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ABSTRACT
To ensure reliable performance of a chip, design verification
of the power grid is of critical importance. This paper builds
on previous work that models the working behavior of the
circuit in terms of abstracted current constraints and solves
for worst-case voltage drop on the grid as a linear program.
The main motivation is to allow the efficient verification
of local power grid sections or blocks, enabling incremen-
tal design analysis of the grid. This approach substantially
improves the computational time by reducing the problem
size and the constraint set and replacing them by black box
macromodels. This increase the capacity of the solver to
handle industrial sized grids.

1. INTRODUCTION
The performance and reliability of integrated circuits in mod-

ern deep submicron (DSM) technologies is becoming increasingly
sensitive to supply voltage variations. It is not uncommon to
experience 15% increase in circuit delay due to supply voltage
variations along a critical path or to lose 10% in yield due to sup-
ply voltage drops overall [1]. We refer to the on-chip power supply
network as the power grid, or simply the grid. There are many
sources of voltage fluctuation within on-chip power grids, such as
IR-drop, Ldi/dt drop, and resonance between the grid and the
package. Often, especially for simulation of the power grid in the
chip’s core, at frequencies below 1 GHz or so, inductance is ne-
glected and one is focused on the IR-drop given an RC structure
of the grid. With denser chips and higher chip currents and op-
erating frequencies, power grid IR and Ldi/dt drops increase. As
a result, ensuring the integrity of the power grid through robust
design and efficient verification is a crucial matter in modern in-
tegrated circuit design methodologies, allowing for considerations
to the particulars of microprocessor or ASIC flows [2, 3].

Some design groups start with over-designed grids with the
aim of removing the power grid integrity factor in the overall de-
sign robustness. The extent of over-design, however, cannot be
determined a priori, so that this approach comes at the cost of
reduced resources for signal routing; furthermore, even grid over-
design does not preclude voltage-induced circuit failures. Clearly,
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not everyone follows the approach of grid over-design and other
groups limit the initial resources available for power routing in
order to leave enough resources for signal routing, thus effectively
running the risk of grid under-designing. This second approach
renders grid verification necessary, a process carried out typically
by simulation, as the design progresses. The difficulty with grid
verification by simulation is two-fold: 1) the very large size of the
power grids, with node counts in the tens of millions, makes it
hard to simulate them for any realistic vector trace of chip work-
load, and 2) it is not certain what currents should be used to
load the grid in these simulations, because at the time the grid
is being designed, the circuit that would be loading the grid may
not have been fully specified. A standard practice is to simulate
the power grid loaded with current sources at their maximum
values. While possibly successful in identifying problem spots on
the grid and trends in voltage drop distributions, this approach
leads to overly pessimistic results since different circuit gates or
blocks are not expected to draw maximum currents simultane-
ously [4]. In consequence, power grids represent an important
element of uncertainty in the design performance which needs to
be checked [2].

The need is clear, therefore, for a vectorless power grid verifi-
cation methodology that is to grid verification what static timing
analysis is to timing verification. This paper builds on the work
in [5] and develops such a methodology with the following key
points: 1) it is useful pre-placement yet captures realistic circuit
behavior and block interdependencies, 2) it is easy to integrate in
existing flows by requiring reasonably simple inputs from design-
ers, and 3) it enables the designer to focus on only one section
of the grid at a time, thus allowing the repeated and iterative
modification/verification of a known problematic grid section or
block within a very large on-chip power grid, without the need
to verify the entire power grid. We refer to this process as incre-
mental grid verification. In order to meet this third point above,
the grid will be partitioned to smaller sub-grids, which, from the
standpoint of runtimes, opens the door to the parallelization of
the computational tasks to achieve large speedup on clusters of
machines.

2. PROPOSED APPROACH
A framework for dealing with the problem of grid verification

with only partial information on the power grid current loads
was laid out in [5]. It capitalizes on the fact that it is easy to
specify limits on currents in the form of current constraints early
on in the design process, and the power grid verification problem
was reduced to one of maximizing voltage drops on any/every
node of the grid given these current constraints. If the worst-case
voltage met all voltage drop requirements, the power grid would
be deemed robust.

