
Timing Analysis in Presence of Power Supply and Ground
Voltage Variations∗

Rubil Ahmadi
Department of ECE
University of Toronto

Toronto, Ontario, Canada

rubil@eecg.utoronto.ca

Farid N. Najm
Department of ECE
University of Toronto

Toronto, Ontario, Canada

f.najm@utoronto.ca

ABSTRACT
Given the sensitivity of circuit delay to supply and ground voltage
values, static timing analysis (STA) must take into account supply
voltage variations. Existing STA techniques allow one to verify
the timing at different process corners which effectively only con-
siders cases where all the supplies are low or all are high. Cases of
mismatch between the supplies of driver and load are not consid-
ered. In practice, supply voltages are neither totally independent
nor totally dependent. In this work, we consider the supply and
ground nodes of a logic gate to be either totally independent vari-
ables, or to be directly tied or connected to those of some other
gate(s) in the circuit. We also assume that the exact supply
voltage values are not known exactly, but that only upper/lower
bounds on them are known. In this framework, we propose new
timing models for logic gates and identify the worst-case voltage
configurations for individual gates and for simple paths. We then
give an STA technique that provides the worst-case circuit delay
taking supply variations into account.

1. INTRODUCTION
Deep sub-micron (DSM) CMOS requires the use of reduced

supply voltages (Vdd). With a reduced Vdd, even a small drop
in the local supply voltage can have a significant effect on circuit
timing. As we will show below, if the supplies are allowed to
vary by up to 12.5%, one can observe (by simulation) up to 2.4X
increase in gate delay, in 0.13µm CMOS. Thus, for today’s and
future technology, the issue of circuit timing is tightly coupled
to the question of supply voltage drop. To complicate matters,
the sheer size of modern power grids, and the large variety of
possible circuit currents, make it very difficult to do an accurate
analysis of the grid in order to compute the supply voltage drop.
Nevertheless, timing verification must take into account power
supply variations.

We are studying the effect of variations of the grid voltages
on the circuit timing, and are developing a static timing analy-
sis (STA) approach that takes these variations into account. We
assume that the exact voltage drops are not known, but that the
ranges of voltage drops are specified. A key issue to be considered
is whether the voltage drops on the grid are independent variables
or not. Obviously, the voltages are neither totally independent
(due to the presence of the grid) nor totally dependent (due to
the presence of potentially independent circuit currents that load
the grid). In this work, we start by assuming that the voltage
drops are totally independent and identify the worst-case voltage
configuration that causes a logic circuit to exhibit its worst-case
delay. This question is theoretically interesting, but also prac-
tically relevant because if one cannot determine exactly how the
grid voltages are dependent, then knowing the worst-case is a use-
ful fall-back position to have available. Then, we consider certain
specific types of dependencies among the supply nodes, namely
that some may be tied together, and study how the worst-case
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Figure 1: Modeling parameters

delay is modified in that case. Based on all this, we then offer
an STA algorithm that gives the worst-case circuit delay taking
supply variations into account.

Consider the diagram in Fig. 1, where an inverter is shown with
its input and output waveforms. The power supply nodes of the
inverter are considered the reference Vdd and Vss, and the input
is assumed to rise from Vil to Vih. The output of the inverter, as
does the output of its fanout interconnect network, falls from Vdd
to Vss. It is instructive to consider what is a practical range of
variations of the power supply values. In order for the circuit to
function properly, the transistors must be able to turn off, which
sets a limit on how large the supply variations may be. For one
thing, we should have |Vss − Vil| < Vtn and |Vih − Vdd| < |Vtp|.
In the worst-case, if we consider opposite variations for (Vss, Vil)
and (Vih, Vdd), then:

|∆Vss| + |∆Vil| < Vtn ⇒ roughly, |∆Vss| < Vtn/2 (1)

|∆Vdd| + |∆Vih| < |Vtp| ⇒ roughly, |∆Vdd| < |Vtp/2| (2)

Throughout this work, we have used 0.13µm CMOS technology,
with a nominal supply voltage of 1.2V, and we assumed ±12.5%
variation around Vdd and Vss. This is equivalent to 0.15V fluctu-
ation around the nominal power supply and ground. Therefore,
Vih and Vdd can vary from 1.05V to 1.35V, and Vil and Vss can
vary from -0.15V to +0.15V. In the rest of the paper, we will refer
to these ranges of voltages as the valid or allowed supply voltage
ranges.

2. MODELING
In order to develop a timing analysis approach in presence of

power supply and ground voltage fluctuations, one needs to first
develop a delay model for cells and interconnect that is depen-
dent on these voltages. In this section, we will first define delay
in a variable voltage environment and then introduce our delay
models.

2.1 Delay definition
The notion of signal delay needs careful definition when the

supplies are potentially different between the driver and the load.
Consider the typical timing waveforms in Fig. 2. The gate delay
is defined as td1 = t2 − t1, where t1 is the time at which the
input signal reaches (Vih + Vil)/2 and t2 is the time at which
the output reaches (Vdd + Vss)/2. The interconnect delay is
defined as td2 = t3−t2, where t2 and t3 are the times at which the
input and the output signals of the interconnect network reach
(Vdd + Vss)/2.
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Figure 2: Gate and interconnection delay.

