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ABSTRACT
Based on a timing yield model, a statistical static timing analysis
technique is proposed. This technique preserves existing method-
ology by selecting a “device file setting” that takes into account
within-die statistical variations, and with which to run traditional
static timing analysis in order to meet the desired yield. Us-
ing process-specific “generic paths” representing critical paths in
a given process technology, our approach can be used early in
the design process, most importantly during the pre-placement
phase. Within-die variations are taken care of using a simple
model that assumes positive correlation, which leads to upper
and lower bounds on the timing yield. Our approach also han-
dles both setup and hold timing constraints.

1. INTRODUCTION
The yield of an integrated circuit (IC) is a complex function of

a number of factors related to both design and manufacturing. In
this work, we will focus on the yield affected by circuit design. As
part of circuit timing verification, one has to leave enough margin
so that circuit delay variations do not affect yield too adversely.
We will focus on this part of the overall yield problem, referred
to as timing yield or circuit-limited yield [1, 2].

It is a known fact that process variations have an impact on
circuit delay variations, and consequently can cause timing yield
loss. Traditionally, process variations have been taken care of in
various ways. ASICs are typically designed by making sure the
chip passes the timing requirements at all process corners, includ-
ing nominal, worst, and best cases of device behavior. A circuit is
deemed to have passed the timing test if it meets the performance
constraints for all “worst-case” files belonging to that process. If
these settings are too pessimistic, then designers are forced to
waste time and effort optimizing a circuit using design conditions
that are too stringent. For microprocessors, it is typical to check
circuit timing with nominal transistor files, and to specify some
timing margin which should be left as slack in order to account
for process variations.

There has been considerable discussion in the literature that
the traditional methods of using process corners or using a timing
margin are breaking down. For one thing, for ASICs, the number
of corners is increasing, making it very expensive to explore all
corners. Also, the corner based method can be too conservative
and does not provide the user with any quantitative feedback
on the robustness of the design [3]; it is a pass/fail approach.
Furthermore, this traditional approach cannot handle within-die
statistical variations [2]. On the other hand, for microprocessors,
where nominal process files are used and a timing margin needs to
be left as slack, there are no easy ways to decide what the margin
should be, to account for within-die variations which have become
important recently [1].

Statistical techniques offer an alternative approach; statistical
transistor modeling techniques [3] have been used for quite some
time. Recently, due to the increased importance of within-die
variations, there has been an increased interest in tackling the
timing yield problem by employing statistical techniques as part
of the circuit timing analysis step [2, 1, 4, 5, 6]. The aim is to
include statistical delay variations as an extension to traditional
STA leading to statistical static timing analysis (SSTA).

In a number of cases [2, 6, 7, 8], it has been assumed that
within-die variations are totally uncorrelated, an assumption which
is not true in practice. It is usually hard to express the correla-

tions between within-die parameter variations with a model built
from process data. There are no published models, for instance,
on how exactly the variations are correlated across the die as a
function, say, of the distance between components. In [5], even
though statistical within-die variations are not taken into account,
a suggestion is made at the end as to how one may include them
and take care of correlation by enforcing correlation between fea-
tures that are in the same region of the layout. This theme was
further developed, where use was made of principal components
analysis (PCA) [9] or a quad-tree partitioning [10] to express a
region-wise spatial correlation among within-die variations. Here
too, it is not clear how one would identify these regions and how
the model would be built from process data. Finally, since these
methods depend on placement information, and extensive process
data, these types of post-placement, design specific SSTA become
final sign-off tools and are unusable during circuit design.

In fact, we envision that three types of SSTA may be useful in
practice:

1. process-specific SSTA based on a generic path. This can be
applied early in the design flow, to establish timing margins
for generic paths in the candidate technology, even before
circuit design has started, and to possibly optimize the de-
vices or the circuit style to reduce these margins.

2. design-specific SSTA based on a given design in a given pro-
cess. This can be applied pre-placement, during the circuit
design stage. This would be perhaps the most heavily used
type of SSTA.

3. post-placement design-specific SSTA, for final sign-off.

Of course, the level of accuracy achieved and the level of physical
detail that is taken into account will vary among the different
types of SSTA. For instance, wire parasitics variations have an
effect on delay (depending on the strengths of the driver, etc.),
but can only really be taken into account post-placement. In a
pre-placement scenario, they may have to be ignored, or replaced
by some safety factor.

