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ABSTRACT
It has been widely recognized that the dynamic range information
of an application can be exploited to reduce the datapath bitwidth
of either processors or ASICs, and therefore the overall circuit
area, delay and power consumption. While recent advances in
analytical dynamic range estimation can deliver results accurate
enough to account for both spatial and temporal correlation, the
reported methods are only valid for linear systems. In this paper,
we use a powerful mathematical tool, called polynomial chaos,
which enables not only the orthogonal decomposition of random
processes, but also the propagation of random processes through
nonlinear systems with difficult constructs such as multiplica-
tions, divisions and conditionals. We show that when applied to
interesting nonlinear applications such as adaptive filters, polyno-
mial filters and rational filters, this method can produce complete,
accurate statistics of each internal variable, thereby allowing the
synthesis of bitwidth with the desired tradeoff between circuit
performance and signal-to-noise ratio.

1. INTRODUCTION
Today’s ASIC designers start with a design specification handed

off by system designers. Often in the form of C code, the algorithm-
level design specification needs to be converted into register trans-
fer level (RTL) design, typically in the form of hardware descrip-
tion languages. A crucial decision to be made during this process
is the datapath bitwidth, including the bitwidths of different reg-
isters and functional units. An aggressively designed datapath
often replaces floating-point arithmetic contained in the design
specification by their fixed-point counterparts. In addition, the
redundant bits that do not contribute much to the accuracy of
the application are often eliminated. Such datapaths with mini-
mal bitwidth always translate to superior circuit performance in
terms of area, speed and power consumption. To make this pos-
sible, the dynamic range information of the application (i.e., the
range of values taken by its variables), and in the case of C code,
the dynamic ranges of all declared variables and intermediate ex-
pressions (all referred to as signals or variables in the following
text), have to be obtained.

Unfortunately, the best practice today for dynamic range es-
timation is still profiling (also referred to as simulation), which
works by instrumenting the original application with code that
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can trace the value ranges at runtime. While this method can be
made very accurate, the accuracy is achieved only by extremely
long simulation, and worst of all, no confidence on the accuracy
can be obtained. In contrast, analytical methods can avoid long
simulation by analyzing the application at compile time. While
many advances have been made on this front, the proposed meth-
ods have not been able to provide dynamic range information as
accurate and as complete as profiling. The accuracy problem can
usually be attributed to either no treatment of signal correla-
tion, as in the cases of bitwidth [1, 2] or moment propagation
method [3], or inadequate treatment of signal correlation, as in
the case of affine arithmetic method [4]. The completeness prob-
lem relates to the fact that these methods typically produce only
value or error bounds instead of signal distribution, thereby lim-
iting the scope of their application.

A new method has recently been proposed where full statis-
tics of all signals can be produced analytically and accurately [5].
The key idea of this method is to decompose the system input,
modeled as an arbitrary random process, into K number of deter-
ministic signals, each multiplied by a random variable. One can
then obtain the system response of a random input by combining
system responses of K deterministic inputs, each multiplied by
the corresponding random variable. While this method can cap-
ture spatial and temporal correlation effectively, it relies on the
application of superposition, a property enjoyed only by linear
systems.

By definition, a system y = f(x) is nonlinear if it does not
satisfy the superposition property: f(a1x1 + a2x2) = a1f(x1) +
a2f(x2). In practice, whenever operations such as multiplication,
division, and conditionals are used in the corresponding C behav-
ioral description, a system is likely to be nonlinear. Therefore,
the majority of C applications are nonlinear. Even in the domain
of digital signal processing, where linear filters are widely used,
nonlinear systems comprise a large, important category of appli-
cations. For example, in image processing systems, it is typical to
have applications that use logarithmic nonlinearity to model the
human eye. Similarly, neural networks apply nonlinear operations
to linear combinations of inputs to mimic nervous system. Other
common examples include median filters, where the output is the
median of the input values in the corresponding neighborhood,
polynomial filters, where the output is a polynomial function of
its inputs, rational filters, where the output is a ratio of two in-
put polynomials, and adaptive filters, where the output is a linear
combination of inputs except that the coefficient is time-variant.
The readers are referred to books such as [6] for a detailed, com-
prehensive treatment.

In this paper, we solve the difficult problem of dynamic range
estimation for nonlinear systems. The key idea of our solution
is the use of a powerful statistical construct, called polynomial
chaos, which is a family of polynomials constructed from a set
of random variables. With a rigorous, well-defined procedure de-
tailed in Section 4.2, these polynomials are constructed with the
powerful properties such that when an input signal is decomposed
into a combination of polynomial chaos, called polynomial chaos
expansion, it is easily propagated through a nonlinear system, and
the full statistics of all signals can be derived accordingly. Intu-



itively, the accuracy of this method can be attributed to the fact
that the random variable set can effectively capture the correla-
tion between signals, and the use of polynomials can effectively
preserve the correlation even after nonlinear operations.