Current constraints provide a very flexible framework: they can
be in the form of bounds on individual current sources (local con-
straints), and on the joint and simultaneous operation of several
current sources (global constraints). Local current constraints can
be derived along the lines of [6], and global constraints typically



follow from power considerations. An example of current con-
straints may be: each current source has 0.1 mA of maximum
current (local constraint) and the group of current sources con-
stituting an ALU draws no more than 50 mW collectively at any
time (global constraint), and the whole chip consumes no more
than 5 W of power (global constraint). Global constraints are
key, allowing us to capture true circuit operation in a realistic
manner, much more so than verifying the grid when all current
loads are set to their maximum. Contrast a vector-based power
grid verification approach with our vectorless approach: the need
to simulate the power grid for all current loads (vector-based) is
abstracted by the constrained current space (vectorless). The ob-
tained worst-case voltages do not arise from overly pessimistic
currents (vector-based) but from ones which satisfy local and
global current constraints and can therefore reflect more realistic
circuit operation (vectorless).

The power grid verification in [5] is done by means of a linear
program (LP), and current constraints are presented as upper
bounds. The approach in [5], however, was limited in the size of
the grid that could be analyzed mostly due to the (LP) solver that
was used, which relied on the Simplex algorithm. The constraint-
driven approach for power grid verification was later used in [7],
where a heuristic was suggested to find worst-case voltage drops,
relying on a random walk technique.

The present work offers significant advance over prior art by
allowing early power grid verification of a localized area of the
power grid. We refer to this localized block under verification
as the internal grid and the power grid area outside the internal
grid as the external grid. We will use macromodeling, in the style
of [8], as a means to “divide-and-conquer” the power grid, which
in our case involves reducing the number of constraints and “map-
ping them” to the internal grid. To grid partitioning, we com-
bine notions of worst-case voltage drops [5] and certain locality
properties of the grid, stemming from structural and electrical
considerations [9]. From a computational standpoint, we have
implemented an interior point method (IPM) as the backbone of
our solvers, which lead to substantial runtime improvements over
previous work. The result is an incremental grid verification of
blocks on grids that are much larger than was previously possible,
along with runtime savings.

3. POWER GRID ROBUSTNESS

3.1 Power Grid Model
For completeness of presentation, we derive a modified power

grid system of equations, which will be useful to our problem
solution below, following the derivation in [5]. We consider an
RC model of the power grid, where each branch of the grid is
represented by a resistor and where there exists a capacitor from
every grid node to ground. In addition, some nodes have ideal
current sources (to ground) representing the current drawn by
the circuit tied to the grid at that point, and some nodes have
ideal voltage sources (to ground) representing the connections to
the external voltage supply. Let the power grid consist of n + p
nodes, where nodes 1, 2, . . . , n have no voltage sources attached,
and nodes (n + 1), (n + 2), . . . , (n + p) are the nodes with the
voltage sources. Let ck be the capacitance from every node k
to ground. Let ik(t) be the current source connected to node k,
where the direction of positive current is from the node to ground.
We assume that ik(t) ≥ 0 and that ik(t) is defined for every node
k = 1, . . . , n so that nodes with no current source attached have
ik(t) = 0,∀t. Let i(t) be the vector of all ik(t) sources, uk(t) be
the voltage at node k, and u(t) be the vector of all uk(t) signals.
Applying Modified Nodal Analysis (MNA) leads to:

Gu(t) + Cu̇(t) = −i(t) + GVdd (1)

where G is an n× n conductance matrix, C is an n × n diagonal
matrix of node capacitances, and Vdd is a constant vector each
entry of which is equal to Vdd. Let vk(t) = Vdd − uk(t) be the
voltage drop at node k, and let v(t) be the vector of voltage drops,
then (1) can be written as:

Gv(t) + Cv̇(t) = i(t) (2)

This is a revised system equation which one can solve directly for
the voltage drop values. Notice that the circuit described by (2)
consists of the original power grid, but with all the voltage sources
set to zero and all the current source directions reversed. In the
following, we will mainly be concerned with this modified power
grid and the revised system of equations (2). The DC analogue
of (2) is readily seen as:

GV = I (3)

