is easy to check it using the erf
function. Observing that in this case, σ̂2

Vi
< σ2

1,i, we can obtain

a sufficient condition for n to satisfy in order to verify safety, by
neglecting P{σ2

Vi
> σ2

2,i}, yielding:

n ≥
�

Ssnz1−α

σ2
1,i − σ̂2

Vi

�2

= n1, (36)

where z1−α is such that: Φ(z1−α) = 1 − α. Thus, (36) provides
a closed-form for n that checks the safety at node i.

Identical reasoning applies when σ̂2
Vi

> σ2
2,i, and we obtain

that the necessary and sufficient condition on n to verify safety
is:

Φ

�
(σ̂2

Vi
− σ2

1,i)
√

n

Ssi

�
− Φ

�
(σ̂2

Vi
− σ2

2,i)
√

n

Ssi

�
≤ α, (37)

and a sufficient condition that yields a closed-form for n is:

n ≥
�

Ssnz1−α

σ̂2
Vi

− σ2
2,i

�2

= n2. (38)

Finally, if σ2
1,i < σ̂2

Vi
< σ2

2,i, we need to find the number of

samples that will establish 1−α confidence that node i is unsafe,
i.e., that σ2

1,i < σ2
Vi

< σ2
2,i. Extension of the above arguments

leads to the following necessary and sufficient condition:

Φ

�
(σ̂2

Vi
− σ2

1,i)
√

n

Ssi

�
+ Φ

�
(σ2

2,i − σ̂2
Vi

)
√

n

Ssi

�
≤ 2 − α, (39)

In order to write a closed-form sufficient condition, we recall
that a 1 − α confidence interval on σ2

Vi
is given by [19]:

σ̂2
Vi

± Ssnz1−α/2√
n

, (40)

where z1−α/2 is such that Φ(z1−α/2) = 1 − α/2. So, to obtain

a 1 − α confidence level that σ2
Vi

is between σ2
i,1 and σ2

i,2, it is

sufficient to have both extremes of the interval given in (40) lie
within [σ2

1,i, σ
2
2,i]. This leads to the following condition:

n ≥
�

Ssnz1−α/2

min(σ̂2
Vi

− σ2
1,i, σ

2
2,i − σ̂2

Vi
)

�2

= n3. (41)

Obtaining bounds for nodes in Group 3 is easier. We have two
intervals where the variance estimate may fall: if σ̂2

Vi
> σ2

3,i, then

we need to check for safety, i.e.:

P{σ2
Vi

> σ2
3,i} ≥ 1 − α.

This is equivalent to:

Φ

�
(σ̂2

Vi
− σ2

3,i)
√

n

Ssi

�
≥ 1 − α,

which reduces to:

n ≥
�

Ssnz1−α

σ̂2
Vi

− σ2
3,i

�2

= n4, (42)

Note that (42) is a necessary and sufficient condition on n to
achieve 1 − α confidence that node i is safe. Similarly, if σ̂2

Vi
<

σ2
3,i, we obtain 1 − α confidence that node i is safe iff n satisfies:

n ≥
�

Ssnz1−α

σ2
3,i − σ̂2

Vi

�2

= n5, (43)

Note that n4 = n5, and that (42) and (43) are closed-form neces-
sary and sufficient conditions on n, the required number of sam-
ples.

In summary, convergence of node i is achieved as follows:

If node i is in Group 2:

If σ̂2
Vi

< σ2
1,i:

If n ≥ n1: the node is done - safe.

Else if σ̂2
Vi

> σ2
2,i:

If n ≥ n2: the node is done - safe.

Else if σ2
1,i < σ̂2

Vi
< σ2

2,i:

If n ≥ n3: the node is done - unsafe.

Else if node i is in Group 3:

If σ̂2
Vi

> σ2
3,i:

If n ≥ n4: the node is done - safe.

Else If σ̂2
Vi

< σ2
3,i:

If n ≥ n5: the node is done - unsafe.

6.3 Residual Nodes
It can be seen from (36) – (43) that the number of samples

required to establish the desired confidence level may be large if
the estimated variance is very close to σ2

1,i, σ2
2,i, or σ2

3,i. Suppose

for example that the variance estimator of a node in Group 3 is
very close to σ2

3,i. The variance itself may be either greater or

less than σ2
3,i, but the closer the estimator is to σ2

3,i, the harder it

is to establish a high confidence level on where the true variance
actually lies.

In section 6.1, we used σ̂2
Vi

as an estimator of σ2
Vi

. Given (12),

we will then use V̂1−βi
as an estimator of the 1− βi percentile of

the voltage drop at node i, which can be written as:

V̂1−βi
= f(σ̂2

Vi
), (44)

where f(.) is defined in section 3.4. Hence, if the variance esti-
mator is close to σ2

1,i, σ2
2,i, or σ2

3,i, then V1−βi
is correspondingly

close to VTi. In this case, instead of seeking to establish a high
confidence level on whether V1−βi

is greater or less than VTi, we
estimate an upper bound (a conservative value) on V1−βi

, with
1 − α confidence, that we denote Vub,i.