In [11], a pre-placement, process specific SSTA is presented, in
which within-die statistical correlations are captured with prin-
cipal components analysis (PCA). Using Cauchy bounds, an ap-
proach is then developed to estimate a lower bound on the Max
timing yield (i.e., based on setup constraints) of a large collection
of generic paths. However, meeting the hold time constraints,
reflected in the Min timing yield, was not covered in [11]. Also,
the analysis is based on prior knowledge of the order of PCA,
which may be hard to predict. In this work, we extend the ap-
proach of [11] in two important ways: 1) we can handle both setup
and hold timing constraints and 2) our analysis is not dependent
on knowing the order of the PCA for the within-die correlation
model. The resulting approach is a pre-placement process-specific
SSTA technique, also based on the “generic critical path” con-
cept presented in [12, 11], to perform statistical timing analysis
with two-sided constraints. Our approach can be used in the pre-
placement phase, to establish timing margins for generic paths,
even before circuit design has started. In our approach, we as-
sume the within-die statistical variations to be arbitrarily posi-
tively correlated across the die, i.e., having a positive covariance,
which is a reasonable assumption for many sources of variabil-
ity. However, we do not require the availability of a correlation
model. Instead, we will prove that by assuming the within-die
systematic variations of path delays to be uncorrelated/totally
correlated, we will produce lower/upper bounds on the Max and



Min timing yields. Using only extreme cases of correlation, this
approach requires minimal knowledge of process data, and hence
is applicable to the pre-layout phase, during circuit design and
optimization.

Previously proposed techniques for statistical static timing anal-
ysis change the static timing flow so that one is propagating dis-
tributions of delay, instead of simply delay. In contrast, our ap-
proach does not propagate distributions. Instead, the result of
our approach is a selection of a “device file” setting or a “vir-
tual corner” with which to run traditional static timing analysis,
which is somewhere within the extremes of device behavior. For
example, while the “nominal” device file may call for a setting
of ∆L = 0 (for channel length variations) and the “worst-case”
file may call for a setting of ∆L = +3σL, our approach aims
to predict the value “δ” such that if the setting of ∆L = δσL

was used for all devices, and if the circuit timing is verified using
traditional static timing analysis, then the circuit would give the
desired timing yield. Another equivalent result is to be able to
predict a timing margin τ which, if allowed, and if traditional
STA with nominal files was used, the desired yield would be met.
Hence, for a desired yield, we will work backwards to find the
required timing margin τ or the required device file setting δ. As
a result, our approach can be applied in the pre-layout phase. It
preserves existing static timing methodology and only assumes
the existence of statistical transistor models, which have been
standard for some time.

2. PARAMETER MODEL
For a given circuit element or layout feature i, let X(i) be a

zero-mean Gaussian random variable (RV) that denotes the vari-
ation of a certain parameter of this element from its nominal
(mean) value. Thus, for example, X(i) may represent channel
length variations of transistor i. Correlation between values of
X(i) at different locations on the die may be expressed by means
of an autocorrelation function, but this is not a practical ap-
proach. Instead, it is standard practice [13] to express the cor-
relation by first breaking up the variations into die-to-die and
within-die components, as follows:

X(i) = Xdd + Xwd(i) (1)

The die-to-die component Xdd is an independent1 zero-mean Gaus-
sian RV that takes the same value for all instances of this element
on a given die, irrespective of location. The within-die component
Xwd(i) is a zero-mean Gaussian which can take different values
for different instances of that element on the same die. This leads
to the following relationship between the variances:

σ2(i) = σ2
dd + σ2

wd(i) (2)

Then, the within-die component is further broken down into two
components, a systematic component and a “random” compo-
nent:

Xwd(i) = Xwds(i) + Xwdr(i) (3)

where, for each i, the random component Xwdr(i) is an indepen-
dent zero-mean Gaussian. A similar relationship follows for the
variances:

σ2
wd(i) = σ2

wds(i) + σ2
wdr(i) (4)

We can write Xwds(i) in the following way:

Xwds(i) = σwds(i) Zwds(i) (5)

where Zwds(i) are correlated standard normal RVs (mean 0, vari-
ance 1). Hence, our model for parameter variation X(i) consists
of an independent zero mean die-to-die component Xdd with vari-
ance σ2

dd, a correlated systematic within-die component Xwds(i)

with variance σ2
wds(i), and an independent random within-die

component Xwdr(i) with variance σ2
wds(i).

1Throughout this paper, whenever an individual RV is described
as “independent”, this means that it is independent of all other
RVs under consideration.

In previous work, PCA and dependence on global sources of
variations were used to model correlation between the systematic
components of the within-die variations. In this work however, we
will not require the use of a specific correlation model. Instead, we
express the systematic components as positively correlated RVs,
and we show that our timing yield bounds hold for any correlation
model, and are the same for any order of the PCA expansion.