3.2 Local and Global Constraints
A local constraint relates to a single current source. For in-

stance, one may specify that current ik(t) never exceeds a certain
fixed level IL,k, i.e., ik(t) ≤ IL,k,∀t ≥ 0. This upper bound
may be simply known from prior simulation, if the cell or block
is already available, or it may be a best-guess based on the area
of the cell or block and on perhaps the power density of the de-
sign (total power divided by total area). If further information is
available on the circuit behavior over time, then the user may be
able to specify an upper bound waveform, as a time function, so
that ik(t) ≤ iL,k(t), ∀t ≥ 0. For brevity, we discuss upper bound
constraints only, with the understanding that this work can be
extended to handle lower bound/interval constraints. We assume
that every current source tied to the power grid has an upper
bound associated with it. If a grid node does not have a current
source attached to it, i.e., ik(t) = 0, ∀t ≥ 0, then we specify a
fixed zero-current upper bound for that node, IL,k = 0. In this
way, we have a local constraint associated with every node of the
power grid. We express these constraints in vector form as:

0 ≤ i(t) ≤ IL, ∀t ≥ 0 or 0 ≤ i(t) ≤ iL(t),∀t ≥ 0. (4)

A global constraint corresponds to the case when the sum of
the currents for a group of current sources is specified to have
an upper bound. The upper bound for example, corresponding
to the jth global constraint, may be a fixed bound IG,j , or a
waveform bound iG,j (t). If m is the number of available global
constraints, then we express all the global constraints in matrix
form as:

0 ≤ Ui(t) ≤ IG or 0 ≤ Ui(t) ≤ iG(t), (5)

where U is a m × n matrix that contains only 0s and 1s.

3.3 DC Robustness
Checking if the grid is robust entails checking if the voltage

drop for any node exceeds some threshold, over all circuit currents
that satisfy the constraints (4) and (5). This is a difficult problem,
due to the size of the grid, not to mention the infinite number
of possible current waveforms. A solution was presented in [5]
to tackle the DC version of this grid robustness problem. In
the DC problem, we are interested to check if the grid is safe
under all possible DC currents that satisfy the constraints. That
affords considerable simplification, and yields a problem that can
be formulated as an LP. It was also shown in [5] that, due to
the monotonicity property of the grid [6, 5] (roughly stated, the
higher the currents loading the grids, the greater the voltage drops
at the grid nodes), DC robustness guarantees that the grid is
safe under “some types” of transient currents as well, but not
all. So, there is merit in the DC solution, not least of which are
its usefulness early in the design cycle and its ability to quickly
discover problems in the grid which lead to errors under both DC
and transient currents. Generalizing this approach to the case of
transient current waveforms is part of our ongoing research and
is outside the scope of this paper.

Focusing on the DC case, and using (3), we can express the
DC constraints in terms of currents as:

0 ≤ I(t) ≤ IL. 0 ≤ UI ≤ IG. (6)

In terms of voltages, this becomes:

0 ≤ GV ≤ IL, 0 ≤ SV ≤ IG, V ≥ 0, (7)

where S = UG is an m × n matrix mapping global constraints
to node voltages. The problem now can be phrased as an LP
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Figure 1: Modified system for the solution of the

verification problem for the internal grid using

macromodeling.

for finding the maximum voltage drop at the power grid nodes,
under the constraints given in (7), with particular interest to the
nodes pertaining to the internal power grid. Observe that S has
the following special property, which will become useful below.
Recall that every row (and column) of G corresponds to a node
of the grid, excluding nodes corresponding to supply pads (C4
pads). Every row of S corresponds to a global constraint. If we
focus on the ith row of S, let Gi be the set of grid nodes that
belong to that global constraint. Then, the (i, j)th entry of S is
the sum of all entries in the jth column of G that are in rows
corresponding to nodes in Gi.

3.4 Power Grid Macromodeling
Macromodeling is a “divide-and-conquer” technique applied for

power grids in [8], which operates by partitioning the power grid
into small blocks, where the behavior of each block is abstracted
away at its ports, or nodes that connect this block to the outside.
This approach first results in a small “global grid” for initial solu-
tion, then the this global solution is mapped back into individual
blocks. For a detailed description, the reader is referred to [8].

Our approach, to be developed below, borrows from the ideas
of macromodeling. Simply put, we will reduce our system to the
internal grid and map all other currents to the port nodes of the
internal grid. However, the main difficulty is that we will be
dealing with equalities and/or local constraints on the currents
outside the internal grid, local constraints on the port nodes, as
well as global constraints that may include currents inside and
outside the internal grid. Our approach will result in a reduced
system, local to the internal grid, by eliminating external con-
straints from the constraint set. This reduced system will have a
conductance matrix Grdc, and modified currents Irdc, that can
be derived from the conductance and currents of the original sys-
tem. This is illustrated in Fig. 1. The following sections detail
this process.