2.2 Gate delay model
The gate delay depends on the traditional parameters of input

signal slope and output load. In addition, in this work, we model
the dependence of gate delay on the four supply voltages defined
above, in Fig. 1. Thus, six parameters are considered as part of
the gate delay model: the input high signal level (Vih), the input
low signal level (Vil), the gate’s power supply (Vdd), the gate’s
ground (Vss), the input slope (Sin), and the gate’s output load
(Cl). The input slope is defined as the slope (dV/dt) of the
input waveform at the time when it crosses (Vil + Vih)/2.

It is instructive to consider how variable the cell delays are,
and how strong is their sensitivity to the supply voltages. To
this end, we have built a library of cells, containing 2-input and
3-input input NAND, NOR, AND, OR and NOT gates. In our
experiments, the load, transistor widths, and four voltage levels of
the gates were varied across their valid ranges. Transistor width
was allowed to vary from 160nm (the minimum size for 0.13µm
technology) to 2400nm, and the loads from 1fF to 32.5 fF (as a
comparison, the input capacitance of a minimum size gate for this
technology is near 1fF). Furthermore, different combinations of
consecutive gates were tested. Fig. 3 shows all possible gate type
combinations along with valid parameters ranges. Normalized
delay of gates in our library shows that the delay can change by
up to 240% (2.4X) due to a 12.5% variation of the supply and
ground around their nominal values.

Modern cell libraries represent the delay of cells using four 2-
dimensional tables for each timing arc (a timing arc is an input-
output node pair). In case of a falling output, one table gives the
propagation delay and another gives the output slope. Another
two tables correspond to the rising output case. Each table covers
the range of valid input slope and output load values. Simple
extension of this model to our case would require 6-dimensional
tables, which would be impractical in terms of model size and cost
of building the model. In order to simplify the model, we found
that the delay dependence on each voltage is near-linear in the
(narrow) range of valid voltages. However, to be more accurate,
we have used a quadratic polynomial to represent the dependence
of delay on each voltage, and made allowance for cross-product
terms, by using a template expression for delay as follows:

td =
�

k

αkV
ak
ih V

bk
il V

ck
dd V

dk
ss

where αk ∈ R, and (3)

ak, bk, ck, dk ∈ {0, 1, 2}
The regression coefficients αk are found by using a standard Least
Mean Square (LMS) regression method [7]. The regression is
performed for each grid point in the [slope, load] table, so that
each cell in the [slope, load] table contains the values for a number
of coefficients α1, α2, . . . , αm. A similar model to this gives the
output slope in terms of all four voltages and input slope and
output load. We characterized (built the delay models for) all
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Figure 3: Possible gates and parameters combina-
tion.
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Figure 4: Modeling error.

the cells in our library, then tested the error in delay between
HSPICE and the library model. The results are shown in Fig. 4 for
the propagation delay. It is seen that the model has very good
accuracy. The output slope component of the model was also
tested, and it shows an error of under 3%, which also is good.

2.3 Interconnect delay
Interconnect delay can be modeled by any of the modern ways,

using either Elmore delay [6], moment matching [5], or other
higher-order modeling approaches. The interconnection delay is
independent of both the driver and the load gate’s voltages, and
it just depends on interconnect model values and the transition
time of the driver gate. Therefore, the interconnect delay requires
no special treatment.

3. WORST-CASE GATE DELAY
Given a logic gate with variable supplies, it is important to

look for the supply configuration that gives the worst-case gate
delay. The situation is complicated, due to the number of vari-
ables involved, especially for complex CMOS gates. We will first
consider this in the easy special case of an inverter, where ana-
lytical expressions are possible, and then generalize to the case of
arbitrary CMOS gates.

3.1 Special case: inverter
In this section, we will consider inverters, with rising and falling

input signals. Simple quadratic equations are used for the NFET
and PFET transistor currents and a delay expression is derived
that shows, among other things, the dependence of delay on the
supply and ground voltages. We then consider the sensitivity of
the delay to the supply/ground variations and highlight the sign
of the sensitivity terms, as this will turn out to be important in
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the rest of the paper. For more complex logic gates, for which
analytical results are not possible, we will give empirical data to
show the sign of the sensitivity terms.

3.1.1 Step input
Fig. 5 shows an inverter with an output load Cl. Let Vtp and

Vtn be the PFET and the NFET threshold voltages, respectively.
Let Vgsp and Vgsn be the gate-source voltage of the PFET and
the NFET transistors.

3.1.1.1 Falling delay.
Consider a rising step signal as the input signal of inverter,

as shown in Fig. 5. Initially, the input of the inverter is low,
the NFET is in cutoff and the PFET in saturation. When the
input becomes high, the output load is discharged through the
NFET and the output voltage may be found as the solution of
the following differential equation:

Cl
∂Vo

∂t
= −Idn (4)

where Vo(0) = Vdd and where:

Idn =

���
��

0 for Vgsn < Vtn

βn((Vgsn − Vtn)Vo − V 2
o
2

) for Vo < (Vgsn − Vtn)
βn
2

(Vgsn − Vtn)2 for Vo > (Vgsn − Vtn)

(5)
where Vgsn = Vih − Vss. Solving for the falling delay (the time

when Vo reaches (Vdd+Vss)
2

), leads to:

tdf,step =

�
ln

�
4Vih − 5Vss − 4Vtn − Vdd

Vdd + Vss

�
+

2(Vss + Vtn + Vdd − Vih)

