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ABSTRACT
The verification of power grids in modern integrated circuits must
start at design time, where circuit information is unknown but
could be specified or inferred from design or architectural consid-
erations. This work builds on previously proposed techniques to
deal with circuit uncertainty in the framework of linear current
constraints, but proposes a cost-controlled solution, by following
a geometric approach, and transforming a problem that requires
as many linear programs as there are power grid nodes, to an-
other involving a user-limited number of solutions of one linear
system.

1. INTRODUCTION
Power grid verification must start at design-time. For one

thing, power routing resources must be committed in the early
stages, often prior to completion of circuit design itself. How-
ever, existing power grid verification techniques and commercial
tools assume a fully designed circuit and can only be useful after
placement and routing, or for final signoff, As a result, design
groups typically start with what they view, based on previous
experience, as over-designed grids, without a way to factor in
circuit uncertainty to reduce the extent of over-design. Relying
on previous design experience alone cannot, however, preclude
that some sections of the power grid may remain susceptible to
voltage violations, such as localized dynamic voltage drop due to
switching current activity. Therefore, there is a need to systemat-
ically prototype the grid early in the design flow, i.e., estimate its
worst-case voltage drops, while accounting for circuit uncertainty.

A critical aspect of circuit uncertainty, that which is the focus
of this work, is the imprecise characterization of circuit currents.
To capture this uncertainty, we adopt the framework of current
constraints [1], which specify a feasible space in which currents
can vary during circuit operation. Grid prototyping and verifica-
tion become a question of computing the maximum voltage drops
everywhere on the grid, for all feasible currents. This is not an
easy problem, and previous work [1] tackled it by solving a lin-
ear program (LP) for every node on the grid at consecutive time
steps. Finding the maximum voltage drop everywhere on the grid
would therefore require as many LPs as there are nodes, which
becomes too expensive for large grids. The present work follows
a starkly different method, by exploiting the particularities of the
power grid at design time and the geometry of the current feasi-
bility space to derive an efficient solution. A preliminary version
of this work appeared in [2].

2. PROBLEM FORMULATION

2.1 Constraint-Based Framework
Consider a power grid with n nodes, m of which have a current

source tied to them. Assuming, without loss of generality, that
nodes with a current source are numbered 1, . . . , m, we can write

∗
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the RC-model for the power grid as:

Cv̇(t) + Gv(t) =

�
i(t)

0(n−m)

�
=

�
Im×m

0

�
i(t) = Hi(t), (1)

The system equation (1) can be formulated [1] so that n is specif-
ically the number of nodes that do not correspond to Vdd sites,
and v(t) is the n-vector of time varying voltage drops (difference
between Vdd and node voltages). i(t) is the m-vector of current
loads, 0(n−m) is the (n-m)-zero-vector, and H is an (n×m) ma-

trix whose top (m×m) block is the m-dimensional identity matrix
Im×m, and bottom block is 0. Assuming all capacitance is node-
to-ground, then C is the n× n diagonal capacitance matrix, and
G is the n × n conductance matrix and is known to be a sym-
metric positive definite M-matrix [3]. For the purposes of power
grid verification and optimization, DC analysis plays an impor-
tant role in some practical design flows. The system equation
for a DC grid model is a direct analogue of (1), and is given by
Gv = Hi. We draw this parallel because the techniques proposed
in this paper apply equally to both DC and RC models.

As stated earlier, we deal with circuit current uncertainties
within the framework of linear constraints [1]. In particular, we
distinguish local constraints and global constraints. A local con-
straint represents a bound on the peak value of current drawn by
a current source over time. For example, if current source ij(t)
does not draw more than lj , we write 0 ≤ ij(t) ≤ lj . Writing a
similar inequality for every current source leads to the following
component-wise inequality:

0 ≤ i(t) ≤ IL (2)

such that the jth component of IL is lj . Global constraints are
upper bound constraints on the sum of a certain subset of cur-
rent sources. They are user-supplied, reflect design expertise, and
are meant to reduce pessimism in voltage drop estimation by in-
corporating engineering judgment about circuit specification or
functionality at an early stage. Suppose there are c global con-
straints, G0, . . . ,Gc−1, then we write the global constraints as:

m−1�
j=0

uij ij(t) ≤ gi, i = 0, . . . , c − 1, (3)

where uij is an indicator variable assuming the value of 1 if ij is
included in Gi, and 0 otherwise.