4. LOCALITY IMPLICATIONS
We now introduce a refinement to the above problem (7), with

regard to currents outside the internal grid (which we refer to as
external currents), in relation to nodes inside the internal grid un-
der verification. Modern power grids feature on-chip decoupling
capacitors (decaps) and a dense and uniform array of C4 bumps
(Vdd sites in flip-chip technology). Decaps are known to act as
low-pass filters having an averaging effect on the currents in a
surrounding neighborhood, that is, reducing node voltage sensi-
tivity to current changes. It was also shown in [9] that the grid of
C4 bumps strongly contributes to localized and averaged current
patterns, again within some vicinity. Determining with precision
the size of this “neighborhood of influence” of a C4, decap, or
current source is still an open question at this time, but we will
state for our purposes that, seen from within the internal power
grid, external currents have a reduced effect, compared with their
effect in their immediate vicinity.

We will therefore assume, based on the presence of decaps and
C4s between the internal and external grids, that some external
current sources can be treated as fixed and known DC values, ef-
fectively eliminating the local constraints on them when verifying

the internal grid, and replacing these local constraints with an
average value derived from the nominal switching activity of the
external circuit. Other external current sources, depending on
the block from which they are derived, the value of the currents
they draw, and their proximity to the internal grid, may still be
significant enough to the internal grid that, for accuracy of the
analysis, one ought to maintain them as uncertain, with a con-
straint on their maximum values, rather than fix them at some
average. To first order, this would be the case for big current of-
fenders such as I/O buffers or clocks that are close enough to the
internal grid, but can also include any external currents whose
variation is expected to affect the internal grid significantly, or
simply currents on which designers wish to maintain a degree of
freedom when verifying the internal power grid.

The following two sections deal with mapping the problem (7)
to the internal grid, and we present solutions to both cases of
fixed and constrained external currents. For clarity of presenta-
tion, we treat these two cases separately in the next two sections,
yielding a modification of the standard LP problem in each case.
If the external grid needs to be modeled with some currents fixed
and others constrained, then the maximum voltages on the inter-
nal grid can be found by superposition of the maximum voltages
obtained considering the fixed external sources and the maximum
voltages obtained for the constrained external sources.

5. PROBLEM REDUCTION WITH
FIXED EXTERNAL CURRENTS

In this section, we assume that all external currents can be
treated as fixed and known DC values. We refer to nodes on the
internal grid with connections to the external grid as port nodes,
and we refer to nodes on the internal grid under verification sim-
ply as internal nodes and to nodes on the external grid as external
nodes. Let next, nprt, and nint be respectively the number of ex-
ternal, port, and internal nodes, such that next +nprt +nint = n.
Assuming that external nodes connect only to the internal grid
through the port nodes, the verification equations (7) can be writ-
ten as [8]:

0 ≤

��
�

G11 G12 0

GT
12 G22 G23

0 GT
23 G33

S1 S2 S3

� �
�

�� Vext

Vprt

Vint

�� ≤

��
� Iext

Iprt

Iint

IG

� �
� , (8)

where Vext and Iext are next-subvectors corresponding to ex-
ternal grid nodes and external current sources, Vprt and Iprt

are nprt-subvectors corresponding to port nodes and currents,
and Vint and Iint are nint-subvectors corresponding to inter-
nal grid nodes and and internal current sources (current sources
inside the internal grid), and the G and S matrices are parti-
tioned into submatrices of appropriate dimensions. Observe that
in the above partitioning, G11(next × next), G22(nprt × nprt),
and G33(nint × nint) are M-matrices, whereas G12(next × nprt)
and G23(nprt × nint) are non-positive matrices.

Since we are fixing external currents when verifying a block, we
interpret Iext as a fixed vector not as a vector of upper bound con-
straints, and the local constraint on the external currents in (8)
turns into the following vector equality:

G11Vext + G12Vprt = Iext. (9)

Further, we can partition the matrix U introduced in (5) into
U = [Uext Uprt Uint], where Uext, Uprt, and Uint are three
submatrices of dimensions m×next, m×nprt, and m×nint respec-
tively. Fixed external currents imply a considerable simplification
to the global constraints: we can replace IG with IG −UextIext

and take U = [0 Uprt Uint]. This simply means that, although
global constraints may encompass both internal and external cur-
rent sources, fixing external currents allows us to subtract their
values from the upper bounds of the global constraints (when ap-
plicable) so that we can always assume global constraints involve
only internal currents.