(Vih − Vss − Vtn)

�
Cl

βn(Vih − Vss − Vtn)
(6)

We define the sensitivity of this delay to Vdd to be given
by ∂tdf,step/∂Vdd, and likewise for the other voltage variables.
These sensitivities can be found analytically by differentiation; it
is found that, for the whole range of allowable voltage variations,
the sensitivity of this delay to Vdd and to Vss is positive, and its
sensitivity to Vih is negative, so that:

∂tdf,step

∂Vdd
≥ 0

∂tdf,step

∂Vss
≥ 0

∂tdf,step

∂Vih
≤ 0

∂tdf,step

∂Vil
= 0

(7)
Therefore, the worst-case inverter falling delay may be found by
setting Vdd = H, Vss = H and Vih = L (H stands for the highest
allowable value, and L stands for the lowest allowable value),
which may be represented by the mnemonic:

�
L

∗
��

H

H

�
(8)

3.1.1.2 Rising delay.
In the case when the input is a falling step, similar results can

be found as follows. While the input signal is initially high, the
PFET is in the cutoff mode and the NFET is in saturation. When
the input falls, the output load will be charged through PFET, as
shown in Fig. 5. The output voltage may be found as the solution
of the following differential equation:

Cl
∂Vo

∂t
= Idp (9)

where Vo(0) = Vss and where:

Idp =

���
��

0 for Vgsp > Vtp

βp((Vgsp − Vtp)Vdsp − V 2
dsp

2
) for Vdsp > (Vgsp − Vtp)

βp

2
(Vgsp − Vtp)2 for Vdsp < (Vgsp − Vtp)

(10)
where Vgsp = Vil − Vdd and Vdsp = Vo − Vdd. Solving for the

rising delay (the time when Vo reaches (Vdd+Vss)
2

) leads to:

tdr,step =
Cl

βp(Vil − Vdd − Vtp)

�
2(Vil − Vtp − Vss)

(Vil − Vdd − Vtp)

+ ln

�
(Vdd − Vss)

(−4Vil + 3Vdd + 4Vtp + Vss)

��
(11)

The sensitivities of this delay to the various voltages can be
found analytically. It is seen that tdr,step is independent of Vih,
and that the sensitivities to Vdd and Vss are both negative while
the sensitivity to Vil is positive:

∂tdr,step

∂Vdd
≤ 0

∂tdr,step

∂Vss
≤ 0

∂tdr,step

∂Vih
= 0

∂tdr,step

∂Vil
≥ 0

(12)
Therefore, the worst-case inverter rising delay may be found by
setting Vdd = L, Vss = L and Vil = H, which may be represented
by the mnemonic: � ∗

H

��
L

L

�
(13)

3.1.2 Ramp input
The previous two sections were based on an assumption of a

step input. In order to obtain more realistic results, we consider a
saturated ramp input. In this case, analytical results are possible,
based on a case analysis [2] in which the input slope value is used
to select one of two cases: 1) the input is fast, fast enough that
it reaches its final value before the transistor (NFET for rising
input, PFET for falling input) exits the saturation region, and
2) the input is slow, slow enough that the transistor (NFET for
rising input, PFET for falling input) exits the saturation region
before the input reaches its final value.

3.1.2.1 Fast input case.
For the fast input case, new differential equations can be for-

mulated, and the falling and rising delays are given by:

tdf = tdf,step +

�
Vih + 2Vtn + 2Vss − 3Vil

6S

�
(14)

tdr = tdr,step +

�
3Vih − Vil − 2Vdd − 2Vtp

6S

�
(15)

where S is the slope of input signal. It is helpful to rewrite these
equations in the following form:

tdf = Clgf (V) +
hf (V)

S
(16)

tdr = Clgr(V) +
hr(V)

S
(17)

where gf , gr, hf and hr are functions of the four voltages (V is a
vector of the four voltages Vdd, Vss, Vih, and Vil) whose analytical
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Figure 6: Falling delay sensitivities for ramp input,
with Vil set at nominal value.

expressions are clear from (6), (11), (14), and (15). Sensitivities
can again be obtained by differentiation, leading to:

∂tdf

∂V∗
= Cl

∂gf

∂V∗
+

1

S

∂hf

∂V∗
(18)

∂tdr

∂V∗
= Cl

∂gr

∂V∗
+

1

S

∂hr

∂V∗
(19)

where V∗ is any of the four voltages Vdd, Vss, Vih, or Vil.
Notice that ∂gf /∂V∗ has the same sign as ∂tdf,step/∂V∗, due

to (14) and (16) and ∂gr/∂V∗ has the same sign as ∂tdr,step/∂V∗,
due to (15) and (17). Therefore, for a falling output, notice
that, whenever ∂gf/∂V∗ has the same sign as ∂hf /∂V∗, then
∂tdf /∂V∗ has the same sign as ∂tdf,step/∂V∗. Thus, the only
case when ∂tdf /∂V∗ and ∂tdf,step/∂V∗ may have different signs
is when ∂gf /∂V∗ has a different sign from ∂hf /∂V∗, which one
can easily show occurs only when V∗ corresponds to Vih (in which
case ∂gf /∂Vih is negative and ∂hf /∂Vih is positive) and for small
values of S and Cl. Since both S and Cl are bounded, we have
set them at their minimum values and computed sensitivities for
different voltage combinations. Across the whole range of al-
lowed voltages, it was found that ∂tdf /∂V∗ has the same sign as
∂tdf,step/∂V∗, as can be seen in Fig. 6, which was generated for
the case when S and Cl are at their respective minimum values.
Therefore, an important conclusion is that, in the fast input case,
with the output falling, the sensitivities have the same signs as
was found in the step input case, for all possible values of input
slope and output load:

∂tdf

∂Vdd
≥ 0

∂tdf

∂Vss
≥ 0

∂tdf

∂Vih
≤ 0

∂tdf

∂Vil
≤ 0 (20)

A similar analysis applies to tdr . The only case where ∂gr/∂V∗
has a different sign from ∂hr/∂V∗ is when V∗ corresponds to
Vil, in which case ∂gr/∂Vil is positive and ∂hr/∂Vil is negative.
Again, setting both S and Cl to their minima, it was found that,
for all voltages in the allowed range, ∂tdr/∂V∗ has the same sign
as ∂tdr,step/∂V∗, as can be seen in Fig. 7, which was generated for
the case when S and Cl are at their respective minimum values.
Therefore, an important conclusion is that, in the fast input case,
with the output rising, the sensitivities have the same signs as
was found in the step input case, for all possible values of input
slope and output load:

∂tdr

∂Vdd
≤ 0

∂tdr

∂Vss
≤ 0

∂tdr

∂Vih
≥ 0

∂tdr

∂Vil
≥ 0 (21)
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3.1.2.2 Slow input case.
For the slow input case, the analysis becomes much more com-

plicated. It is possible to obtain expressions for the rising and
falling delays, but the sensitivities were then obtained by numer-
ical differentiation (finite difference approximation). The same
results are found, as (20) and (21), for the signs of the sensitivi-
ties.

3.1.3 Summary: inverter case
Sensitivities of inverter delay to supply voltage variations have

the signs given in (20) and (21), for all possible voltages, slopes,
and loads, in the allowed ranges. Correspondingly, the worst-case
voltage configuration is given by:

for falling output:

�
L

L

��
H

H

�
(22)

for rising output:

�
H

H

��
L

L

�
(23)

3.2 General case: arbitrary gates
As we have seen, the delay of a cell depends approximately

quadratically on the four voltages. In order to study sensitivities,
it is instructive to consider separately the quadratic dependence
on each voltage variable. As shown in Fig. 8, if a quadratic func-
tion, Y = AV 2 + BV + C, is “concave up” (i.e., if A > 0), its
maximum occurs at a corner of the V -domain. If it is “concave
down” (i.e. if A < 0), its maximum occurs at K = −B

2A
if K is in

the V -domain, otherwise the maximum occurs again at a corner
of the V -domain.

Fig. 9(a) shows data for the two quadratic expressions for Vss

and Vil. The V -domain in this case is the interval from −0.15V to
+0.15V. It is seen that K is out of V -domain for all the cells and



Table 1: Inverting gate delay sensitivity.

Input Signal ∂td
∂Vdd

∂td
∂Vss

∂td
∂Vih

∂td
∂Vil

Rising + + − −
Falling − − + +

all the gate combinations in the library. As a result, in all cases,
the maximum of these quadratic terms occurs at a corner of the
V -domain. Similar results were obtained, and similar conclusions
found, for the quadratic expressions for Vdd and Vih, as shown
in Fig. 9(b). A corollary conclusion is that the sensitivity of the
delay to a given voltage variable does not change sign as that
voltage is varied across its whole range. It remains always either
positive or negative. This is consistent with what was found for
inverters, above.

Finally, we considered a cascade of two gates, as in Fig. 3,
where the supplies of the “driver gate” are Vih and Vil and the
supplies of the “load gate” are Vdd and Vss, for the following
reason. In practice, every CMOS gate is driven by another CMOS
gate, so that a variation of the supply and ground of the driver
gate would affect its output slope, and hence the input slope of
the load gate. Thus, it is important that the sensitivities and the
worst-case settings of Vih, Vil, Vdd, and Vss be made in a realistic
situation where changes of Vih and Vil have an effect on the input
slope of the load gate. Analytical study of this situation is not
possible. Instead, all combinations of gates, of varying sizes, were
simulated in the configuration of Fig. 3. All inverting gates in our
library show the same sign pattern that was found analytically
for the inverter, summarized in Table 1, and which leads to the
worst-case voltage settings in (22) and (23).
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Figure 9: a) K factors for Vss and Vil, and b) K
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3.3 Gates with connected supplies (blocks)
We now extend the analysis to handle combinations of gates

whose supplies are not independent. Especially interesting is the
special case when several consecutive inverting gates on a path
share a common power supply and ground; we call this structure a
block. Thus, a block may be a simple AND cell from a cell library,
or a general path of consecutive inverting gates with connected
supplies. The case of a block consisting of a single gate will
be considered a degenerate or trivial case, and will be referred
to as a trivial block. In general, the term “block” will refer to
a non-trivial block. For block analysis, analytical methods are
not available, and we will use empirical data to study the delay
sensitivities.