3. PARAMETRIC YIELD MODEL
With the random parameter model given above, we now de-

fine the parametric Max yield and the parametric Min yield for
parameter X as:

Ymax(x) = P{X(i) ≤ x, i = 1, 2, . . . , n} (6)

Ymin(x) = P{X(i) > −x, i = 1, 2, . . . , n} (7)

where n is the number of instances of this parameter on chip.
Here, X(i) is a generic parameter that may represent transistor
channel length variations, threshold voltage variations, etc. In
fact, X(i) is any statistical quantity on chip that may be char-
acterized by the parameter model introduced in section 2. When
X(i) is a simple parameter, such as channel length, then paramet-
ric Max yield is the probability that all device lengths on the die
vary by less than some threshold x, and parametric Min yield is
the probability that all device length variations are greater than
some other threshold −x. Note that x is generally positive since
in the Max yield case, the threshold is usually set greater than
the mean of X (i.e zero), while in the Min yield case it is usu-
ally set to be smaller. We will later show how path delay can
itself be viewed as a parameter with its own triplet of variances
(σ2

dd, σ2
wds , σ2

wdr) that we will relate to the underlying transistor
parameter variances. This will allow us to express timing yield
based on a parametric yield model. Thus, the material in this
section, although focused on parametric yield, will actually be
directly useful for computing timing yield.

It is noteworthy that both Max and Min yields are of equal
importance. Chips fail either because the maximum circuit delay
is greater than a performance constraint (the setup constraint),
or because the minimum circuit delay is smaller than another
constraint (the hold constraint).

3.1 Slepian’s Inequality
In this section we will find bounds on the two parametric yields

that were defined earlier. Using the following theorem from multi-
variate normal probability [14], we will prove that these bounds
are a direct consequence of extreme cases of correlation between
the within-die systematic components across the die.

Slepian’s Inequalities:
Let V = ({V (i)}, i = 1, . . . , n) and W = ({W (i)}, i = 1, . . . , n)
be two random vectors of size n, both multi-normally distributed
with zero mean and covariance matrices Σ = {σij} and Γ =
{γij}, respectively. Also let σii = γii for i = 1, . . . , n. If σij ≥
γij for all i �= j, in symbols Σ ≥ Γ, then:

P {V (i) ≤ ai, ∀i} ≥ P {W (i) ≤ ai, ∀i} (8)

and

P {V (i) > ai, ∀i} ≥ P {W (i) > ai, ∀i} (9)

Note that σii = σ2
i is the variance of V (i), and σij is the covari-

ance of V (i) and V (j).

The above result is quite interesting. It states that, given two
random vectors V and W having the same variances (i.e., σii =
γii), if one of them is more correlated than the other (i.e., σij ≥
γij for all i �= j) then (8) and (9) hold.

A direct consequence of Slepian’s inequalities is to be able to
find upper and lower bounds on both Max and Min parametric
yields. As presented in section 2, the parameter vector X is the
following:

X(i) = Xdd + Xwds(i) + Xwdr(i) (10)

where Xwds(i)’s are arbitrarily correlated across the die. To over-
come the lack of information about within-die systematic corre-
lation, which is typically hard to get, we will introduce two RVs



that represent extreme cases of within-die systematic correlation:
the case of independence, and the case of total correlation.

Let X(0) be a random vector whose elements have the same
marginal distributions as those of X, but with the property that
its within-die systematic components are independent. Also, let
X(1) be a random vector whose elements have the same marginal
distributions as those of X, but with the property that its within-
die systematic components are positively totally correlated. In
other words, X, X(0), and X(1) have the same individual vari-
ances, but only differ in the extent of correlation of the within-die
systematic components, i.e., they differ in their covariances.

Now, suppose that Σ, Σ(0) and Σ(1) are the covariance matrices
of parameter vectors X, X(0), and X(1) respectively. These ma-
trices have the same diagonal elements (representing variances),
but differ by their off-diagonal elements (representing covariances).
Remember that X is a zero-mean random vector, and its covari-
ance matrix Σ = {σij} will be simplified to the following, for
i �= j:

σij = E [X(i) · X(j)] (11)

= σ2
dd + E [Xwds(i) · Xwds(j)]

where σij is the off-diagonal element of the covariance matrix Σ.
The second part of the above equation is the covariance Σwds =
{σwdsij

} of the within-die systematic component. Therefore we
can write:

σij = σ2
dd + σwdsij

(12)

Notice here that the covariance of X(0) and X(1) will have the
same form as the above equation, and only differ by the value
of σwdsij

: For X(0), σwdsij
= 0 since the within-die systematic

components are independent (correlation coefficient equals to 0).

For X(1), σwdsij
is maximum, since maximum covariance occurs

when the systematic RVs are positively totally correlated (corre-
lation coefficient equals to +1).