We can write from (9):

Vext = G
−1
11 (Iext − G12Vprt). (10)



Substituting (10) into the second inequality of (8) leads to:

−G
T
12G

−1
11 Iext ≤ (G22 −G

T
12G

−1
11 G12)Vprt + G23Vint

≤ Iprt − G
T
12G

−1
11 Iext, (11)

where Gprt = G22 − G
T
12G

−1
11 G12 is the port admittance ma-

trix [8]. Since G11 is an M-matrix, G−1
11 ≥ 0, and since G12 ≤ 0,

then −GT
12G

−1
11 Iext ≥ 0. Let

Imap = −G
T
12G

−1
11 Iext. (12)

Then, based on (11), we observe that mapping the external cur-
rents to the ports shifts the local constraint on the ith port current
by a positive amount equal to the ith component of Imap. This
shift establishes both upper and lower bounds on the port cur-
rents. The local constraints on the internal nodes are unchanged.
We have from (8):

0 ≤ G
T
23Vprt + G33Vint ≤ Iint. (13)

We now examine the global constraints. From (8), we have:

0 ≤ S1Vext + S2Vprt + S3Vint ≤ IG. (14)

Using S = UG and U = [0 Uprt Uint], leads to:

S1 = UprtG
T
12

S2 = UprtG22 + UintG
T
23 (15)

S3 = UprtG23 + UintG33.

Substituting (15) and (10) in (14) yields:

UprtImap ≤ [Uprt Uint] � Gprt G23

G
T
23 G33 � � Vprt

Vint �
≤ IG + UprtImap. (16)

We define the reduced (internal) grid conductance matrix

Grdc = � Gprt G23

G
T
23 G33 � (17)

to be the conductance matrix of the internal grid in the reduced
system (see section 6.1). We further define

Srdc = [Srdc,1 Srdc,2] = [Uprt Uint] � Gprt G23

GT
23 G33 � (18)

to be the reduced matrix of global constraints. Combining (11), (13),
(16), and (18) yields:�� Imap

0

UprtImap

�� ≤

�� Gprt G23

GT
23 G33

Srdc,1 Srdc,2

�� � Vprt

Vint �
≤

�� Iprt + Imap

Iint

IG + UprtImap

�� . (19)

It is clear that (19) corresponds to a system which is analogous
to (8), but with size reduced to the number of internal nodes (in-
cluding ports), in addition to the number of global constraints.
Therefore, we now have a reduced form of the standard LP prob-
lem, stated in (7), that we can use to find the maximum voltage
drops at the internal nodes. Effectively, external nodes were elim-
inated from the system.

All entries in (19) can be computed in a straightforward fash-

ion; however, Imap and Gprt contain G
−1
11 in their expressions,

which is, at first sight, expensive to compute and store. How-
ever, using Cholesky factorization, we will circumvent the need
to inverse the port admittance matrix altogether [8]. Instead, the
cost of Gprt will be essentially one matrix-matrix multiply and
that of Imap one forward solve, given the Cholesky factorization
of the top left (next + nprt) × (next + nprt) submatrix of G. We
will discuss computational efficiency in section 6.2.

6. PROBLEM REDUCTION WITH
UNCERTAIN EXTERNAL
CURRENTS

In this section, we consider external currents to be constrained,
and map the external current constraints to the terminals of the
internal grid. This mapping will be in the form of shifted upper
bounds in the local and global constraints.

6.1 Macromodeling the External Grid With
Current Constraints

Recalling the decomposition in (8), we have:

G11Vext + G12Vprt ≤ Iext. (20)

Unlike in (9), Iext in the above equation is a vector of upper
bounds representing local constraints on the external current sources,
not a fixed vector of external currents. Since Iext ≥ 0, Vprt ≥ 0,

and G12 ≤ 0, then Iext −G12Vprt ≥ 0. Since G
−1
11 ≥ 0, then (20)

yields:

Vext ≤ G
−1
11 (Iext − G12Vprt). (21)

Pre-multiplying the above inequality by G
T
12 ≤ 0 leads to:

G
T
12Vext ≥ G

T
12G

−1
11 (Iext −G12Vprt). (22)

Also, we can directly write from (8):

G
T
12Vext ≤ Iprt − G22Vprt −G23Vint (23)

By combining (22) and (23), we can “eliminate” the external node
voltages from the constraints and obtain:

GprtVprt + G23Vint ≤ Iprt + Imap, (24)

where the expressions of Gprt and Imap are the same as in sec-
tion 5. The local constraints on the internal current sources re-
main unchanged, as in (13).