Recall that, for a case such as in Fig. 10(a), where the output
of gate 1 is rising, the worst-case delay of gate 2 corresponds to	L

L


	H
H



. If the two supplies of the driver and load gates are con-

nected, such as in Fig. 10(b), then the worst-case setting for the

delay of gate 2 is simply
	 L

H



, irrespective of signal polarity in

fact. This is a commonly known fact, and can easily be shown an-
alytically by replacing Vih by Vdd and Vil by Vss in (14) and (15)
and differentiating both equations. Indeed, it is not hard to see
that irrespective of the type of gates, and the length of the path,
for an arrangement such as in Fig. 10(c), the worst-case delay of

the block identified in the figure corresponds to
	 L

H
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Table 2: Voltage configurations for worst-case delay

Gate Input Falling Input Rising

Vdd Vss Vih Vil Vdd Vss Vih Vil

Inverting gate L L H H H H L L
Block L H H H L H L L

Consider now the case in Fig. 10(d), where, for a rising input
to gate 2, we are interested in the delay of the block composed
of gates 2 and 3. In this case, and according to the preceding
discussion, the worst-case delay of gate 2 is achieved for Vdd = H,
while the worst-case delay of gate 3 requires Vdd = L. How is
this conflict to be resolved? We have found, empirically, that
under all conditions of slopes and loads, the sensitivity of gate 3
is dominant, so that the worst-case combination turns out to be	L

L


	 L
H



. This happens because the delay of a logic gate whose

output is being pulled high (such as gate 3) is more dependent
on the value of Vdd than the delay of a gate whose output is
being pulled low (such as gate 2). This conclusion was also found
to apply for all cases where the gates 1, 2, and 3 are any other
inverting gate from our library.

Finally, consider Fig. 10(e). Since it has the same supplies as
its driver, the worst-case delay for the block composed of gates 4,
5, · · · , n corresponds to Vdd = L, Vss = H. Since the worst-case

delay for the block composed of gates 2 and 3 is also
	 L

H



, then the

general conclusion (we have similarly analyzed the falling input
case) is that for any (non-trivial) block, the worst-case block delay
corresponds to the following:

for a rising input:

�
L

L

��
L

H

�
(24)

for a falling input:

�
H

H

��
L

H

�
(25)

A summary for the worst-case block delay configurations, for
both inverting gates (trivial blocks) and for general (non-trivial)
blocks, which includes non-inverting cells, is given in Table 2.

4. WORST-CASE PATH DELAY
The total delay of a signal along a path of gates (specifically,

along a path of timing arcs) is the sum of the individual delays of
all the timing arcs on the path. Consider all the supply voltages of
the gates on a path. If these voltages are viewed as independent
variables, then what is the combination of supply values that
gives the worst-case path delay? The path delay corresponding to
this setting is the absolute worst-case in practice and is therefore
worth studying. We first consider this question, and then consider
the case when the path includes both gates with independent
supplies and blocks.

4.1 Gates with independent supplies
Consider the simple 2-gate path shown in Fig. 11, with a falling

input. In the following, we will use the following simplified no-
tation so as to simplify the presentation. For a gate “i”, we will
denote its delay sensitivity to “its” supply voltage as ∂tdri/∂Vdd

(for the rising output case), even though that supply node may
be labeled differently on the diagram. For instance, in Fig. 11,
the sensitivity of gate 1 to its supply voltage will be denoted
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Figure 11: Connected inverting gates with indepen-
dent supplies and grounds.

∂tdr1/∂Vdd and the sensitivity of the delay of gate 2 to its supply
voltage will be denoted ∂tdf2/∂Vdd, even though the two supply
nodes are labeled Vd1 and Vd2 in the figure. Likewise, for the
other voltages.

If tp = tdr1 + tdf2 is the total path delay, then ∆tp = ∆tdr1 +
∆tdf2 leads to:

∆tp =
∂tdr1

∂Vih
∆Vd0 +

∂tdr1

∂Vil
∆Vs0 +

∂tdr1

∂Vdd
∆Vd1 +

∂tdr1

∂Vss
∆Vs1 +

∂tdf2

∂Vih
∆Vd1 +

∂tdf2

∂Vil
∆Vs1 +

∂tdf2

∂Vdd
∆Vd2 +

∂tdf2

∂Vss
∆Vs2 (26)

and, collecting terms, this leads to:

∆tp = (
∂tdr1

∂Vdd
+

∂tdf2

∂Vih
)∆Vd1 + (

∂tdr1

∂Vss
+

∂tdf2

∂Vil
)∆Vs1 +

(
∂tdf2

∂Vdd
)∆Vd2 + (

∂tdf2

∂Vss
)∆Vs2 + (

∂tdr1

∂Vih
)∆Vd0 + (

∂tdr1

∂Vil
)∆Vs0 (27)

Considering Table 1, it is clear that the coefficient of ∆Vd1 in (27)
is negative. Therefore, in order to have the maximum delay, one
should set Vd1 = L. Likewise, for the other voltages, Vd0 = H,
Vd2 = H, Vs0 = H, Vs1 = L, and Vs2 = H. For a rising input
signal, we have the same expression with different signs, leading
to the following worst-case voltage setting: Vd0 = L, Vd1 = H,
Vd2 = L, Vs0 = L, Vs1 = H, and Vs2 = L. Since Table 1 is
valid for all inverting gates not only inverters, then this result is
general and applies to arbitrary inverting gates.