Together, (2) and (3) define a feasibility region for circuit cur-
rents, denoted by IF . We seek the vector of maximum node
voltage drops on the grid, at any point in time, as currents vary
inside IF . The exact solution to this problem is prohibitive and
involves solving one LP over �n, for every node on the grid. This
work suggests an alternative strategy which efficiently leads to a
conservative estimate of this vector.

2.2 Vector of Upper Bounds
As a matter of notation, we first state that all inequalities

in this paper, when applied on vectors and matrices, and all
min/max operators applied on vectors, are component-wise. Let
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A = G + C/∆t, which can be shown to be a positive definite
M-matrix [1]. We start by time-discretizing (1):

v(t) = A−1Hi(t) + A−1(C/∆t)v(t −∆t). (4)

A being an M-matrix, A−1 ≥ 0, therefore:

v(t) ≤ max
i(t)∈IF

A−1Hi(t) + A−1(C/∆t)vub(t −∆t), (5)

where vub(t − ∆t) represents a vector of upper bounds on the
maximum voltage drop at time step t −∆t, and max A−1Hi(t)
is a vector whose jth component is the maximum of ajHi(t), as

i(t) varies in IF , where aj is the jth row of A−1.
Although the RC model features dynamic currents and volt-

ages, the description of local and global constraints is static, i.e.,
IL in (2) and gi in (3) do not depend on time and IF is the
same for each time step. Therefore, maxA−1Hi(t), i(t) ∈ IF , is
independent of t, and we will denote it by Va. We have from (5):

vub(t) = Va + A−1(C/∆t)vub(t −∆t) (6)

is an upper bound on v(t). Denote by v(0) the vector of voltage
drops on the grid at t = 0, i.e., the grid’s initial condition. This
leads to vub(0) = v(0) and vub(∆t) = Va + A−1(C/∆t)v(0).
Since A−1 ≥ 0 and B = A−1C/∆t ≥ 0, writing (6) at time
steps ∆t, . . . , k∆t yields:

vub(k∆t) = (I + B + . . . + Bk−1)Va + Bkv(0), (7)

where I denotes the identity matrix. The convergence of vub,
as k → ∞, depends on the convergence of a) the matrix series�∞

k=0 Bk and b) the matrix sequence Bk, as k →∞.

The series
�∞

k=0 Bk is known to converge [3] if and only if
ρ(B) < 1, where ρ(B) is the magnitude of the largest eigenvalue
of B, under which condition the series limit is (I −B)−1. The
condition that ρ(B) < 1 is also necessary and sufficient for the
convergence of the sequence Bk to 0 [3]. We will now prove that
ρ(B) < 1, and find a limiting value for vub(k∆t), independent of
the initial condition v(0), by making use of the fact that B ≥ 0
and of the following theorem [3]:

Theorem 1. Let B be a nonnegative matrix. Then ρ(B) < 1 if
and only if I−B is nonsingular and (I−B)−1 is nonnegative.

Our key convergence result is captured in the following claim:

Corollary 1. vub(k∆t) converges to Vu = (I+G−1C/∆t)Va,
as k →∞, for all ∆t > 0.