Next, we “eliminate” the external nodes from the global con-
straints. Assuming that S1 ≤ 0, we pre-multiply both sides of
the inequality in (21) with S1 to obtain:

S1Vext ≥ S1G
−1
11 (Iext − G12Vprt). (25)

We note that in this case: U = [Uext Uprt Uint], and in par-
ticular that, unlike section 5, we may not assume that Uext = 0.
Combining the above inequality with (14), and using the fact that
S = [S1 S2 S3] = UG, we get the reduced global constraints:

[Uprt Uint] � Gprt G23

G
T
23 G33 � � Vprt

Vint � ≤

IG + UprtImap −UextIext, (26)

or alternatively:

(S2 − S1G
−1
11 G12)Vprt + S3Vint ≤ IG − S1G

−1
11 Iext. (27)

If the condition S1 ≤ 0 is not satisfied, then the problem can-
not be so reduced. The requirement that S1 ≤ 0 means that the
partitioning cannot be arbitrary and must keep the the global con-
straints in mind. We will discuss this in more detail in section 6.4
and devise a scheme to find suitable partitioning of the power grid
to enable the incremental verification of a specific block or region
of the power grid. For now, we will assume that S1 ≤ 0 in our
constraint set. Combining (24), (13), and (27), we now have the
following reduced problem, where local and global constraints on
the external currents have been mapped to the terminal nodes:�� Gprt G23

G
T
23 G33

S2 − S1G
−1
11 G12 S3

�� � Vprt

Vint � ≤�� Iprt + Imap

Iint

IG − S1G
−1
11 Iext

�� .

(28)

Note that all lower bounds in the reduced system are 0. We
abbreviate (28) as KV

′ ≤ Im, where again we recognize the LP
form.



6.2 Efficient Analysis
Carrying out the above partitioning is computationally easy,

except for the one problem that G
−1
11 is required for computing

Gprt, Imap, and I
′
G

= IG − S1G
−1
11 Iext. In general, it is un-

desirable to require explicit computation of the inverse. In order
to simplify the expression for I′

G
, it suffices to make one further

requirement (and we will provide reasoning for this below) that
S1 = 0, in which case I

′
G = IG.

In order to resolve the difficulty with Gprt and Imap, we take
advantage of the result in [8] which allows us to calculate these
matrix expressions without the need of inverting G11. This is
done using the submatrices of the Cholesky factorization. Look-
ing at the matrix composed of the four sub-matrices G11, G12,
GT

12, and G22, let the Cholesky decomposition of that matrix be
as follows:

� G11 G12

G
T
12 G22 � = � L11 0

L21 L22 � � L
T
11 L

T
21

0 L
T
22 � . (29)

With this, it was then shown in [8] that Gprt can be simply

expressed as Gprt = L22L
T
22. Furthermore, it was observed that:

G
T
12G

−1
11 = L21L

T
11(L11L

T
11)−1 = L21L

−1
11 (30)

leading to Imap = −L21L
−1
11 Iint. Now L

−1
11 Iint can be computed

with one forward solve, so that no inversion is explicit in the
process of computing Imap. Similarly, we can write

G
T
12G

−1
11 G12 = L21L

T
21, (31)

which means that the bulk of the computation for Gprt lies in
a square matrix-matrix multiply, of very small size, equal to the
number of port nodes.

This approach of harnessing the Cholesky factors substantially
reduces the computation cost associated with the calculation of
the reduced system [8]. The most expensive operation in this pro-
cedure remains the Cholesky factorization itself. The remaining
operations can be done effortlessly since all the matrix factors
involved are for the most part triangular.

6.3 Topological Characteristics
We reiterate the point made earlier, that care must be taken

in partitioning the grid (in the case of uncertain external cur-
rents only). The block should be chosen in a way that guarantees
S1 ≤ 0. For computational efficiency, it is further desired to
achieve S1 = 0. The question becomes: how does one topolog-
ically partition the grid graph in order to end up with S1 = 0?
We will show in this section that this is very easy to do, in fact,
due to the special properties of the matrix S, which were pointed
out at the end of section 3.3. If Sij is the (i, j) entry of S and
Gkj is the (k, j) entry of G, then it follows from our previous
discussion of S that:

Sij = �
k∈Gi

Gkj (32)

where, recall, Gi is the set of grid nodes that belong to the ith
global constraints, i.e., nodes where current sources are tied that
are included in the ith global constraint. This intimate relation-
ship between S and G is key, and is shown in Fig. 2.