It is interesting that the worst-case delay is so easily identifiable
and corresponds to a setting of:

�
H

H

��
L

L

��
H

H

�
(28)

for the falling input case, and the opposite setting for the rising
input case. The reason this works so well is that the individual
worst-case assignments of the gates match exactly due to the
reversed polarity of the transitions at the outputs of consecutive
gates.

Indeed, it is clear that this result extends naturally to paths of
arbitrary length, by induction. Therefore, for a multi-gate path
composed of all inverting gates with independent supplies, the
worst-case voltage setting for a falling input is given the staggered
arrangement:

�
H

H

��
L

L

��
H

H

��
L

L

��
H

H

�
. . . (29)

and, for a rising input, it is given by the alternate staggered
arrangement:

�
L

L
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H

H
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L

L

��
H

H

��
L

L

�
. . . (30)

4.2 Mix of independent gates and blocks
When considering a path that mixes non-inverting gates and

general blocks, then it is possible to observe a conflict between
the sensitivities to the supplies, so that the solution is not neces-
sarily the nice staggered arrangements seen above. In theory, a
conflict in the supply voltage assignment can always be resolved
during timing analysis (as will be described below) by generating
and following various alternatives. The mechanism for doing this
will be seen to require the generation of additional “signals” to
be propagated during the timing analysis. However, in order to
reduce the overhead due to these signals, we will describe ways

Vdd1 Vih

Vil

Vdd2

Vss2Vss1

Vih

Vil

Block2Block1

Vdd1

Vss1

Vdd2

Vss2

Figure 12: Consecutive blocks with independent
supplies

in which certain conflicts can be resolved easily without the need
for additional signals during timing analysis.

Conflicts can be resolved easily in case of a series connection of
two blocks. If the first block is a trivial block (a single inverting
gate), then there is actually no conflict. To see this, consider the
case when the signal at the intermediate node (input of the 2nd
block) is rising. Then, based on the preceding analysis, the worst-
case delay of both the gate and the block are achieved when the

gate’s supplies are set to
	L

L



. If that signal is falling then the

gate’s supplies should be
	H

H



in order to maximize both the gate

delay and block delay, and there is no conflict. Conflict arises
when the first block is non-trivial, as follows.

Consider two consecutive blocks with independent supplies, as
shown in Fig. 12, and consider the case when the output of the
first block is rising. The first (non-trivial) block requires a set-

ting of
	 L

H



for its supplies. The second block requires a setting

of
	L

L


	H
H



. Thus, there is a conflict in the setting of the ground

value of the first block. We have found, empirically, that the
sensitivity of td2 (delay of block 2) to Vss1 is always smaller (in
magnitude; recall, this sensitivity is negative) than the (positive)
sensitivity of td1 (delay of block 1) to Vss1, leading to the con-
clusion that Vss1 must be set to H in order to maximize the path
delay. Basically, the sensitivity of the delay of a logic gate to its
supply voltage turns out to be larger than its sensitivity to the
input signal level. When the intermediate signal is falling, the
conflict has to do with the value of Vdd1, and we have found that
the worst-case corresponds to setting Vdd1 to L. We now show
some empirical justification for these conclusions - further data
are available but are not shown due to lack of space.
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Figure 13: a) Vss and Vil sensitivity for falling output
b) Vdd and Vih sensitivity for rising output

Fig. 13(a) shows ∂tdf2/∂Vil and ∂tdr1/∂Vss in the same his-
togram when the first block (Fig. 12) is a cascade of two inverting
gates and the second block is a single inverting gate. It is seen
that the former sensitivity is negative and the latter is positive,
but the minimum value of the latter is greater than the absolute
value of the minimum value of the former. Therefore, the sensi-
tivity of the path delay to Vss1 is positive and Vss1 must be set
to H. Fig. 13(b) shows ∂tdr2/∂Vih and ∂tdf1/∂Vdd for the same
circuit when the intermediate node is falling. Here, the former
sensitivity is positive and the latter is negative, and the maximum
value of the former is less than the absolute value of the maximum
value of the latter, therefore the overall delay sensitivity of the
path to Vdd1 is negative and Vdd1 must be set to L. The above
data was obtained for all combinations of gates in our library. If



Table 3: STA and HSPICE worst-case delay for the random-range case.

Circuit STA(ns) SPICE(ns)