If we assume that the within-die systematic components are
positively correlated (i.e., their covariances are always positive
σwdsij

≥ 0), then the correlation coefficients are between the two

extremes of 0 and 1, so that:

Σ(0) ≤ Σ ≤ Σ(1) (13)

The assumption of positive correlation is practical for many sources
of variability. A physical variation that slows down a transistor,
a gate, or a path, is likely to have the same effect on another
that lies nearby. If the other device/gate/path is far away, then
it would probably be independent. Given this assumption, then
coupling (13) with Slepian’s inequalities, we can write:

P{X(0)(i) ≤ x, ∀i} ≤ Ymax(x) ≤ P{X(1)(i) ≤ x, ∀i} (14)

P{X(0)(i) > −x, ∀i} ≤ Ymin(x) ≤ P{X(1)(i) > −x, ∀i} (15)

where Ymax(x) and Ymin(x) are the parametric Max and Min
yield defined earlier. The above equations are fundamental, be-
cause they capture the lower and upper bounds on the Max and
Min yields when the within-die correlation is unknown or uncer-
tain. In the following sections, we will derive expressions for the
lower bounds and upper bounds given in (14) and (15).

3.2 Lower bounds
Consistent with the previous section, we will now find expres-

sions for the Max and Min yields lower bounds, by starting with

an assumption that Xwds(i) are independent. Let Y
(lb)
max(x) and

Y
(lb)
min(x) be the Max and Min yield lower bounds respectively. For

the lower bound analysis, the within-die systematic and random
components Xwds(i) and Xwdr(i) are both independent RVs.
Therefore we can replace them both by an independent within-die
component Xwd(i) = Xwds(i) + Xwdr(i). The following are the
yield lower bound expressions:

Y
(lb)
max(x) = P {Xdd + Xwd(i) ≤ x, ∀i} (16)

Y
(lb)
min(x) = P {Xdd + Xwd(i) > −x, ∀i} (17)

Since Xdd is an independent zero-mean Gaussian with variance
σ2

dd, then Z0 = Xdd/σdd is an independent standard normal RV
(mean 0, variance 1), and the expressions for the yield lower
bounds can be expanded as:

Y
(lb)
max(x) = P{σddZ0 + Xwd(i) ≤ x, ∀i} (18)

Y
(lb)
min(x) = P {σddZ0 + Xwd(i) > −x, ∀i} (19)

We now recall a result from basic probability theory that will
be used repeatedly in the paper. Let A be an arbitrary event,
and X be an RV with a probability density function (pdf) f(x).
Then (see [15], pg. 85) we have:

P{A} =

� +∞

−∞
P{A | X = x}f(x)dx (20)

This result is an extension to the continuous case of the simple
fact that P{A} = P{A | B} · P{B} + P{A | B} · P{B}, where B
is another event. Applying (20) to (18) and (19), and denoting
by φ(·) the pdf of the standard normal distribution, gives:

Y
(lb)
max(x) =

+∞�
−∞

P{Xwd(i) ≤ x − σddz, ∀i}φ(z)dz (21)

Y
(lb)
min(x) =

+∞�
−∞

P{Xwd(i) > −x − σddz, ∀i}φ(z)dz (22)

Since Xwd(i) are independent, then we can express their joint
probability as a product:

Y
(lb)
max(x) =

+∞�
−∞

n�
i=1

P{Xwd(i) ≤ x − σddz}φ(z)dz (23)

Y
(lb)
min(x) =

+∞�
−∞

n�
i=1

P{Xwd(i) > −x − σddz}φ(z)dz (24)

Now replacing the integrals by the mean or expected value oper-
ator E[·] and using the fact that for a normal RV W with zero
mean, P{W > −w} = P{W ≤ w}, we get:

Y
(lb)
max(x) = E

�
n�

i=1

Φ

�
x − σddZ0

σwd(i)

��
(25)

Y
(lb)
min(x) = E

�
n�

i=1

Φ

�
x + σddZ0

σwd(i)

��
(26)

where σ2
wd(i) = σ2

wds(i) + σ2
wdr(i) is the variance of Xwd(i), and

Φ(·) is the cumulative distribution function (cdf) of the standard
normal.

Equations (25) and (26) represent the parametric Max and
Min yield lower bounds. Note the dependence on the number of
parameter instances n. Later in this paper, we will show that as
n goes to infinity, the above equations will take other forms which
are independent of n.

3.3 Upper bound
Similarly, we will now find expressions for upper bounds on

the parametric Max and Min yields. Recall from section 3.1 that
when Xwds(i) are positively totally correlated, then one gets an
upper bound on the parametric yields. The following equations
represent upper bounds on the parametric yield, where Xwds(i)
are totally correlated.