Proof. B = A−1(A − G) = I − A−1G, I − B = A−1G,
and (I − B)−1 = G−1A = I + G−1C/∆t. A and G being
positive definite, det(A−1G) = det(G)/det(A) �= 0 so I−B is
nonsingular (det(.) denotes the determinant of a matrix). Since
G is an M-matrix, G−1 ≥ 0. Given that C ≥ 0, we immediately
have that (I − B)−1 ≥ 0. Therefore, by theorem 1, ρ(B) < 1.
This implies that Bk converges to 0 and that

�∞
k=0 Bk converges

to (I−B)−1 = I+G−1C/∆t, as k →∞, yielding that vub(k∆t)
converges to (I + G−1C/∆t)Va.

We note that the computation of this limit is easy, given Va: scale
the jth component of Va by cj/∆t (cj is the jth component of C),
yielding Vs = CVa/∆t, then solve for Vb such that GVb = Vs

(one standard linear system solve). The upper bound is the sum
Vu = Va + Vb. Therefore, Vu can be easily deduced from Va,
given a standard LU factorization of G.

The problem of finding a vector of upper bounds on the voltage
drop maxima given an RC grid model is thus reduced to finding
Va = max A−1Hi over all i ∈ IF . The problem is similar when a
DC grid model is used: we must find max G−1Hi over all i ∈ IF ,
with the exception that the DC solution yields the exact vector
of voltage drop maxima, not a bound thereon.

We digress to mention that, when transient analysis is used,
Va depends on the choice of the time step ∆t: since Va is the
upper bound on the voltage drops at t = ∆t, the smaller the
time step, the smaller Va. In fact, although the upper bound

converges for any ∆t > 0, choosing too small a time step leads to
overestimating the maximum voltage drops in a way that could
be avoided. To see why, observe that in the above derivation
of the maximum voltage drop upper bound, we are implicitly
assuming that currents may change arbitrarily in their feasibility
region IF within ∆t time. This would allow, for example, that
currents switch from 0 to their maximum possible values, i.e.,
their local constraints, or the other way around, within a single
time step. This is clearly not the case for arbitrarily small ∆t.
With this in mind, we note that problems with a larger time step
are subsets of problems with a smaller time step, by virtue of the
fact that maximizations need to be performed at a greater number
of time points when smaller time steps are used. This results in
the observation that the smaller ∆t, the larger Vu, component-
wise. Therefore, the upper bound resulting from unrealistically
small ∆t is too pessimistic an estimate. On the other hand, the
time step needs to be small enough to capture the transition times
on the grid voltages. Therefore, design expertise needs to guide
the choice of ∆t by striking a balance between the dynamics of the
current loads and voltage responses on the grid, in order to avoid
pessimism in the computation of the voltage drop upper bound.
An alternative, which could obliviate this question altogether, is
the use of dynamic current constraints, i.e., making IF time-
dependent. This may be more difficult in practice, both from the
user’s standpoint (supplying dynamic constraints) as well as the
tool’s (dealing with them). However, dynamic constraints may
afford greater accuracy in voltage drop estimation. Either way,
dealing with dynamic current constraints is part of our ongoing
research, and this papers considers only static constraints.

Going back to the estimation of Vu, observe that, for a given
∆t, if Va,ub ≥ Va, then (I + G−1C/∆t)Va,ub ≥ Vu, i.e., a
conservative estimate of Va leads to a conservative estimate of
Vu. In what follows, we propose an approach to efficiently com-
pute a conservative estimate of Va = maxA−1Hi, where A is
understood to mean G in case of DC analysis.