Nominal Min Supply Worst-Case Nominal Min Supply Worst-Case

C1355 2.48 3.24 3.5 (7%) 2 2.89 (45%) 3.24 (63%)
C1908 3.2 3.97 4.35 (8.75%) 2.7 3.62 (34%) 4 (48%)
C2670 3.4 4.3 4.4 (10%) 3 3.86 (29%) 3.98 (32%)
C3540 4.26 5.4 5.6 (6.7%) 3.7 4.87 (32%) 5.25 (42%)
C432 4.33 5.3 5.5 (5%) 3.9 5 (28%) 5.24 (34%)
C499 1.97 2.6 2.8 (1.5%) 1.77 2.36 (33%) 2.76 (56%)
C5315 3.7 4.75 5.1 (9.6%) 3.24 4.26 (31%) 4.65 (43%)
C7552 2.89 3.66 3.98 (2%) 2.58 3.5 (35%) 3.9 (51%)
C880 2.14 2.6 3 (10%) 1.8 2.3 (26%) 2.73 (50%)
S1494 1.78 2.23 2.3 (0%) 1.67 2.2 (32%) 2.3 (38%)
S420 1.23 1.52 1.61 (14%) .98 1.32 (35%) 1.41 (43%)
S444 1.13 1.4 1.61 (3%) .96 1.25 (30%) 1.55 (61%)
S510 1 1.2 1.34 (11%) .84 1 (19%) 1.2 (43%)
C1355−20−70 2.4 3.21 3.51 (8%) 2 3 (50%) 3.25 (63%)
C1908−10−50 3.25 3.81 4 (12%) 2.73 3.28 (20%) 3.54 (30%)
C432−3−80 4.42 5.4 5.63 (1.2%) 3.93 5.35 (36%) 5.56 (41%)
C499−7−10 1.87 2.4 2.74 (5.4%) 1.7 2.38 (34%) 2.6 (46%)
C7552−11−75 2.91 3.4 3.63 (6%) 2.61 3.3 (26%) 3.42 (31%)
S420−20−10 1.2 1.5 1.58 (12%) .98 1.27 (30%) 1.4 (42%)
S444−3−60 1.1 1.45 1.5 (10%) .94 1.3 (38%) 1.36 (44%)
S510−4−50 1 1.2 1.26 (14%) .84 1 (19%) 1.1 (30%)
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Figure 14: C880 Delay with falling outputs.

the first block is longer than simply two gates, its sensitivity to
its supply or ground will only increase (in magnitude) so that the
same conclusions hold. If the second block is non-trivial, then
it has more delay and its sensitivity to Vss1 or Vdd1 increases in
a way which could, in theory, negate our conclusion. However,
since the input signal mainly affects the delay of the first one or
two gates in the path (again, we have established this empirically
but it is not hard to see why it is true), this does not happen,
and the conclusion is intact.

5. TIMING ANALYSIS
Static Timing Analysis (STA) gives the maximum delay of a

combinational circuit. The available techniques range from the
early work of Kirkpatrick [4] and Hitchcock [3], to recent work
by Blaauw [1], which is significant in that it carefully takes into
account the effect of the input slope on path delay during signal
propagation. Our implementation of STA is based on [1]. We
consider that supply nodes of the logic gates in a circuit are either
tied together, in arbitrary combinations, or are independent.

For each primary input, two signals are created, one rising and
one falling, each with an arrival time of 0. For each logic gate,
we propagate the signals at its inputs to its output, and then we
prune the signal set at that output node. If the supply nodes
of that gate are tied nowhere else, then each signal at a gate’s
input node yields one signal at the gate’s output node, which

has arrival time and slope as determined by our timing model,
using the worst-case supply settings for that gate and for that
polarity of transition. This supply setting becomes part of the
signal description, and is carried along. Once all the signals at the
gate’s inputs have been propagated thus to its output, the signal
set at the output is pruned as in [1]. At the circuit primary
outputs, the signal with the latest arrival time determines the
circuit delay, and the voltage assignment tagged to that signal is
the worst-case voltage assignment for that circuit.

If, however, the supply nodes of the logic gate are tied else-
where, meaning that this gate is either part of a block or that
this gate’s supplies are tied to some other gate’s supply elsewhere
in the circuit, then a conflict may arise in that the voltage as-
signment that one would like to make for this gate’s supplies may
conflict with other assignments that are already part of this sig-
nal’s description, or may conflict with future assignments that
one may want to make for these supplies in connection with an-
other gate downstream. Conflict resolution is done by generating
extra signals. Each signal at an input of this gate is propagated as
two new signals at the gate output, each with a different setting
of the supplies. Since there are two supplies (Vdd and Vss), one
would think that four signals would be required. However, we
actually use only two signals, which are chosen in a conservative
way, meaning that we may err slightly but pessimistically on the
delay. At the gate output, signals whose voltage assignments do
not conflict are pruned separately, as a sub-group.

6. EXPERIMENTAL RESULTS
The above STA technique was implemented and tested on the

ISCAS85 and the combinational parts of the ISCAS89 bench-
marks. Experiments were run on a 1 GHz Sun machine with
4 GB memory. The execution time of STA was very fast, under
12 seconds for every circuit that we tested, and less than 1 sec-
ond for most of them. The results of the analysis of circuit C880
with independent power supplies and grounds, shown in Fig. 14,
illustrate a key point. The figure shows a histogram of the circuit
delay (using HSPICE) for 6000 different input vector pairs, with a
worst-case setting of the supply voltages (within their allowable
ranges), as identified by our STA for that circuit. This does not
exhaustively cover all vector pairs for this circuit, but will help
illustrate the point. The figure also shows the circuit delay as
measured by our STA, using three different settings for the sup-
plies. The first setting (Nominal) gives the circuit delay when all
supplies are set at their nominal (ideal, no voltage drop) values.



Table 4: STA and HSPICE worst-case delay for the full-range case.