We demonstrate the following advantages over previous ap-
proaches: First, it is extremely fast compared to profiling, the
only method with comparable accuracy. While profiling has to
simulate the system for thousands or even millions of random
input realizations, our method only needs a single run of a pro-
gram transformed from the original system specification. Second,
our method is constructive in the sense that the distribution of
all signals can be obtained. As a result, an optimal bitwidth can
be synthesized by aggressively cutting the tails of the distribution
under the given signal-to-noise ratio constraint. In contrast, other
recent analytical approaches, such as [4], can offer only a verifica-
tion of error bound of a given bitwidth selection, while shedding
no insight on the proper choice of bitwidth. Third, our method is
mathematically rigorous. In fact, we introduce only one engineer-
ing assumption, which is later justified experimentally. Fourth,
our method is highly accurate. Our method can capture not only
the spatial correlation, but also the temporal correlation in the
system input, which is not possible in the previous methods, but
as shown in [5], contributes significantly to the accuracy of the
result. And finally, it is the first time that the complete result on
nonlinear systems are given. In contrast, while the propagation
of different signal representations through nonlinear operations
are discussed in [3, 4], no results on a complete nonlinear system
has been demonstrated.

A word about notation would be useful. We will use bold font,
such as x, to denote a random variable (RV). Deterministic (i.e.,
non-random) variables will be denoted with regular italic font,
such as x . In addition, some Greek symbols, such as ξi, µi and
Ψi will be used to denote RVs, but sometimes Greek symbols
like λi will denote deterministic variables. It will be clear from
the context which variables are random and which are not. The
notation E[x] will denote the mean or expected value of the RV
x. Two RVs x and y are said to be orthogonal if E[xy] = 0. Two
zero-mean RVs x and y are said to be orthonormal if they are
orthogonal and each has a variance of 1.

The remainder of this paper is organized as follows: Section 2
gives a brief account of the related literature. Section 3 gives the
theoretical background of polynomial chaos. Section 4 describes
our proposed method in detail. We give experimental result in
Section 5 before drawing conclusion in Section 6.

2. RELATED WORK
Profiling or simulation-based approaches [7, 8, 9, 10] have been

used extensively to estimate the dynamic range of variables in a
program. As mentioned earlier, this method is computationally
expensive, since huge amount of sample data need to be simu-
lated.

The Lp norm method, based on the use of the transfer function,
is proposed in [11, 12]. This method requires explicit knowledge of
the system transfer function, which may not always be available,
and which may be difficult to extract from C code. In addition,
it propagates only the maximum value of the data and is limited
to linear systems.

A moment-based method is presented in [3]. This method mod-
els the input as a random variable and propagates its moments
through the system. The probability density function (pdf) of
all variables can be constructed from the propagated moments.
However, this method assumes that the input data is temporally
uncorrelated, and that variables internal to the system (e.g. at
the input to an arithmetic operator) are spatially uncorrelated.
Both these assumptions are not true in practice, and can have sig-
nificant impact on accuracy of the results, as we will demonstrate
in Section 5.4.

A bitwidth/interval propagation method is described in [1, 2].
This method propagates the input bitwidth or interval through
the whole system to obtain the dynamic range for intermediate
variables. The estimated result from this method is overly pes-
simistic, since it always considers the worst case.

Affine arithmetic, an improvement on the interval propagation

technique, is given in [4], where the spatial correlation between
internal variables induced by the reconvergent fanout structure in
the system is taken into account. However, this method does not
capture the inherent temporal correlation of the input signals.
For many applications, spatial correlation between variables is
a direct result of the temporal correlation of the input signals.
Therefore, ignoring the temporal correlation of the input auto-
matically causes loss of true correlation information internally. In
addition, because the information propagated is limited to affine,
or linear form, accuracy has to be compromised when nonlinear
terms are generated after nonlinear operations. As detailed later
in Section 5.4, the loss of accuracy can be significant.

Thus, all existing methods have certain shortcomings, espe-
cially in the way that correlation and nonlinearity are dealt with.
In our work, we take care of both temporal input correlation and
spatial internal correlation even for nonlinear systems, and we
provide, not only ranges of the data, but its statistical distribu-
tion as well.

3. POLYNOMIAL CHAOS
This section provides a brief review of the theory of polynomial

chaos, and describes the polynomial chaos expansion of a random
variable (RV), based mainly on [13].

Let ξ1, ξ2, . . . , ξn be a sequence of zero-mean orthonormal Gaus-
sian random variables (RVs). In other words, each ξi is Gaussian
with mean 0 and variance 1 (i.e., each has the standard normal
distribution), and they are orthogonal, so that:

E[ξiξj ] =

�
1, if i = j;

0, otherwise.
(1)

where E[·] is the expected value (mean) operator [14]. It can be
shown that the ξi are also independent. Let Γp(ξ1, ξ2, . . . , ξn)
be a polynomial whose degree is p, defined on the orthonormal
Gaussian RVs ξ1, ξ2, . . . , ξn. If we consider different permutations
and replacements of the arguments of Γp(·), which has at most p
distinct arguments, we represent the resulting set of polynomials
by: �

Γp(ξi1 , ξi2 , . . . , ξip )
�

(2)

where ik ∈ {1, 2, . . . , n} for all k ∈ {1, 2, . . . , p}. This set of
polynomials is referred to as polynomial chaos of order p. To be
exact, polynomial chaos is not just any set of polynomials; rather,
it is a set with an important orthogonality property, defined by
means of the following construction.