Nodes that may be removed (nodes in Vext) are nodes that
correspond to columns of S whose entries are all 0. To identify
these nodes, and due to (32), we start by recalling the well-known
properties of the conductance matrix G. That matrix is symmet-
rical, and every row (and column) of G uniquely corresponds to a
node of the grid that is not directly tied to an ideal voltage source
(C4 pad). Every diagonal entry of G is positive, Gii > 0, and
equals the sum of all conductances tied to that node. Every off-
diagonal entry of G is negative or zero, Gij ≤ 0, i 6= j, and equals
the negative of the conductance (if any) that connects node i to
node j. If none of the immediate neighbors of node i is a C4 pad,
then the sum of all entries in that row (or in that column) of G

is zero, � i Gij = 0. If at least one immediate neighbor of node i
is a C4 pad, then � i Gij > 0.

G=

S=

rows corresponding to 

Global Constraint i

i
th

row

entry of row
th

j

Figure 2: Special properties of the S matrix.

Given (32), the following facts become immediately clear. If
node j is not included in Gi, then the diagonal term Gjj is not
part of the summation (32), and therefore, Sij ≤ 0. Otherwise,
when node j is included in Gi, Gjj is part of the summation (32),
and Sij ≥ 0. Finally, there are two cases that lead to Sij = 0: 1)
if neither node j nor any of its immediate neighbors are part of
Gi, or 2) if node j and all its immediate neighbors are part of Gi,
provided that none of those neighbors is a C4 pad.

Therefore, a node that may be removed (nodes in Vext) bears
the following relationship to every global constraint: either that
node and all its neighbors are outside that global constraint, or
that node and all its neighbors (none of which is a C4 pad) are
inside that global constraint.

6.4 Partitioning Approach
It is clear from the concluding remark in the previous section

that partitioning may be naturally done by looking at the global
constraints and considering which nodes belong in them.

We make some reasonable engineering assumptions about the
global constraints. Firstly, we assume that there is one global
constraint that covers all the nodes of the grid, which we refer to
as the “full chip constraint” (FCC). This constraint might stem,
typically, from knowledge of the total power dissipation of this
chip. Further, we assume that the other global constraints (other
than the FCC, that is) correspond to specific design blocks, so
that, typically, each constraint may relate to the power dissipation
of a specific block. In other words, and since design blocks are
distinct objects, these non-FCC constraints do not overlap. Thus,
every node is covered by the FCC, and may be covered by at most
one other constraint.

With this, our partitioning algorithm becomes as simple as the
following. We assume that the user specifies what parts of the
grid are definitely to be preserved (these are the parts that one
is interested in verifying). All nodes in these parts are marked
keep, meaning that they will not be eliminated as part of the par-
titioning. Likewise, nodes whose immediate neighbors include a
C4 pad are also marked keep. Finally, for every non-FCC global
constraint, we mark as keep any nodes that have at least one im-
mediate neighbor outside that constraint. With this, any nodes
that are not marked keep can now be eliminated - they consti-
tute Vext. Nodes within a non-FCC global constraint that are
immediate neighbors of nodes outside of it become the “terminal
nodes” - they constitute Vprt. All other nodes are part of Vext.

As an example, applying this partitioning approach to the small
grid shown in Fig. 3 leads to the reduced grid shown in Fig. 4.

6.5 Linear Programming Solution
Once a region of interest on the power grid has been chosen

for analysis we may again as in [5] reformulate the problem as a
linear program around the reduced constraint set and solve for
worst case voltage drop sequentially on every node in the region.
Thus having a set of nodes that we are interested in verifying
(vi, vj ...vm) we may formulate the sequential linear program:

maximize : vi, vj , ...vm (33)

subject to : KV
′ ≤ Im

V′ ≥ 0

An important note that needs to be mentioned, for readers that
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are familiar with hierarchical analysis of power grids, is that once
the system has been reduced, optimizing for a worst-case voltage
drop may only be run on the internal nodes. Due to the nature
of the mathematics involved (mainly the fact that our system is
modeled as constraints) the solution of the worst-case voltages
cannot be used to solve for a worst-case voltage drop for external
nodes of a partition.