3. COMPUTATIONAL STRATEGY

3.1 Finding Va at The Vertices of IF
Every local and global current constraint corresponds to a hy-

perplane (more precisely, to a half-space of a hyperplane) in �m,
and the feasibility region IF is a convex polytope [4] formed by
the intersection of all these half-spaces. A global constraint Gi,
for example, of the form

�
uijij ≤ gi, as in (3), defines a hyper-

plane HGi
:
�

uij ij = gi, and two half-spaces H−
Gi

:
�

uij ij ≤ gi

(belongs to Gi), and H+
Gi

:
�

uijij > gi (outside of Gi). Note

that, from (2), two hyperplanes are associated with each local
constraint: one for the lower bound of 0, and one for the upper
bound. If we have c global constraints, then IF consists of the
intersection of (2m+c) half-spaces. Of interest are the vertices of
IF . A detailed discussion of hyperplanes, polytopes, and vertices
is beyond the scope of this paper, and we refer the reader to [4] for
a comprehensive discussion. It suffices to say that a vertex in IF
is formed by the intersection of any m of the (2m + c) constraint
hyperplanes, provided this intersection exists and belongs to IF .

Notice that the local constraints alone form a hypercube in
�m, with 2m vertices at [0/l0, 0/l1, . . . , 0/lm−1]T . The jth local
constraint, therefore, can be either “turned ON” in a vertex if its
corresponding entry is lj , or “turned OFF” if 0. Denoting the
local constraint hypercube by K, we can write IF as

IF = K ∩H−
G0
∩H−

G1
. . . ∩H−

Gc−1
. (8)

Recall from section 2.2 that the jth component of Va is the
maximum of aT

j Hi, i ∈ IF , therefore, the solution of a linear

program. From the theory of linear programming [4], we know
that the maximum occurs at a vertex of IF . This is true for every
component of Va. As a result, the jth component of Va is the
maximum value attained by the jth component of A−1Hi over
all the vertices of the polytope IF . We express this as:

Va = max
i∈V(IF )

A−1Hi (9)
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where V(IF) denotes the set of vertices of IF . Therefore, Va can
be computed in two steps: 1) Solve A−1Hi at all vertices of IF .
Let S be the set of solution vectors 2) The jth component of Va

is the maximum value of the jth component of all vectors in S.
Alone, however, this procedure is insufficient, since the number

of vertices in IF may be too large [4]. In what follows, we refer
to solving A−1Hi at a particular vertex i as visiting vertex i.

Our overall strategy, described in the next three sub-sections,
is to enlarge the feasibility region IF in such a way as to yield a
user-limited number of vertices that need to be visited in order
to compute a conservative estimate of Va while limiting the com-
putational cost. The first such enlargement of IF is by forming
the intersection of K with each global constraint separately.

3.2 Applying One Global Constraint at A Time
Noting that IF ⊂ K ∩H−

Gi
, ∀i, we can write

Va ≤ min
i=0,...,c−1

�
� max

i∈V(K∩H−
Gi

)

A−1Hi

�
� (10)

where the minimum is component-wise. By “decoupling” the
global constraints in this way, we have reduced our problem to
maximizing A−1Hi over the polytope K ∩ H−

Gi
, formed by the

intersection of one hyperplane with a hypercube. Since IF ⊂
K ∩H−

Gi
, maximizing a function over K ∩H−

Gi
overestimates the

maximum of that function over IF , with the advantage that the
vertices of K∩H−

Gi
are fewer and easier to compute than those of

IF . The accuracy tradeoff is to the extent of overlap among global
constraints: if no two global constraints share the same current
source, then (10) is an equality. In practice, this is not a problem
at the design planning stage since currents represent high-level
blocks and global constraints are user-supplied, one could formu-
late them with little or no overlap, but this is not a requirement
or limitation of our work - global constraints may overlap.

3.3 Vertex Dominance
Not all vertices of K ∩ H−

Gi
need to be visited: this section

shows that it is enough to only visit the vertices which belong to
HGi

, or a subset thereof. Because A−1 ≥ 0, we can write

i1 ≥ i2 ⇒ A−1Hi1 ≥ A−1Hi2. (11)

In other words, increasing any coordinate (component) of i is
guaranteed to not decrease any component of A−1Hi.