Y
(ub)
max(x) = P {Xwdr(i) + Xwds(i) + σddZ0 ≤ x, ∀i} (27)

Y
(ub)
min (x) = P {Xwdr(i) + Xwds(i) + σddZ0 > −x, ∀i} (28)
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Figure 1: Parametric Max yield bounds

Total correlation of the within-die systematic components means
that there is a unique random variable that models all the sys-
tematic variations across the die. Hence the model for Xwds(i)
will be the following:

Xwds(i) = σwds(i)Z1 (29)

where Z1 is an independent standard normal. Making use of (20)
twice on variables Z0 and Z1, and noting that Xwdr(i) are inde-
pendent with variance σ2

wdr(i), we get the following expressions:

Y
(ub)
max (x) = E

�
n�

i=1

Φ

�
x − σddZ0 − σwds(i)Z1

σwdr(i)

��
(30)

Y
(ub)
min (x) = E

�
n�

i=1

Φ

�
x + σddZ0 + σwds(i)Z1

σwdr(i)

��
(31)

The same analysis used in the lower bound case is applied here
to get the above equations. For sake of conciseness, several steps
were omitted.

As a result of sections 3.2 and 3.3, we have an upper and lower
bound on each of the parametric Max and Min yields. With a
simple change of variables, as will be illustrated in the next sec-
tion, these bounds can be computed by numerical integration. If
a Max or Min yield of, say, better than 90% is desired, then one

can set the lower bounds Y
(lb)
max(x) or Y

(lb)
min(x) to 0.9 and work

backwards to get the value of the threshold x. Upper and lower
bounds are the results of extreme cases of within-die systematic
correlations. Therefore when combined together, they become
very useful in estimating the yield when the correlations are un-
certain or unknown.

3.4 Illustration
As an illustration, we will assume all variances to be the same

across the die. This means σ2
wds(i) = σ2

wds and σ2
wdr(i) = σ2

wdr .
Then, we can rewrite equations (25), (26), (30), and (31) in the
following way:

Y
(lb)
max(x) = E

�
Φn

�
x − σddZ0

σwd

��
(32)

Y
(lb)
min(x) = E

�
Φn

�
x + σddZ0

σwd

��
(33)

Y
(ub)
max (x) = E

�
Φn

�
x − σddZ0 − σwdsZ1

σwdr

��
(34)

Y
(ub)
min (x) = E

�
Φn

�
x + σddZ0 + σwdsZ1

σwdr

��
(35)

where σwd was defined earlier to be
�

σ2
wds + σ2

wdr .
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Figure 2: Parametric Min yield bounds

In order to compute these equations, we use the definition of
the expected value operator (as an integral) and with a change of
variables of u = Φ(z0) and v = Φ(z1), we arrive at:

Y
(lb)
max(x) =

� 1

0
Φn

�
x − σddΦ−1(u)

σwd

�
dudv (36)

Y
(lb)
min(x) =

� 1

0
Φn

�
x + σddΦ−1(u)

σwd

�
dudv

Y
(ub)
max (x) =

� 1

0

� 1

0
Φn

�
x − σddΦ−1(u) − σwdsΦ−1(v)

σwdr

�
dudv

Y
(ub)
min (x) =

� 1

0

� 1

0
Φn

�
x + σddΦ−1(u) + σwdsΦ−1(v)

σwdr

�
dudv

Plots of the bounds on the parametric Max and Min yields for
different values of n are shown in Fig. 1 and Fig. 2. In these plots,
we have assumed σ2

dd = 0.5σ2, and σ2
wds = σ2

wdr = 0.25σ2, where

σ2 is the total variance. Notice that yield decreases for larger n,
as expected. Also note that as x increases ( −x decreases), it is
more likely that the max of X(i) is less than x, and the min of
X(i) is greater than −x.

3.5 Bounded Variations
Notice that, in the above expressions for yield, the yield de-

creases for larger n. One would somewhat expect this, but it is
surprising to note that the yield approaches zero as n goes to in-
finity, for any combination of values of the three variances. This
may also be seen in the above plots in Fig. 1. This is somewhat
non-physical, and arises due to the fact that we have assumed
that the distribution of Xwdr(i) is normal; recall that the nor-
mal distribution extends to ±∞ in both directions. In reality,
one would expect process variations to be bounded by some up-
per and lower bounds. If a device somewhere deviates by large
amounts, like 6σ or 7σ, then chances are there is a serious prob-
lem with that die, and that it would be lost due to other reasons,
other than timing yield that is. Therefore, it is a good idea to
limit the spread of the cdf of Xwdr(i) to some multiple of σ in
order to avoid these non-physical effects at large n. In this sec-
tion, therefore, we will use a truncated normal distribution for
Xwdr(i). For clarity of presentation, we will restrict the analysis
to the illustrative special case introduced in section 3.4 where all
variance are the same across the die. The analysis can be ex-
tended to the general case. Suppose, therefore, that Xwdr(i) is
bounded by ±kσ, and let Φt(x) represent the cdf of the truncated
standard normal, which is 0 for x ≤ −k and 1 for x ≥ k.