The zeroth order polynomial chaos (PC), Γ0(·) is a constant,
and is chosen to be 1 by construction:

Γ0() = 1 (3)

The first order PC is chosen so that every polynomial in Γ1(ξi)
is orthogonal to every polynomial in Γ0(·), where two distinct
polynomials Γq(ξi1 , . . . , ξiq ) and Γr(ξj1 , . . . , ξjr ) are said to be
orthogonal if:

E
�
Γq(ξi1 , . . . , ξiq )Γr(ξj1 , . . . , ξjr )

�
= 0 (4)

Applying this orthogonality requirement leads to the following
choice for the first order PC:

Γ1(ξi) = ξi (5)

The second order PC is chosen so that it is orthogonal to both
Γ0 and Γ1, leading to:

Γ2(ξi1 , ξi2 ) = ξi1ξi2 − δi1i2 (6)

where δij is the Kronecker delta:

δij =

�
1, if i = j;

0, otherwise.
(7)

Similar procedures give all higher order PCs, so that each is or-
thogonal to all lower order PCs. What is not obvious from the
brief and informal presentation above is that even within a single
{Γp}, it can be shown that the polynomials are all orthogonal.
The concept of polynomial chaos is useful in that it provides a
basis for decomposition of a general random variable, called a
polynomial chaos expansion (PCE), as follows.

If x is a square integrable RV, that is, E
�|x|2� is finite, then

it can be shown that one can express it as a decomposition or



expansion in terms of an underlying basis of polynomial chaos.
The number n of underlying RVs ξ1, . . . , ξn is referred to as the
dimension of the expansion, and, as above, the highest degree in
the polynomials, p, is called the order. The exact PCE generally
uses infinite dimension (n) and order (p). However, in practice,
one can truncate the infinite series expansion based on a finite n
and p, by neglecting higher order terms. Thus the two dimen-
sional (n = 2) PCE with order two (p = 2) is:

x = a0Γ0 + a1Γ1(ξ1) + a2Γ1(ξ2) + a11Γ2(ξ1, ξ1)

+a12Γ2(ξ1, ξ2) + a22Γ2(ξ2, ξ2) (8)

where the aij are constant coefficients. Γ2(ξ2, ξ1) is dropped here
since it is identical to Γ2(ξ1, ξ2). In order to simplify the nota-
tion, the polynomials are sorted in a specific way and they are
denoted Ψ0, Ψ1, Ψ2, . . . , Ψm; this is nothing more than a differ-
ent numbering scheme. Given an order (p) and a dimension (n),
one can quickly determine [13] exactly which polynomial each
Ψi corresponds to, under this numbering scheme. For example,
table 1 shows an example of the numbered polynomials for the
2-dimensional case. With this simplified notation, each RV can
be expressed as the following expansion:

x =
m�

i=0

xiΨi (9)

In general, m grows very quickly for larger n and p, but a PCE
is typically useful even for small order and dimension, so that m
remains tractable in practice. It can be proved that the number
of n dimension PCs up to pth order, m + 1, is

m + 1 =

p�
i=0

(n + i − 1)!

i!(n − 1)!
=

(n + p)!

n!p!
(10)

The key property of these polynomials that turns out to be very
useful in practice is the following orthogonality property:

E [ΨiΨj ] =

�
E
�
Ψ2

i

�
, if i = j;

0, otherwise.
(11)

The values of E[Ψ2
i ] can be computed easily based on the fact,

easily proven, that if ξ is a zero-mean unity-variance Gaussian,
then for any integer k ≥ 0:

E
�
ξ2k+1

�
= 0 and E

�
ξ2k
�

=
(2k)!

2kk!
(12)

With the above, it becomes possible to apply PCE to complex
nonlinear differential systems of equations, such as in computa-
tional fluid dynamics [15], where random parameter perturbations
have typically been expressed using PCE. As a result, an anal-
ysis of a system under random stimulus is replaced by repeated
deterministic analyses of the system, from which coefficients of
the PCE are solved for separately. Once the PCE coefficients are
known, the distribution, the moments, or any statistics of the
system response can be solved for.

4. PROPOSED SOLUTION
The behavior of digital signal processing (DSP), as well as the

behavior of general digital applications, can be captured at a high
level of abstraction with a data-flow graph (DFG). Each node of
the DFG represents a primitive operation, typically a multiplica-
tion or addition of real numbers, or a decision operation. Note
that with a decision operation, the if-then-else branch that is typ-
ically captured in a control-flow graph (CFG) is implicitly cap-
tured in the DFG. The construction procedure for such a DFG
is standard and has been reported in both the compiler [16] and
CAD [17] community.

With the primary inputs of the DFG viewed as random, we
propose to apply a PCE-based analysis to each node of the DFG in
order to derive statistics of the various system signals and outputs
under random inputs. The “source of randomness” in the system
primary input is either a genuine uncertainty about what inputs
to expect, or a representation of a large population of possible
inputs by means of their aggregate statistics. In any case, we will
show that the PCE formulation allows us to extend the analysis
of such systems for dynamic range estimation beyond what was

Table 1: Polynomial chaos polynomials Ψ0, . . . , Ψ14

for n = 2 and p = 0, 1, 2, 3, 4, with E[Ψ2
i ] in each case.