We say that i1 dominates i2 if i1 ≥ i2. In this case, and
given (11), we can state that, when looking for max(A−1Hi), it
is sufficient to visit i1 (the dominating vertex), and there is no
need to visit i2. Similarly, we define dominance between sets of
current vertices: If V1 and V2 are two sets of current vertices, we
say that V1 dominates V2 if every vertex in V2 is dominated by
at least one vertex in V1.

Let dim(Gi) be the number of current sources included in Gi,
i.e., the number of indicator variables uij that are 1 in the ex-
pression of Gi, given in (3). We refer to dim(Gi) as the dimension

of Gi. To a vertex i ∈ �m, we associate a rank r(i) =
�m−1

j=0 i(j),

where i(j) is the jth coordinate of i, i.e., i = [i(0) . . . i(m− 1)]T .
We state without proof the following proposition. For a proof,

the reader is referred to [2]:

Proposition 1. If dim(Gi) = m, then

max
i∈V(K∩H−

Gi
)

A−1Hi = max
i∈V(K∩HGi

)
A−1Hi (12)

If dim(Gi) = m′ < m, then

max
i∈V(K∩H−

Gi
)

A−1Hi = max
i∈V1(K∩HGi

)
A−1Hi (13)

When dim(Gi) = m, all vertices of K ∩ HGi
share the same

rank gi, so none dominates another (e.g. i4 and i5 in Fig. 1(a)).
Equation (12) therefore implies that all vertices lying at the in-
tersection of HGi

and K must be visited.

3: i(0) + i(1) = g in RGΗ

10

9

i

i

i(2)

i(1)

i(0)
0

(a) (b)

i

-
G

Η

(1,1)     normal to T

i(1)

1l

0 i0

0l i(0)

0 0(l   , g-l   )

1 1(g-l   , l    )

: i(0) + i(1) = g 

1

GΗ

GΗ

3i

4i

5i2i

8i

11i

Figure 1: (a) In �
2, K is a rectangle and HG an inter-

secting straight line. V(K ∩ HG) = {i4, i5} dominates
V(K∩H−

G ). (b) In �
3 , dim(G) = 2, V0(K∩HG) = {i8, i9},

V1(K∩HG) = {i10, i11}. V1(K∩G) dominates V(K∩HG).

In case dim(Gi) = m′ < m, we distinguish two subsets of
V(K ∩ HGi

): the subset V0(K ∩ HGi
), which includes all ver-

tices where all currents not included in Gi are OFF (e.g., i8 and
i9 in Fig. 1(b)), and the subset V1(K ∩HGi

), which includes all
vertices where all currents not included in Gi are set to their local
constraint values (e.g., i10 and i11 in Fig 1(b)). Equation (13)
implies that we only need to visit V1(K ∩ HGi

) ⊂ V(K ∩ HGi
).

Notice that vertices in V0(K ∩ HGi
) can be thought of as being

in �m′, since (m −m′) of their coordinates are 0.
Computation of the vertices in V1(K∩HGi

) follows easily from

V0(K∩HGi
): compute the vertices of V0(K∩HGi

) in �m′, then for
each such vertex, set every coordinate corresponding to a current
source not included in Gi to its local constraint value, yielding
the vertices of V1(K ∩ HGi

) in �m. In the rest of this paper,
we may refer to m as the dimension of a global constraint and
discuss the computation of vertices of K ∩ HGi

in �m, with the
understanding that, if dim(Gi) = m′ < m, we first compute the
vertices of V0(K∩HGi

) in �m′, then deduce those of V1(K∩HGi
)

in �m.

3.4 Relaxation of The Global Constraint
Based on the above, our problem reduces to visiting the vertices

at the intersection of the global constraint hyperplane with the
local constraint hypercube. However, the number of these vertices
may be too large and their computation expensive [4]. We seek
to find a small, user-controlled number of vertices that dominate
those of K∩HGi

such that visiting these vertices could be done as

quickly as the user can afford, while the estimate of maxA−1Hi
at these vertices would be conservative.