We can plug Φt(·) instead of Φ(·) (for Xwdr(i)) into the above
equations and plot the resulting yield integrals, as shown in Figs. 3
and 4. In this case the yield loss at higher n values is limited so
that the 1e6 and 1e8 plots in each group are indistinguishable.
This is to be expected, because the “tail” of the distribution has
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Figure 3: Parametric Max yield bounds for k = 3

been cut off, and it is primarily the tail that causes the yield loss
at very large n.

When working with a truncated normal, it is noteworthy that
we can derive asymptotes on the parametric yield curves that are
independent of n. This means that as n tends to infinity, the
parametric yield curves will be equal to these asymptotes. The
derivations are not shown, for brevity, but lead to the following
results, where Y0(x) = lim

n→∞ Y (x):

Y0
(lb)
max(x) = Φ

�
x − kσwd

σdd

�
(37)

Y0
(lb)
min(x) = Φ

�
x − kσwd

σdd

�
(38)

Y0
(ub)
max(x) = E

�
Φ

�
x − σddZ0 − kσwdr

σwds

��
(39)

Y0
(ub)
min(x) = E

�
Φ

�
x + σddZ0 − kσwdr

σwds

��
(40)

where, as before, Z0 = Xdd/σdd is an independent standard nor-
mal RV. Equations (37) and (38), especially when applied to tim-
ing yield as we will do later in the paper, exhibit similar obser-
vations as was made in [12]. Namely, the within-die variations
determine the mean of the yield, while the die-to-die variations
determine the spread of the yield. Fig. 3 and Fig. 4 show the plots
of these asymptotes for both parametric Max and Min yields.
These asymptotes are very tight, and indistinguishable on the
plot from the 1e6 and 1e8 curves.

4. TIMING YIELD MODEL
In this section, we will show that path delay can be handled

as a parameter. Hence, we will use the parametric yield anal-
ysis to get bounds on both timing Max and Min yields. Using
the same approach as [11], we will start from the transistor level
with channel length and threshold voltage variations, L(i) and
V (i) with variances σ2

L(i) and σ2
V (i) respectively, and move to

the gate level assuming that gate delay variation is a linear com-
bination of transistor variations, mainly D(i) = αL(i) + βV (i),
with variance σ2

D(i) = α2σ2
L(i) + β2σ2

V (i). All these variances
can be decomposed into die-to-die and within-die components, as
presented earlier.

4.1 Bounds on Sum of RVs
In this section, we will find bounds on the distribution of the

sum of N normal RVs X(i) which will turn out to be useful for the
chip timing yield analysis. Assuming that these RVs are expressed
in the same way as the parameter model defined in section 2, we
will prove that a lower bound on such distribution is generated
when the within-die systematic variations of X(i)’s are assumed
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Figure 4: Parametric Min yield bounds for k = 3

totally correlated (correlation coefficients ρwds = +1), and an
upper bound is generated when systematic variations of X(i)’s
are independent (ρwds = 0).

Let S =
	N

i=1 X(i), then S is a zero-mean normal RV with

some variance, call it σ2
s , and we can write:

P{S ≤ x} = Φ(x/σs) (41)

where x ≥ 0. Since Φ(·) is increasing, then P{S ≤ x} is decreas-
ing in σs. Looking at the variance of S:

σ2
s = E[S2] =

N

i=1

σ2
Xi

+ 2


i�=j

E[X(i) · X(j)] (42)

=
N


i=1

σ2
Xi

+ 2


i�=j

σij (43)

where σij is the covariance of X(i) and X(j) found in (12). It is
easy to show that, assuming the within-die systematic variations
to be totally correlated (else independent) would set the within-
die systematic covariances σwdsij

(see (12)) to a maximum (else a

minimum). Given (12), this makes the covariance σij maximum
(else minimum), and given (43), this also makes the variance σ2

s
of the sum S maximum (else minimum), which finally produces
a lower (else upper) bound on (41). The same reasoning is used
to produce lower and upper bounds on P{S > −x}, where x is
positive, since P{S > −x} = P{S ≤ x} in the case of a zero-mean
normal RV.

In practice, one is quite interested in the yield lower bound ex-
pressions. Table 1 summarizes the conditions required to get a
lower bound on the Max (Setup time) yield and the Min (Hold
time) yield. It summarizes the results of this section along with
section 3.1, to show that: In case of path delay, where gate de-
lays are the “parameters”, in order to produce a lower bound on
yield, one must set the within-die systematic variations of gate
delays to be totally correlated (ρwds = +1). Looking at block
delay, where delay is the maximum/minimum of a large number
of paths, with path delays as the “parameters”, and in order to
produce a lower bound on both Setup (Max) and Hold (Min)
yields, one must set the within-die systematic variations of path
delays to be independent (ρwds = 0).