Index Order Polynomial E[Ψ2
i ]

0 0 1 1
1 1 ξ1 1
2 ξ2 1
3 ξ2

1 − 1 2
4 2 ξ1ξ2 1
5 ξ2

2 − 1 2
6 ξ3

1 − 3ξ1 6
7 3 ξ2

1ξ2 − ξ2 2
8 ξ1ξ2

2 − ξ1 2
9 ξ3

2 − 3ξ2 6
10 ξ4

1 − 6ξ2
1 + 3 24

11 ξ3
1ξ2 − 3ξ1ξ2 6

12 4 ξ2
1ξ2

2 + ξ2
1 − ξ2

2 + 1 4
13 ξ1ξ3

2 − 3ξ1ξ2 6
14 ξ4

2 − 6ξ2
2 + 3 24

recently done for linear systems in [5], so as to cover systems
that allow non-linear operations (multiplication, division) and if-
then-else branches. The process will involve propagating the PCE
coefficients through the DFG, from the system primary input.

4.1 PCE Propagation
In the following, we will show how the output PCE can be

derived from the input PCE, for various types of operations that
one typically encounters in DFGs.

4.1.1 Scaling
This case is trivial. If y = ax where a is a constant, then if a

PCE is available for x, so that x =
�m

i=0 xiΨi, then the PCE for
y is y =

�m
i=0 yiΨi, where:

yi = axi (13)

4.1.2 Summation
Here too, the linearity of the summation operation makes this

case very easy. If z = x+y, and if a PCE expansion is considered
for all three variables:

x =
m�

i=0

xiΨi, y =
m�

i=0

yiΨi, z =
m�

i=0

ziΨi (14)

then it is clear that:
zi = xi + yi (15)

4.1.3 Multiplication
The multiplication case is non-trivial, and it brings out the

power of the PCE expansion. Suppose z = xy and that a PCE
expansion is considered for all three variables, so that:

�
i

ziΨi =

	�
i

xiΨi


�
��

j

yjΨj


�

=
�
i,j

xiyjΨiΨj (16)

In order to solve for zk, we multiply both sides of the above by
Ψk and take the expected value of both sides. Based on the
orthogonality property (11), this leads to:

zk =
1

E[Ψ2
k]

�
i,j

xiyjE[ΨiΨjΨk] (17)

The 3-way expectations on the right-hand-side are actually trivial
to compute for a given dimension and order of PCE, because of
independence of the ξi variables and due to (12). As an example,
in the case when the dimension is one (n = 1) and the order is
two (p = 2), in which case the expansion consists of Ψ0, Ψ1, and
Ψ2 only, this type of analysis leads to:

z0 = x0y0 + x1y1 + 2x2y2

z1 = x0y1 + x1y0 + 2x1y2 + 2x2y1 (18)

z2 = x0y2 + x2y0 + x1y1 + 4x2y2



Notice that there is no assumption of independence between x
and y. Indeed, the PC expansion offers a way by which correla-
tions among different RVs can be captured via the coefficients of
the various polynomials, so that correlation is taken into account
quite naturally. For larger values of n and p, the expressions for
zi become more involved but they remain of this nature, meaning
they consist of cross-products of the xi and yj terms. For exam-
ple, in the case when n = 4 and p = 3, these expressions can grow
to include about 35 terms.

4.1.4 Division
Division being the inverse of multiplication, it is easy to see

that equations such as (18) can be used in the reverse direction,
to give values of xi, given values of zi and yi for example. In
the reverse direction, these equations constitute a linear system
of simultaneous equations Ax = b whose solution techniques are
standard. For example, in the case n = 1, p = 2, shown above,
the resulting matrix equation is:�

� y0 y1 2y2

y1 y0 + 2y2 2y1

y2 y1 y0 + 4y2

�
�
�
� x0

x1

x2

�
� =

�
� z0

z1

z2

�
� (19)

For higher dimension and order, the equations remain linear, but
the size of the matrix and the values of the matrix entries would
change.

4.1.5 Multiplexing
We consider the case where the value of a variable depends on

a “switch” or multiplexing decision based on another variable.
Specifically, if a, b, c, and x are RVs, and if (c0, c1) is a partition
of the domain of c, then we consider the following operation:

x =

�
a, if c ∈ c0;

b, if c ∈ c1.
(20)

As before, we consider that each variable has a polynomial chaos
expansion, so that:�

i

xiΨi =

��
i aiΨi, if c ∈ c0;�
i biΨi, if c ∈ c1.

(21)

If we define a new set of RVs xi by:

xi =

�
ai, if c ∈ c0;

bi, if c ∈ c1.
(22)

then we can write: �
i

xiΨi =
�

i

xiΨi (23)

If we multiply both sides by Ψk and take the expected value of
both sides, and applying the orthogonality property, leads to:

xk =
1

E[Ψ2
k]

�
i

E [xiΨiΨk] (24)

We can further simplify this result by using conditional expecta-
tions:

E [xiΨiΨk] = aiE [ΨiΨk|c ∈ c0]P{c ∈ c0}
+biE [ΨiΨk|c ∈ c1]P{c ∈ c1} (25)

The conditional expectations can be easily and quickly estimated
by Monte Carlo techniques. Random samples of ξ1, . . . , ξn are
generated and classified as to whether they produce a c in c0 or
c1. The probabilities of the two outcomes are thus computed, and
within each classification, the mean value of ΨiΨk is computed
in usual Monte Carlo fashion. Since the underlying variables are
Gaussians, convergence is easily achieved.