Circuit STA(ns) SPICE(ns)

Nominal Min Supply Worst-Case Nominal Min Supply Worst-Case

C1355 2.48 3.83 4.54 (4.6%) 2 3.41 (70%) 4.34 (117%)
C1908 3.15 4.96 5.9 (1%) 2.8 4.71 (68%) 5.84 (108%)
C2670 3.39 5.44 5.82 (8.5%) 3 5 (66%) 5.36 (78%)
C3540 4.26 6.88 7.43 (13%) 3.5 5.9 (68%) 6.55 (97%)
C432 4.33 6.67 7.22 (1.7%) 3.6 6.27 (74%) 7.1 (97%)
C499 1.97 3.13 3.67 (-4.2%) 1.8 3 (66%) 3.8 (111%)
C5315 3.7 5.91 6.79 (4.3%) 3.3 5.45 (65%) 6.51 (97%)
C7552 2.89 4.56 5.48 (-1%) 2.7 4.41 (63%) 5.54 (105%)
C880 2.15 3.23 4.2 (0.6%) 1.85 2.97 (60%) 4.16 (125%)
S1494 1.78 2.86 3 (1.7%) 1.68 2.75 (63%) 2.95 (76%)
S420 1.23 1.88 2.13 (6.5%) 1 1.8 (80%) 2 (100%)
S444 1.13 1.67 2.16 (-6.5%) .96 1.6 (67%) 2.31 (140%)
S510 .99 1.48 1.85 (2.8%) .83 1.32 (59%) 1.8 (116%)
C1355−20−70 2.48 3.85 4.43 (3%) 2 3.5 (75%) 4.27 (113%)
C1908−10−50 3.15 4.97 5.58 (-2%) 2.81 4.7 (67%) 5.72 (103%)
C432−3−80 4.39 6.7 6.8 (6.25%) 3.75 6.35 (69%) 6.4 (70%)
C499−7−10 2 3.14 3.64 (-4%) 1.77 3 (69%) 3.8 (114%)
C7552−11−75 2.58 4.52 4.8 (-2%) 2.51 4.23 (68%) 4.9 (95%)
S420−20−10 1.23 1.88 2.137 (6.85%) 1 1.8 (80%) 2 (100%)
S444−3−60 1.11 1.63 1.72 (1.8%) .94 1.54 (63%) 1.69 (80%)
S510−4−50 .91 1.35 1.61 (12%) .79 1.27 (60%) 1.44 (82%)

It is clear from the figure that this significantly under-estimates
the circuit delay. The second (Min Supply) setting corresponds
to the case when all Vdd supplies are set to low and all grounds
to high, within their allowable ranges. This case corresponds to
what one is able to do today with existing STA tools. Here too, it
is clear that this analysis is not adequate because there are paths
with longer delay than that given by the Min Supply setting. Fi-
nally, the third setting corresponds to the case where our STA
considers all possible mismatches between the supply nodes and
finds the maximum delay, in this case assuming that all supplies
are independent. Note that there are no vector pairs that violate
our estimate of worst-case delay.

Further results on all the benchmarks are presented in Tables 3
and 4. We considered cases of independent supplies and cases of
connected supplies. The name of each circuit indicates what was
done in each case. For example C1355 20 70 is a variant of circuit
C1355 which has 20 power supply and ground nodes that are
shared by 70% of the gates, according to some randomly chosen
assignment, while the remainder of the gates have independent
supplies. The two tables differ in the way that the allowable
supply ranges were assigned. In Table 3, we assigned to each
supply node an arbitrarily chosen voltage range that is within
the allowable ±12.5% range. We simply used a random number
generator to choose these less-than-full ranges. In Table 4, we
gave each supply node the maximum allowable voltage range,
i.e., ±12.5% of nominal.

Each table gives the delay values measured by our STA and
by HSPICE in the three cases of Nominal, Min Supply, and Worst-
Case, explained above. The percentage values given in paren-
theses represent the relative increase of delay over the Nominal
case. Getting the exact delay using HSPICE is not possible be-
cause of the large number of possible vector pairs. Therefore, for
each circuit, once the critical path is identified by our STA, we
extract that path and simulate it with HSPICE. Notice that the
critical path may be different in the Nominal, Min Supply, and
Worst-Case scenarios.

Notice that the delays under the SPICE Min Supply column
are higher than the delays of the Nominal case. The advantage of
our technique, and the need for it, are evident from the last col-
umn (SPICE, Worst-Case). The significant increase of delay over
Nominal and over Min Supply underscores the fact that allow-
ing mismatch between the supplies leads to a higher worst-case
delay. Finally, notice that the delay comparisons between the cor-
responding columns of STA and HSPICE are very good, and show
that the gate delay model works well in this case.

7. CONCLUSION
Motivated by the sensitivity of circuit delay to supply voltage

variations, we are working on new techniques for static timing
analysis (STA) that are cognizant of the dependence of delay on
supply voltage. Specifically, we have explored the case where
the supply voltage values of a driver gate and a load gate can
be mismatched. This can happen due to the fact that circuit
currents may be independent. It was found that this mismatch
leads to potentially large increase in delay, up to 2.4X in one case,
due to only ±12.5% variation in supply voltage. We developed a
model for gate delay in terms of the four voltages of a gate and its
driver. If the supplies are independent, we showed that there is an
easy-to-find configuration of supply and ground voltages along a
path that leads to the worst-case delay, depending on the polarity
of the transition at the input. We also considered specific power
supply and ground dependencies, namely that some supply nodes
are tied together. We then used this as the basis for an STA
technique which gives the circuit delay as well as the worst-case
voltage configuration. With the voltage configuration in-hand, we
simulated the critical paths with HSPICE and showed how ignoring
the possible mismatch between the supplies can lead to significant
under-estimation of circuit delay.
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