This can be achieved in the following way. Let δVdd be a user-
defined resolution on the estimation of V1−βi

. Let D denote the
subset of nodes which have not converged and R the subset of D
including all nodes i such that |V̂1−βi

− VTi| ≤ δV dd. If at any
time in the iteration process, R = D, and R is not empty, then
we stop iterating and we call R the set of residual nodes.

We know from (40) that with 1−α confidence, the variance of
each residual node lies in the interval [v1, v2], where

v1 = σ̂2
Vi

− (Ssnz1−α/2)/
√

n

and
v2 = σ̂2

Vi
+ (Ssnz1−α/2)/

√
n.

Knowing the variations of f(.) (as per section 3.4), it is easy to
determine the point vm in [v1, v2] where f(.) is largest. Depend-
ing on the values of σ̂2

Vi
, v1, and v2, vm can be equal to v1, v2,

or µ2
Vi

(e
z2
1−βi − 1). Clearly, then, Vub,i can be written as:

Vub,i = f(vm). (45)



VTi

ub,iV

v v1m
 = σ

Vi
2^ v22

3,i
σ

σ
Vi
2interval on

1- confidenceα

Figure 3: Finding an upper bound with 1 − α confi-
dence on V1−βi for a residual, Group 3 node.

f(σ2
Vi

)

σ2
Vi

Fig. 3 illustrates a case for a residual Group 3 node.
Residual nodes are simply nodes having their V1−β very close

to the safety threshold voltage that it becomes difficult to tell
whether they are safe or not. They are on the verge of safety
or unsafety, as they were defined. Observe that Vub,i is always
greater than VTi (otherwise node i would have converged), there-
fore, Vub,i − VTi can be viewed as the required increase in the
safety threshold on node i to establish safety on that node.

7. EXPERIMENTAL RESULTS
This method has been implemented and tested on a number

of test-case grids. Not having access to power grids from indus-
trial designs, and because we need a large number of grids to test
our approach under different conditions, we have opted to gen-
erate a number of grids ourselves. The grid generation process
is automatic, and employs a random number generator, as well
as user-specified technology and topology parameters. Starting
with a square uniform grid of a given size, we proceed to ran-
domly delete a user-specified percentage of nodes, thus rendering
the grid structurally non-uniform. Typical geometric and physical
grid characteristics (e.g. grid dimensions) as well as characteris-
tics of the fabrication process (e.g. sheet resistance of a partic-
ular level of metallization) are given by the user, leading to an
initial value of the conductance of every branch. When a node is
deleted, the conductances of the remaining surrounding edges are
increased by a random amount around a user-specified percentage
of their initial values. The rationale behind this is to allow the
non-uniform grid to be loaded with currents comparable to its
uniform predecessor while exhibiting comparable IR-drops. The
number of Vdd (C4) sites and leakage current sources are supplied
by the user; the C4s and current sources are then distributed at
random over the grid nodes.

Fig. 4 corroborates the fact that voltage drops are well mod-
eled by a lognormal distribution. If indeed voltage drops are
lognormally distributed, then their logarithms are normal. We
generated several grids and collected voltage drop data, then ver-
ified graphically the goodness-of-fit of their logarithms on normal
scores plots [10]. As can be seen from the figure, voltage drops
showed good fits, except for certain outlying points, validating
the choice of lognormal distributions to model the voltage drops
on the power grid, induced by independent, within-die leakage
current variations.

Tables 1 and 2 show the overall performance of the proposed
approach on grids of various sizes. The experiments were run on
a 1.5 GHz Sun Fire server with 4.0 GB of main memory, and we
report CPU times. The grids in the first table are small enough
so that we were able also to solve (24) to obtain the exact value
of the variance at each node, and consequently, the exact value
of the 1 − β percentile of the voltage drop. We observed in our
experiments that some grids were fully verifiable by the direct
criteria (section 5) in which case the run time is dramatically
reduced. The first grid in Table 1 and the second grid in Table 2
are examples of such grids. Having the exact values of the 1 − β
percentiles of the voltage drops for the small grids, we define
the percentage error as the ratio of the number of nodes which
were deemed safe and are actually unsafe and vice versa, to the
total number of nodes, excluding residual nodes. We report these
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Figure 4: Checking graphically the goodness-of-fit
of the voltage drop data against a lognormal distri-
bution using the method of normal scores.
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Figure 5: Distribution of upper bounds on the 1− β
percentiles for residual nodes.

errors in the last column of Table 1. In every case, the error was
very much in accordance with the specified bounds. The exact
solution comes with only modest error penalty, and in the case of
grids there were verifiable using only direct criteria, the error is
0%.