The basic idea is to enlarge the polytope K ∩H−
Gi

by suitably

shifting the hyperplane HGi
in such a way that the shifted hy-

perplane H′
Gi

satisfies H−
Gi
⊂ H′−

Gi
. Then, the vertices of K∩H′

Gi

would dominate those of K ∩ HGi
. We refer to this process as

relaxing the global constraint. The question becomes how to re-
lax Gi in such a way that the vertices of K ∩ H′

Gi
are limited in

number and easy to compute.
We say that a constraint Gi (or its hyperplane HGi

) leaves out

a vertex i of K if i ∈ H+
Gi

, otherwise, we say that the vertex is

in the constraint. The key lies in the fact that we can control
the number of vertices of K ∩ HGi

by controlling the number of
vertices of K left out of the constraint Gi, i.e., the vertices of
K ∩H+

Gi
, based on the following theorem [4]:

Theorem 2. Consider a polytope D and a hyperplane H. A
point v is a vertex of D ∩H if and only if v is either a vertex of
D lying in H or a point at which an edge (u w) of D intersects
H, such that u ∈ H− and w ∈ H+.

The definition of an edge in a general polytope is beyond our
scope [4], but we mention that two vertices of K are neighbors if
they differ by exactly one coordinate, and that an edge joins two
neighboring vertices. Note that any vertex of K has exactly m
neighboring vertices.
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0

ProjectionRaise

Initial global
constraint hyperplane i(2)

i(1)constraint
Raised

i(0)

(b)(a)

constraint
Projected

m

l

k
j

i
c

b

a

Figure 2: (a) Before the raise of G, K ∩HG includes
five vertices. The raised hyperplane leaves only a
out, and its three induced vertices i, j, k, dominate
V(K ∩HG). (b) G is projected on i(1) and i(2). l and
m dominate V(K ∩HG).

Since m edges are incident to every vertex of K, theorem 2
implies that, if H+

Gi
includes k vertices of K, then the number of

vertices of K∩HGi
cannot exceed km. We propose two constraint

relaxation approaches, based on theorem 2:
1. Raise: If we increase gi to g∗i , effectively raising HGi

par-
allel to itself, just enough for the raised hyperplane H∗

Gi
to leave

out at most k∗ vertices of K, then H−
Gi
⊂ H∗

Gi

− and the number

of vertices in K ∩ H∗
Gi

cannot exceed k∗m. See Fig. 2(a). The

problem is to find the minimum g∗i and to compute V(K∩H∗
Gi

).

2. Projection: Let Ii,p be a subset of {0, 1, . . . , (m−1)} such
that |Ii,p| = mp < m, where |.| denotes the number of elements in
a set (recall from section 3.3 that we are assuming dim(Gi) = m,
i.e., that Gi includes m currents. If dim(Gi) = m′ < m, then Ii,p

is taken as a subset of the m′ current source indices included in
Gi). If gi is the value of the global constraint Gi, we define the
global constraint Gi,p :

�
ij ≤ gi, j ∈ Ii,p, whose hyperplane

HGi,p
satisfies H−

Gi
⊂ H−

Gi,p
. By theorem 2, if Gi,p leaves out no

more than kp vertices of K, then the vertices of K∩HGi,p
number

at most kpmp. We say that Gi,p is the projection of Gi on the
currents (whose indices are) in Ii,p. The problem is to find a
suitable subset Ii,p such that Gi,p leaves out at most kp vertices
of K, and to compute the vertices of K ∩HGi,p

.

A key feature of both relaxations is that the user directly con-
trols the maximum computational cost through the choice of k∗
and kp. Before detailing the process for raising (section 5) and
projecting (section 6) a constraint, we lay out the overall solution.