7. EXPERIMENTAL RESULTS
For the testing of our technique we have used a power grid syn-

thesizer to generate representative two-layer grids. The pitch and
process metalization conductivity is specified by the user as well
as a non-uniformity percentage. The grid is generated by first lay-
ing down a Manhattan structure and then randomly deleting by
the given percentage, nodes of the grid and their adjacent metal
branches thus yielding a non-uniform structure. When a node
and its branches are deleted the surrounding remaining branches
are increased by a random amount around a user specified per-
centage of their initial values. The rationale behind this is to
allow the non-uniform grid to be loaded with currents compara-
ble to its uniform predecessor while exhibiting comparable IR-
drops. The number of Vdd sites are supplied by the user; and
are then distributed at random over the grid nodes. Further, the
global constraint geometries and current sources, both bounded
and fixed, are defined in a topology layout file. The topology lay-
out is checked and verified to insure that the global constraints
do not violate or overlap each other based on the engineering
assumptions made in section 6.4.

All experiments were run on a 1 GHz Sun machine with 4 GB
memory. In [5], it was not possible to verify the voltage drop of

grids much larger than a few thousand nodes with an LP problem
formulation. In order to increase speed and the ability to solve
much larger grids with our LP formulation we opted to implement
an interior point method. Table 1 shows a comparison of analysis
times between simplex and IPM. We notice that for the small
grid case of 500 nodes, simplex with objective function switching
[5] is in fact faster than the IPM, however the performance gains
of IPM can be viewed with the much larger grids.

We present computation times of our reduction method with
fixed external currents in Table 2. The results shown are for a lo-
cale of 50 nodes which are internal to a block. Column three of the
table is the block size that the entire grid is reduced to. Column
four is the size of the partition that is used to iteratively reduce
the grid. Since the partitioning technique used to eliminate the
external grid of the block requires a Cholesky factorization, as
the size of the partition grows so does the computational com-
plexity. It was understood early on in the experimentation stage
that trying to macromodel a section of the grid that is too large
could possibly negate the computational benefits of the approach.
Due to the fact that the fixed currents are equalities and all exist
outside of the block, we decided to partition the grid iteratively
by a reduction partition that is chosen to be relatively small so
that computation times are not excessive. Using this set size of
the reduction partition column five of the table shows the time
required to reduce the entire grid to the internal grid. The last
column of the table is the total time required to reduce the system
and solve for the maximum voltage drop on all 50 nodes.

Table 3 shows the associated computation costs of partitioning
grids and solving for the worst-case voltage drop for a localized
area containing 50 nodes using current constraints. In Table 3 the
last two columns show a comparison in run-time (for the verifica-
tion of the 50 node locale) between using strictly the interior point
method and using the interior point but with partitioning. The
partitioning approach allows for faster run time with about 10X
- 20X speed up. It is significant to observe from our results the
simulation times of the last two grids. The time required to sim-
ulate the internal grid of the 1M node grid is less than that of the
500k grid. This is due to the computational cost associated with
the partitioning method as was discussed in the previous para-
graph. In the 1M grid case the global constraints which influence
our partitioning approach as discussed in section 6.4 happen to
be smaller than those of the 500k grid. Table 4 shows the average
difference of voltage drop values between solving the grid with
constraints using IPM and solving using IPM with partitioning
for three grids for a locality of 100 nodes in each run. The results
indicate good accuracy as the difference ranges from about 0.8%
to 3%.

8. CONCLUSION
In today’s integrated circuit designs, voltage fluctuations on

the power grid are a key concern. Due to the large size of grids
and the difficulty in obtaining proper stimulus for all possible cir-
cuit operations, simulation of the voltage drops on the grid are
extremely difficult. In this work we have taken the power grid ver-
ification approach which uses current constraints to abstract the
behavior of the circuit, and improved it in terms of performance
and its capacity to handle much larger grids, while focusing on
a local area within the grid. By implementing an approach that
partitions the grid around the current constraints and has the ca-
pacity to handle fixed current constraints we are able to eliminate
portions of the grid outside the area under verification and then
solve the reduced problem as a linear program. We believe this
approach will be very useful going forward in incremental design
verification of the power grid, given the ability to simulate grids
of industrial size and within practical computation times.
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