The histogram in Fig. 5 shows, for all residual nodes in a grid
of roughly 700K nodes, the distribution of the distance between
the upper bounds on the V1−βi

and the safety threshold voltages
VTi. The safety parameter (1− β) was set at (90%) for all nodes
and the confidence level for convergence (1 − α) at 90%. The
resolution was fixed at 1% of Vdd (δ = 0.01). The figure shows
that there were only 597 residual nodes. The number of such
nodes is primarily related to the user-specified resolution. The
experiments conducted all feature a resolution of 1% of Vdd, and
the number of residual nodes was consistently small, compared to
the grid size (see also Tables 1 and 2). It was stated in section 6.3
that the distance between Vub,i and VTi is an absolute measure
of how much the requirement on the safety threshold voltage at
a residual node should be relaxed (i.e., how much VTi should
increase) in order to deem a node safe. Fig. 5 illustrates that
this distance is small (the average is about 1% of Vdd in Fig. 5),
implying that the V1−β and VTi are indeed close (that closeness
being controlled by the resolution).

Our methodology assumes that an LU-factorization of the con-
ductance matrix is available, and proceeds to apply verification
checks, given this factorization. An important observation, that



Table 1: Results on small grids, where verifying the accuracy of the proposed approach is possible.

Size Safety Confidence Safety % nodes % nodes Time Time Time Time %
(#nodes) parameter level threshold safe residual (LU) (direct) (iterative) (exact) error

(1 − β) (1 − α) (% of Vdd)
20,704 99% 95% 10% 100 0 32 sec. 0.00 sec 0 17 min 0
29,132 80% 95% 5% 85.4 2.0 23 sec. 0.26 sec. 36 sec. 37.5 min. 1.3
40,604 92% 95% 10% 70.6 2.7 3 min. 0.66 sec. 11 sec 2.4 hrs. 0.4
51,711 99% 99% 10% 99.94 0.06 2.3 min. 0.66 sec. 11 sec. 3.1 hrs. 0.2
72,085 90% 95% 10% 88.4 6.8 106 sec. 0.65 sec. 133 sec. 3.9 hr. 3.9
103,775 95% 92% 15% 91.5 4.8 5.6 min. 1.28 sec. 20 sec. 10.7 hrs. 0.95

Table 2: Performance of the proposed approach on large grids.

Size Safety Confidence Safety % nodes % nodes Time Time # samples Time Memory
(#nodes) parameter level threshold safe residual (LU) (direct) (iterative) (iterative) usage

(1 − β) (1 − α) (% of Vdd)
307,655 95% 92% 15% 64 3.7 1.6 hr. 7 sec. 957 37 min. 552 MB
415,410 90% 90% 10% 100 0 2.1 hrs. 0.02 sec. 0 0 637 MB
691,850 90% 90% 10% 98.1 0.08 8.3 hrs. 20 sec. 1327 2.4 hrs. 1.3 GB
811,912 90% 90% 15% 91.5 0.4 8.65 hrs 22 sec. 1677 3.2 hrs. 1.4 GB

1,008,899 80% 95% 10% 99.8 0.10 30.3 hrs. 44.2 sec. 101 25.2 min 2.8 GB

appears more and more crucial for the larger grids, is that the
LU becomes the bottleneck in terms of run time (besides being
the bottleneck for memory usage). Despite the fact that the LU
is both time and memory consuming, we were able to run grids
of more than 800K nodes in about eleven hours in total, more
than 8.5 of which are due to the LU, which is still a reasonable
execution time. For the grid of 1M nodes, notice that the LU
takes more than 30 hours, but the verification itself less than 30
minutes. As part of future work, we will investigate ways to get
around this LU bottleneck.

8. CONCLUSION
Due to reduced threshold voltages (Vth), circuit leakage cur-

rents are much higher than before, and are projected to become
even larger. Due to increasing Vth variations, which exhibit a
strong within-die component, leakage currents are statistically
variable, with a strong within-die component. The effect of these
currents on the power grid is to generate a statistical background-
noise voltage drop level on the grid. We have presented an effi-
cient analytical methodology to verify every node in the grid in
the presence of this noise, by checking whether the bulk of the
distribution of the node voltage drop at any node falls below a
user defined voltage level, with high confidence. We have derived
bounds on the variances of the voltage drops, and direct and itera-
tive criteria to estimate a given percentile of the voltage drop. We
checked the accuracy of the proposed technique on small power
grids. For large grids, our experiments showed that when applied
on top of the LU factorization, this technique is impeded by the
cost of this factorization. As such, future work may involve ways
to alleviate the problem associated with the cost of the LU.
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