4. TOP-LEVEL ALGORITHM
Recall that visiting a vertex i means solving the linear system

Av = Hi. Given a factorization of A, this would require a for-
ward/backward substitution at each vertex visited. Although the
number of vertices is user-controlled (through the choice of k∗ and
kp), it can greatly surpass the number m of current sources. If a
forward/backward substitution, which computes the n-vector of
power grid voltage drops and is O(n2), were applied for each ver-
tex visited, visiting all vertices would become too expensive. This,
however, is unnecessary and the number of forward/backward
substitutions does not need to exceed m: If we choose a basis of
vectors in �

m, i.e., m linearly independent m-vectors, we only
need a forward/backward substitution at each of the bases (m
in total). The solution at any other point in �m, particularly at
a vertex, can be constructed from the solution of the bases, by
virtue of system linearity, with the far more efficient daxpy op-
eration[3], which, for vectors x and y and a scalar α, computes
αx+y, and is O(n). We opted for the natural choice of bases eh,
h = 0, . . . , m− 1, for which the hth entry is 1 and all others 0.

Algorithm 1 describes the overall solution. Ii,p is the subset

of Ii retained in the projection of Gi. V∗+ and V+
p denote the

set of current vertices left out of the raised and projected con-
straint, respectively, and containing at most k∗ and kp vertices

each (as per section 3.3, V∗+ and V+
p need only contain vertices

where currents not included in G∗i and Gi,p are set to their local
constraint values). c is the number of global constraints.

Algorithm 1 returns a vector Vub of upper bounds on the
maximum voltage drop at all the grid nodes.

1: Compute bh = A−1Heh, h = 0, . . . , m − 1
2: for i = 0, . . . , c − 1
3: Raise HGi to form H∗

Gi
and V∗+

i

4: V∗
i = COMPUTE MAX VDROP (H∗

Gi
, g∗

i , Ii,V∗+
i )

5: Project HGi on a suitably chosen Ii,p to form HGi,p

and V+
p

6: Vi,p = COMPUTE MAX VDROP (HGi,p , gi, Ii,p,V+
p )

7: Vi = min(V∗
i ,Vi,p)

8: Va ≤ min
i=0,...,c−1

Vi = Va,ub

9: RC: Vub = (I + G−1C/∆t)Va,ub, DC: Vub = Va,ub

COMPUTE MAX VDROP returns the vector of maximum
voltage drops induced by a raise (line 4) and a projection (line 6).
Note that a raised constraint G∗i has a value g∗i different from gi,
but includes the same currents as Gi, represented in the set Ii. On
the other hand, a projected constraint Gi,p has the same value gi

as Gi but includes a subset Ii,p of the currents in Ii. This explains
the second and third arguments of COMPUTE MAX VDROP on
lines 4 and 6. Line 7 follows from the fact that both H∗

Gi

− and

H−
Gi,p

include H−
Gi

. Line 8 follows from (10).

Procedure 1 COMPUTE MAX VDROP (H, g, I, V)

1: V = 0, �V =
�
j /∈I

ljbj, l̃ =
�
j /∈I

lj

2: for all vertices i+ ∈ V
3: Vi+ =

�
j∈I

i+(j)bj

4: for all j ∈ I
5: if r(i+) − i+(j) − �V ≤ g then

6: Vi∗ = �V + Vi+ − (r(i+) − l̃ − g)bj

7: V = max(V,Vi∗)
8: return V

Procedure 1 describes COMPUTE MAX VDROP. In this pro-
cedure, let i− be the jth neighbor of a vertex i+ (line 2), ob-
tained by changing i+(j) to 0 if i+(j) = lj . i− may be in the
global constraint defined by the hyperplane H only if j ∈ I
(line 4), and is indeed in that global constraint if the condi-
tion on line 5 is met. In this case, ∃i∗ ∈ V(K ∩ H) along the
edge from i+ to i−, which shares all the coordinates of i+, ex-
cept i+(j), and is such that the sum of its coordinates corre-
sponding to currents included in I adds up to g. Therefore,

i∗(j) = g − (r(i+) − l̃ − i+(j)). Letting Vi∗ denote the volt-

age drop at i∗, we have that Vi∗ = �V + Vi+ − (i+(j)− i∗(j))bj,
which reduces to the expression on line 6. Notice that daxpies

are performed on lines 1 and 3 to compute �Vi and Vi+ .