4.1.6 Time shift
The preceding operations were operations on RVs, without re-

gard to the time dimension. In general, a behavioral description
consists of a sequencing of the operations in time, so that the
RVs considered are really signal values at specific time points
on a discrete time scale: x[1],x[2], . . .. The preceding analysis
for scaling, summation, multiplication, division, and multiplex-
ing were all relevant to specific time point. In addition, it is
trivial to handle a time shift operation: if

y[j] = x[j − k] (26)
then the resulting PCE coefficients are simply time-shifted them-
selves:

yi[j] = xi[j − k] (27)

4.2 Generating the input PCE
In order to propagate the PCE through a DFG, based on the

above operations, one needs a PCE expression for the system
input to begin with. We assume that the system has a sin-
gle input data channel, represented with a stochastic process
p[k], k = 0, 1, . . . , N . The extension to multiple inputs is not
hard to do, but we will focus on the single input case for clar-
ity. At each time index k, the value p[k] is an RV. We will show
how a Karhunen-Loéve expansion [14] (KLE, or KL expansion)
for the stochastic process p[k] can be used to generate an input
PCE expansion.

4.2.1 Karhunen-Loéve expansion (KLE)
A Karhunen-Loéve expansion is a way to decompose a stochas-

tic process in terms of a number of underlying orthogonal random
variables, in a way that compactly captures the time domain cor-
relation in the process. Traditionally, it is defined for continu-
ous time processes [14], but can be applied to discrete time pro-
cesses as well, as was done in [18], whereby a stochastic process
p[k], k = 0, 1, . . . , N , is expressed as:

p[k] =
N�

i=0

�
λifi[k]µi k = 0, 1, · · · , N (28)

where the µi are RVs and where λi and fi[k] are the eigenvalues
and eigenfunctions of the autocorrelation matrix of the discrete-
time random process p[k], i.e., they are solutions of:�
������

R(0, 0) R(0, 1) · · · R(0, N)
R(1, 0) R(1, 1) · · · R(1, N)

· · ·
· · · · · ·
· · ·

R(N, 0) R(N, 1) · · · R(N, N)

�
������

�
������

fi[0]
fi[1]
·
·
·

fi[N ]

�
������ = λi

�
������

fi[0]
fi[1]
·
·
·

fi[N ]

�
������
(29)

where R(k1, k2) = E [p[k1]p[k2]] is the autocorrelation function.
The µi are a set of zero-mean orthonormal RVs, so that:

E[µiµj ] = δij (30)

Likewise, the fi[k] are orthonormal, in the following sense:

N�
k=0

fi[k]fj[k] = δij (31)

The KL expansion (28) can be truncated, yielding a least-
squares-optimal expansion on fewer variables n < N :

p[k] ≈
n�

i=0

�
λifi[k]µi k = 0, 1, · · · , N (32)

It can be shown, based on [19], that the relative mean square
error resulting from the truncation is given by:

e = 1 −
�n

i=0 λi�N
i=0 λi

(33)

where λ0, . . . , λn are the eigenvalues that are kept in the truncated
KL expansion. We will refer to this error term as the truncation
error of the KL expansion. It can be used as the basis for deciding
where and how much to truncate the KLE expansion. The KLE
was used in [5] to compute dynamic range for linear systems. In
this paper, we extend the analysis to the general case of non-
linear systems, and this turns out to be possible using PCE. We
will now see how a PCE expansion for the input process can be
derived from its KLE.

4.2.2 Generating the PCE
From basic probability theory, it is known that if x is any

RV, and if F (·) is its cumulative distribution function (cdf), then
y = F (x) is another RV whose cdf can be shown to be the uniform
distribution on [0, 1]. As a corollary, if u is an RV which is uniform
on [0, 1], and if F (·) is a valid cdf, then x = F−1(u) is an RV
with the cdf F (·). Let Φ(·) be the cdf of the standard normal
(zero mean, unity variance, Gaussian) distribution, and let Fi(·)
be the cdf of µi (resulting from KLE). Therefore,

ξi = Φ−1(Fi(µi)) (34)
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Figure 1: Checking the independence assumption.

is a standard normal RV (Gaussian with mean 0 and variance 1).
We propose to use the resulting ξ1, . . . , ξn as the basis for a poly-
nomial chaos expansion. The advantage, in doing this, would
be that we would have an easy way to compute the required
PCE coefficients from the KLE for each p[k]. Before we can do
that, however, we must first establish that the ξi are orthonor-
mal. Since they are standard normal RVs, orthonormality would
be established if we could prove that they are are also orthogo-
nal, i.e., that E[ξiξj ] = 0. This orthogonality, in turn, would be
achieved if it were possible to prove that they are uncorrelated,
i.e., that E[ξiξj ] = E[ξi]E[ξj]. Since they have zero means, this
uncorrelatedness would lead to orthogonality, and they would be-
come orthonormal. However, uncorrelatedness is not guaranteed
by the above construction (34) of the ξi’s.

One easy way to achieve uncorrelatedness is if it were the case
that the µi’s are independent. That would lead to the conclu-
sion that the ξi’s are independent, due to the construction (34),
and therefore uncorrelated. However, KLE guarantees that the
µi’s are independent only in the case when the process p[k] is it-
self Gaussian. Otherwise, KLE only guarantees that the µi’s are
uncorrelated, which is not enough to establish that the ξi’s are
uncorrelated. To the extent that most data that one expects to
see in practice is not too far from having a bell-shaped (Gaussian)
distribution, we will assume that the µi can be approximated as
being independent in the general case.