4.2 Path Delay
Consider a generic path of N logic stages (a stage is a logic

gate and the interconnect at its output). We will only focus on
gate delays, and only on transistor L and Vt variations. The
methodology can be easily applied when more device parameters
are of interest, or when interconnect parameter variations are to
be included as well. Let DN (j) denote the deviation of the delay



Table 1: Required settings for a yield lower bound

Yield Lower Setup or Max Hold or Min
bound Yield Yield

Path delays Sum over gates Sum over gates
ρwds = 1 ρwds = 1

Block delay Max over paths Min over path
ρwds = 0 ρwds = 0

of path j from its mean (nominal) value:

DN (j) =
N


i=1

D(i) = NDdd +
N


i=1

Dwds(i) +
N


i=1

Dwdr(i) (44)

Since path delay is the sum of a number of RVs (gate delays),
then the results of section 4.1 become immediately useful. Thus,
if we are computing the timing yield lower bounds, we will assume
that (the systematic components of) gate delays on a given path
are totally correlated. Else, if we are computing upper bounds,
we will assume that (the systematic components of) gate delays
are independent. Then, the delay of path j has a variance of:

σ2
DN

(j) = σ2
dd,DN

+ σ2
wds,DN

(j) + σ2
wdr,DN

(j) (45)

where:

σ2
dd,DN

= N2σ2
dd,D

σ2
wds,DN

(j) = N2σ2
wds,D(j) for lower bound

σ2
wds,DN

(j) = Nσ̂2
wds,D(j) for upper bound

σ2
wdr,DN

(j) =
N


i=1

σ2
wdr,D(i) = Nσ̂2

wdr,D(j)

and where σ̂2
wdr,D(j) and σ̂2

wds,D(j) are the average value of

σ2
wdr,D(i) and σ2

wds,D(i) over all N gates on this path.

With this, we have a full statistical model of path delay, so
that we can treat it as a “parameter” and we can talk about its
Max and Min yields, as was done for the generic parameter X(i)
in section 3.

4.3 Timing Yield
The timing failure of an integrated circuit depends on a num-

ber of factors, including max delay violations, min delay viola-
tions, clock skew violations, etc. In this work, we focus on both
max and min delay constraints and consider a circuit to “pass”
the timing test if its longest (max critical) path delays are be-
low some threshold, and its shortest (min critical) path delays
are above some threshold. We let N1 and N2 be the number of
stages (gates) on a path that would be representative of these
long critical paths and short critical paths, respectively. We also
consider that the chip contains a (typically large) number of dis-
joint (non-intersecting) critical paths of N1 and N2 stages (gates)
each, so that our expressions for the chip timing yields becomes:

Ymax(τ1) = P �DN1 (j) ≤ τ1, ∀j
� ≥ Y0

(lb)
max(τ1) (46)

Ymin(τ2) = P �DN2 (j) > −τ2, ∀j
� ≥ Y0

(lb)
min(τ2) (47)

where Y0
(lb)
max(·) and Y0

(lb)
min(·) are the lower bound expressions for

the yields found in section 3.5, with path delay considered as the
“parameter”. Since the paths being considered are disjoint, then
any correlations between their delays is due only to correlations
in the process variations, and not to the sharing of circuit com-
ponent. If Y is the desired Max yield, then the techniques of
section 3 effectively provide the inverse function to compute τ1
for any desired Y :

τ1 = Y0
(lb)
max

−1
(Y) (48)

This τ1 is the timing margin of an N1-gate path, for the desired
specified Max yield Y . Therefore, in order to get the desired yield,

the circuit should be designed to “pass” the timing constraints
when DN1(j) = τ1, for all j. Therefore, we set D(i) = τ1/N1. To
get the transistor setting that will give the desired Y given the
timing margin τ1, we will use the same approach found in [11],
from which the final equation for the transistor file setting is:

δ =
Y0

(lb)
max

−1
(Y)/N1

ασL(i) + βσV (i)
(49)

This δ effectively defines the “worst-case file” for which the cir-
cuit should be tested for timing constraint violations, so as to
guarantee that the timing Max yield is at least Y .

The same analysis can be performed for the timing Min yield,
by replacing τ1 and N1 by τ2 and N2. Therefore, both max and
min delay constraints can be met, by setting the Max and Min
timing yields to the desired yield Y , and get the corresponding
transistor file setting.