We have checked the error of this approximation in the follow-
ing way. We randomly generated 80,000 sample traces of p[k] over
10 time points, using a typical Auto-Regression Moving Average
(ARMA) model of time series [20], which is extensively used in
engineering. We then built the KLE (28) for p[k], so that we end
up with 80,000 random samples of the vector [µ1 µ2 · · · µn]. This
allows us to check whether the joint distribution of µi and µj can
be approximated as the product of their individual (marginal) dis-
tributions. If yes, then µi and µj may be assumed independent.
The distributions were built from the data by simply approxi-
mating the pdf with a histogram (80,000 is a large enough data
set that this is very well justified). We show the results of this
comparison in Fig. 1, where, for every observed (µi, µj) pair of
values, the vertical axis shows the joint pdf of µi and µj evalu-
ated at that point, fµi,µj (µi, µj), and the horizontal axis shows

the product fµi (µi)fµj (µj). Ideally, the data should be right on
the diagonal line, but it is not of course. However, it is close
enough to the diagonal that we consider that this justifies the
independence assumption.

With the ξi available as a basis, we can now proceed to ob-
tain the PCE for p[k] as follows. For each µi, consider a one-
dimensional PCE expansion, based on ξi, so that:

µi =
�

j

cijΨj (35)

One can easily compute the values of the coefficients cij , as fol-
lows. To compute cik, multiply both sides of (35) by Ψk and take

the expectation on both sides, leading to:

cik =
E[µiΨk]

E[Ψ2
k]

(36)

The right hand side is a function of the statistics of µi and the
ξi derived from it (recall that, in this one-dimensional PCE, Ψk
is a function of only ξi). The denominator, for one thing, is very
easy, and is available from the properties of the polynomial chaos
polynomials as we saw earlier in connection with (12). The expec-
tation in the numerator can be computed by a simple Monte Carlo
procedure, as follows. Given a large number of user-supplied sam-
ples of the input process p[k] (or, given some probabilistic model
of the input process, such an ARMA model, from which one can
generate such samples), we construct a KLE (28) and use it to
generate samples of the µi’s based on samples of the process p[k],
from which the cdf of each µi can be approximated by its empiri-
cal cdf. The empirical cdf of an RV x, evaluated at some value x0,
is given by the fraction of observed values of x that are less than
or equal to x0. Once these cdfs Fi(·) are available, we can use
the construction (34) to get the corresponding sample values of
the ξi’s, from which Ψk can be computed, and the mean E[µiΨk]
computed by Monte Carlo.

4.3 Obtaining variable statistics from PCE
Once the PC expansion for an RV is available, one can use

that PCE to compute statistics of various kinds for that variable.
Moments of arbitrary order (mean, variance, etc.) can be easily
generated [13]. Analytical approximations to the full distribu-
tion of that RV can then be obtained from the moments, using
techniques such as the Edgeworth expansion [21] and others.

For determining dynamic range and choosing the right bitwidth,
it is important to have the cdf, at least the tail of the cdf, in or-
der to estimate the error incurred if bitwidth is reduced. Given
that we have in-hand a PCE for an RV, we have found it is very
easy and practical to estimate the cdf by Monte Carlo techniques.
Given a PCE expansion for an RV, we generate samples of the
orthonormal basis ξ1, . . . , ξn from which we obtain samples of the
value of the RV itself, which we use to build an empirical approx-
imation to the cdf F (x), as was described above in connection
with (36). It typically takes less than a second of CPU time to
compute the cdf in this way.

5. RESULTS
We construct a set of experiments to verify and demonstrate

the effectiveness of the proposed methodology. All our exper-
iments are conducted on a Sun workstation (Ultra 80, Model
4450).

Seven benchmarks are selected from practical applications in
the DSP domain. Benchmarks 1–3 are polynomial filters. Among
them, volterra is a third order cubic volterra filter, which de-
rives its name from the volterra expansion of general nonlinear
functions [6]; teager implements a one-dimensional Teager’s algo-
rithm [6] and is commonly used for contrast enhancing in image
and speech recognition; bilinear is a nonlinear filter whose output
is linear with respect to every single system variable. Both bench-
marks 4 and 5 are adaptive filters, where adaptive1 is a regular
LMS adaptive filter which adjusts its parameters in proportion to
the computed error signal [6], and adaptive2 adjusts its parame-
ter only according to the sign of the error signal. It is interesting
to note that the latter includes conditionals. Benchmarks 6 and
7 are rational filters, which use both multiplication and division.

Sample sets of input random processes with different char-
acteristics were generated to conduct the experiments. These
were generated according to the Auto-Regression Moving Aver-
age (ARMA) model of time series [20], which is extensively used
in engineering. In our experiments, every sample set consisted
of 10,000 traces of the process. Such a large number of traces is
necessary in order to avoid artifacts caused by finite sample size.
This is especially important if we want to capture the tails of the
distribution.

Table 2 shows the PCE extraction time from the given data
set with different dimension n and order p. Normally the time
it takes is on the order of seconds. The time shown in Table 2



Table 2: PCE extraction time.

Dimension Order Time (s)

4 4 0.82
6 2 1.09
12 5 2.36
20 5 3.53
30 5 5.53

Table 3: Analysis of speed of PCE v.s. simulation.

# Benchmark PCE Simulation Speedup
(s) (s)

1 volterra 0.10 14.56 145.6
2 teager 0.07 7.18 102.6
3 bilinear 0.05 19.01 380.2
4 adaptive1 0.09 21.64 240.0
5 adaptive2 0.11 20.15 181.0
6 rational1 0.13 13.76 110.1
7 rational2 0.15 16.25 108.3

is reported for 10,000 sample traces of the input random process
with length of up to 30 time points.

5.1 Analysis of speed and accuracy
In this section, we demonstrate both the analysis speed and

accuracy we can achieve using the proposed method, compared
to the traditional profiling-based method. We ran our PCE tech-
nique based on n = 4 and p = 3. In order to compare to simula-
tion or profiling, the question comes up as to how many samples
are needed in simulation. In our experience, in order to faith-
fully reproduce the tail of the distribution in simulation, which
is important for bitwidth determination, about 10,000 samples
are required. Based on this, the comparison in run-time between
PCE and profiling is shown in Table 3, where time is in seconds.
Just like all analytical methods, our tool runs order-of-magnitude
faster than profiling. For an accuracy comparison, Table 4 shows
a comparison of the variance (of the system output) obtained
from PCE versus simulation. It is clear that PCE can faithfully
re-produce the statistics of the system outputs. Further accuracy
comparisons will be given below, where a comparison of dynamic
range for the same SNR will be given in section 5.2 and a com-
parison of the actual cdf curves will be shown in section 5.3.

5.2 Bitwidth and SNR tradeoff
As an application of our work, the distribution and statistics

obtained from the PCE-based method can be used to make trade-
off between bitwidth and the signal-to-noise ratio (SNR) or, to
phrase it differently, one can synthesize bitwidth under an SNR
constraint. The method was detailed in [5]. In this work, we use
the simpler metric of range probability in place of SNR. Intu-
itively, given a signal distribution in pdf form and a quantization
scheme, a bitwidth selection corresponds to a dynamic range se-
lection where both tails of the the distribution curve are cut. The
area inside the selected dynamic range is called the range proba-
bility, and the areas outside the selected dynamic range represent
the overflow probability. Thus, under the same SNR constraint,
a signal with a sharper distribution can afford to use a narrower
dynamic range than those with flatter distributions. In addition,
a signal that can afford larger error can use a smaller dynamic
range with smaller range probability. In both cases, the bitwidth
can be reduced.

In Table 5, we show the different dynamic ranges reported by
the PCE method under different range probabilities specified by
the user for the output of the volterra benchmark. The table also
shows the dynamic range from simulation, for the same SNR; the
good match between PCE and simulation again emphasizes the
accuracy of this technique. Furthermore, because of the fact that
PCE can reproduce the entire signal distribution, a spectrum of
bitwidth/SNR tradeoff can be made depending on the need of the
application. This is in contrast to other analytical methods [1, 2]

Table 4: Variance from PCE v.s. simulation.

# Benchmark PCE Simulation Difference

1 volterra 559.71 549.25 1.9%
2 teager 0.7002 0.7068 0.94%
3 bilinear 3.5195 3.512 0.21%
4 adaptive1 0.0088 0.0087 1.15%
5 adaptive2 0.013 0.0132 1.50%
6 rational1 4.01 × 10−4 4.03 × 10−4 0.38%
7 rational2 1.0009 0.991 1.10%

Table 5: Dynamic range and signal-to-noise ratio.

Dynamic Range Range SNR
PCE Simulation Probability (dB)

[−100.05, 99.95] [−102.29, 101.71] 99.51% 10.49
[−180.15, 179.85] [−178.29, 178.71] 99.80% 16.81
[−269.83, 270.17] [−270.29, 269.71] 99.97% 26.94
[−337.83, 338.17] [−340.29, 339.71] 99.98% 37.99
[−368.33, 368.67] [−372.29, 371.71] 99.98% 83.06

where only a single dynamic range can be reported.

5.3 Impact of PCE dimension and order
In general, larger dimension and order imply better accuracy

and a more expensive analysis. The exact choice if n and p de-
pends on the input characteristics. To demonstrate the impact
of dimension and order on the accuracy of our analysis, we apply
two different types of ARMA processes to the volterra filter for
different dimension/order combinations.

The first process is highly temporally correlated and, in this
case, the output cdfs under different dimensions and orders are
shown in Fig. 2. It can be seen that a larger dimension does not
improve the accuracy by much, in this case. This can be explained
by the fact that for a highly correlated process, the energy of the
KLE expansion is concentrated only on a few terms, therefore a
small dimension suffices and this can be determined during the
input KLE expansion. On the other hand, reducing the order
does degrade the results. Notice that the cdf from simulation
is included in the “bundle” of plots corresponding to p = 3, and
shows that PCE faithfully reproduces the distribution curve. The
tail distributions diverge from simulation cdf significantly when
the order is reduced to 2 and 1. Other associated statistics, such
as means and variances, indicate the same trend.

The output cdfs under different dimensions and orders for the
second type of process, which is much less correlated, are shown
in Fig. 3. It can be seen that reducing the dimension does affect
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Figure 4: Dataflow graph example.

the accuracy in this case, since signal energy is distributed more
evenly. Here too, it is clear that there is a very good match
between the two cdfs, from simulation and from PCE, for n = 4,
p = 3.