5. APPLICATION TO TIMING ANALYSIS
We will now illustrate how the above timing yield model allows

us to choose a setting δ for the transistor parameters so that a
desired yield is achieved if the circuit passes traditional static
timing analysis with that δ setting. We will use the timing Max
yield as an illustration, but the same analysis can be done for the
timing Min yield. Due to space limitations, this section will be
very brief; it follows the similar development in [11]. For clarity,
we will assume the same variance ratios as before, i.e., at the
transistor level:

σ2
dd,L =

σ2
L

2
, σ2

wds,L(i) = σ2
wdr,L(i) =

σ2
L

4
, ∀i (50)

σ2
dd,V =

σ2
V

2
, σ2

wds,V (i) = σ2
wdr,V (i) =

σ2
V

4
, ∀i (51)

At the gate level, this leads to:

σ2
dd,D =

1

2


α2σ2

L + β2σ2
V

�
σ2

wds,D(xi, yi) =
1

4


α2σ2

L + β2σ2
V

�
(52)

σ2
wdr,D(i) =

1

4


α2σ2

L + β2σ2
V

�
Therefore, σ2

D =

α2σ2

L + β2σ2
V

�
and, at the path level, we have:

σ2
dd,DN1

=
N2

1

2
σ2

D

σ2
wds,DN1

(j) =
N2

1

4
σ2

D for lower bound

=
N1

4
σ2

D for upper bound

σ2
wdr,DN1

(j) =
N1

4
σ2

D

The last two equations are notable for the absence of the square
factor in N1, since they result from averaging of variations due
to independence. Let σ2

DN1
be the total path variance, then we

can compute the timing yield at different multiples of σDN1
, as

shown in Fig. 5. This figure shows upper and lower bounds on the
timing Max yield for k = 3 and N1 = 9. One can use this type
of figure as follows: If we want 95% Max yield (i.e., Y = 0.95),
then we will look at the plot of the lower bound and find that
we need τ1 ≈ 3.1σDN1

, which, using (49), leads to:

δ =

�
3.1σDN1

/N1

ασL + βσV

�
(53)

Now using the fact that σDN1
= N1σD

�
0.75 + 0.25N−1

1 result-

ing from adding the path variances in the lower bound case, and
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N1 = 9, we get:

δ = 2.73

�
α2σ2

L + β2σ2
V

ασL + βσV
(54)

Let r = (ασL)/(βσV ) then:

δ = 2.73

√
1 + r2

1 + r
(55)

If, for example, r = 1, then δ ≈ 1.93, so that the circuit would
need to be simulated (and its timing checked) with all its tran-
sistors’ channel lengths and threshold voltage set at their +1.93σ
points. Notice that, since α and β depend on transistor sizing,
then (55) provides a way in which δ can be controlled by circuit
optimization and/or process tuning.

We have compared our yield upper and lower bounds to the
yield Cauchy bounds derived in [11]. These Cauchy bounds were
recomputed with path variance ratios equal to the ones used in
this work, in order to have a valid comparison. Table 2 gives the
different virtual corners δ for a desired yield of 95%: The first
two columns list the values of δ predicted using our upper and
lower bounds. Hence, for a circuit with unknown or uncertain
within-die positive correlation, we predict a virtual corner of 1.43
in the best case and 1.93 in the worst case. Note that verifying
timing using the latter corner will guarantee the desired yield of
95% for arbitrary positive correlation of the within-die variations.

The remaining columns list the “predicted” worst-case δ’s using
Cauchy lower bounds in [11] where within-die correlations are
captured using PCA with order p. Depending on the extent of
correlation of the within-die variations, p can increase with looser
correlations, or decrease with tighter correlations. As shown in
Table 2, as p increases from 2 to 8, δ also increases from 1.71 to
2.24. And for p = 30 (close to independent within-die variations),
δ = 3.2, which is overly pessimistic if compared to δ = 1.93 in our
work. It becomes clear that our approach, which is independent
of the order of PCA p, gives better (smaller) predictions of δ in
case correlation is unknown or uncertain, or in case correlation
is known, but the PCA order is estimated to be larger than 4
(p > 4).

This comparison is further shown in Fig. 5, where our lower and
upper bounds are plotted along with Cauchy lower bounds [11].
For any desired yield, the curves can be used to project a timing
margin τ on the X-axis. Also, using (53) a virtual corner δ can
be predicted from τ .

6. CONCLUSION
A method for statistical timing analysis has been developed,

based on a timing yield model. The model is “full-chip” in that it

Table 2: Virtual corners δ for 95% yield

Upper Lower
bound bound p = 2 p = 4 p = 6 p = 8

δ 1.43 1.93 1.71 1.93 2.1 2.24

can be applied with ease to large chips, in the pre-layout phase. It
requires minimal process information (only parameter variances),
and produces a “device file” setting or a “virtual corner” δ, that
if used for all devices, and if timing is verified using traditional
static timing analysis, the desired yield is achieved. Another dual
result is worth noting. For a desired yield, a certain margin τ is
predicted. Hence, if traditional static timing analysis with nomi-
nal device setting is used, and if the margin τ is allowed for every
path, then circuit would pass timing verification with the desired
yield.

Both the Setup (Max) and Hold (Min) yields are tackled in this
paper. Upper and lower bounds are derived on these yields; these
bounds hold for any positive correlation model of the systematic
within-die variations. Correlations between gates on a path and
between paths on a chip are studied in order to get the desired
bounds.
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