As a practical matter, in order to determine an appropriate
dimension and order, one can consider various alternatives. One
can certainly use the KLE expansion (and the eigenvalues result-
ing from it) to determine what an appropriate dimension n may
be, based perhaps on a chosen truncation error, as discussed in
connection with (33). Alternatively, since PCE propagation is
cheap, one may consider increasing the order and dimension and
re-doing the PCE propagation, until minimal change is observed
in the results.

5.4 Impact of correlation and nonlinearity
In this section, we will show that the assumptions of correla-

tion and treatments of nonlinearity by previous approaches may
incur large errors. To quantify the advantages of the PCE method
and offer insight as to why it can perform better, we apply dif-
ferent analysis methods on a common example, shown in Fig. 4,
which was extracted from the teager benchmark, and compare
the statistics obtained against the exact solution. The dataflow
graph in the figure computes the equation g = e − f = ab − cd.
Given an input random process x, we apply x(n), its value at
time point n to a and b, x(n − 1) to c and x(n + 1) to d.

To show the impact of correlation and simplify the demonstra-
tion, we assume that the input process is highly correlated so that
x(n), x(n − 1), x(n + 1) are given by 10ε, ε, and ε respectively,
where ε is a uniformly distributed RV over [−1, 1]. It is easy to see
that the temporal correlation of the input is translated into the
spatial correlation on the dataflow graph, as a, b, c and d can all
be characterized by the same RV ε. For this simple example, we
can solve for the exact statistics at the output, as follows. Since
g = e − f = ab − cd = (10ε)2 − ε2, we have e = 99ε2. Therefore,

the exact statistics are:

E[g] = E[99ε2] = 33

E[g2] = E[(99ε2)2] = 992/5 = 1960.2

We now consider the moment propagation approach proposed
in [13]. Since it always assumes that the inputs of an operator
are independent, then:

E[g] = E[a]E[b] − E[c]E[d]

= E[10ε]E[10ε]− E[ε]E[ε] = 0

E[g2] = E[(e − f)2] = E[e2 + f2 − 2ef ]

= E[e2] + E[f2] − 2E[e]E[f ]

= E[10ε]2 + E[ε]2 = 3333.6667

It is clear that both the mean and variance predicted by the mo-
ment propagation approach deviate significantly from the exact
result.

We next consider the affine arithmetic approach proposed in [4],
which is able to capture spatial correlation by representing each
signal as a linear combination of uniformly distributed RVs. In
the case of our example, a, b, c, and d are already in affine form.
This representation handles linear operations such as additions
precisely, however, the captured correlation may be lost after the
nonlinear operations. For example, when multiplications are ap-
plied, products of RVs may result, and to keep the result in affine
form, a constant bound for each input has to be found, and an
extra RV has to be introduced. For example, consider e = ab,
according to [4], we have:

e = 10ε × 10ε = B(10ε)B(10ε)ε1 = 100ε1,

where ε1 is a new RV independent of ε. Following the same
procedure, we can derive g = 100ε1 − ε2, where ε1 and ε2 are
independent RVs. It is evident that the original correlations are
lost after the nonlinear operations. As a result, we obtain the
statistics as follows:

E[g] = E[100ε1 − ε2] = 0

E[g2] = 1002E[ε2
1] + E[ε2

2]

= 3333.6667

The power of the PCE method lies in the fact that signals
are represented as combinations of polynomials, therefore corre-
lations can naturally survive nonlinearity. For the given example,
we generate sample data for the uniform RV ε, from which a
1-dimensional 5-order PCE is extracted as follows:

ε = 0.002757Ψ0 + 0.565888Ψ1 − 0.001018Ψ2 −
0.048217Ψ3 + 0.000139Ψ4 + 0.003308Ψ5

The PCEs for a, b, c, and d can be obtained accordingly. Using
the propagation method described in Section 4.1, we can finally
obtain:

g = 33.2147Ψ0 + 0.1182Ψ1 + 18.3929Ψ2 −
0.0590Ψ3 − 2.7226Ψ4 + .0154Ψ5

E[g] = 33.2147

E[g2] = 1957.8.

Compared with the exact result, the predicted statistics only have
0.65% and 0.12% error respectively. Fig. 5 shows that the com-
plete distribution obtained by the PCE method matches closely
the cdf obtained from simulation.

6. CONCLUSION
In conclusion, we have argued that previous analytical meth-

ods for dynamic range estimation are inadequate for handling
correlated signals and nonlinear systems. A new method based
on a powerful mathematical tool, called polynomial chaos expan-
sion, is proposed. This new method can fully capture the tempo-
ral/spatial correlation at the input and consider these correlations
during the propagation of range information through nonlinear
systems. In addition, our new method automatically extracts the
input random process models from real world sample data and
thus is much more flexible and accurate than previous analytical
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Figure 5: cdf obtained by PCE v.s. simulation for
the example in Fig. 4.

methods, which only construct simple input models (such as uni-
form distribution) from unjustified assumptions. Based on our
study, we conclude that the proposed method is as fast as any
other analytical method, is accurate enough to handle both tem-
poral and spatial correlations, and gives a complete solution for
nonlinear systems.
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