4.1 Complexity
Let us start by computing the complexity of procedure 1. The

computation of �V (line 1) is O(mn). The inner for loop (line 4)
performs O(n) operations on lines 6 and 7, and iterates at most
m times, once for every neighbor of i+, adding up to O(mn).
Line 3 is also O(mn). The for loop on line 2 iterates k (k∗ or kp)
times, and is thus O(kmn). Therefore, the total worst-case cost
of COMPUTE MAX VDROP is O(kmn).
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In algorithm 1, we pay upfront a one-time-cost O(mn2) to
compute the bhs by m forward/backward substitutions (line 1).
Forming the raise (line 3) can be done in O(km) and the pro-
jection in O(km2), as we will see in sections 5 and 6. Since the
number of current sources is far smaller than the number of actual
power grid nodes, m� n, so the most expensive operation in the
loop (lines 2-7) is COMPUTE MAX VDROP, and the total cost,
per global constraint, is O(kmn) in the worst-case. For c global
constraints, this adds up to O(ckmn). Therefore, the total com-
plexity of algorithm 1 is O(mn2 +ckmn). Contrast that with the
cost of n LPs on �n. The minimum-raise-computation algorithm
of section 5 requires that the local constraints be sorted, which
is a standard O(m log m) operation, that needs to be done only
once in algorithm 1, and does not affect the overall complexity.

Finally, algorithm 1 requires storage of the m n-vectors bj,
which can create a memory bottleneck for large n. However, grid
locality [5] enables the sparsification of each bj by observing that
bj represents the power grid response to a single current source
excitation. Grid locality ensures that the bulk of the response
is confined to a relatively small neighborhood surrounding the
location of the excitation. Therefore, only a small fraction of the
n entries of each bh effectively need to be stored.

5. MINIMUM RAISE COMPUTATION
For simplicity of presentation, we assume without loss of gen-

erality, that dim(G) = m, and that K and i are a hypercube and
a vertex in �

m. If dim(G) = m′ < m, we would be implicitly

working in �m′
(see the discussion at the end of section 3.3).

Recall the rank r(i) of a vertex i of K, defined as the sum of
i’s coordinates, and that the jth coordinate of i, i(j), is either 0
or lj (section 3.1). Observe that if G leaves out i, then it must
leave out all vertices of rank greater than that of r(i). Clearly,
the vertex i0 = [l0 l1 . . . lm−1]T , with all its coordinates set to
the maximum values on the hypercube (i.e., all local constraints
ON), is the rank-wise largest vertex of K. Let us denote the jth

largest vertex, after i0, by ij. We say that j is the order of ij.
The problem becomes to output the sequence S = {i1, . . . , ik},

and set g∗ to r(ik), which would be the minimum value for which
k vertices (i0, . . . , ik−1) are left out of the raised global constraint.
The set S need not be unique, but we must guarantee that no
vertex outside of S is of strictly larger rank than any vertex in
S. If r(ik) = r(ik−1), then in order to ensure that k is an upper
bound on the number of vertices left out of G, we must find the
largest k′ < k for which ik′ > ik′−1 (strict inequality), set g∗ =
r(ik′ ), and return the largest k′ vertices {i0, . . . , ik′−1}.

Since i(j) is either 0 or lj , we can uniquely identify i by the
set of local constraints that are ON in i. The problem becomes
to find which constraints to turn ON to obtain k combinations
with maximal total sum. This likens our problem to knapsack
problems (KP) [6]: we can think of a vertex i for which lj is ON
as a packing of the knapsack that includes item lj , and we want
to find the k packings with maximal total value. But our problem
is different from a usual KP in that we seek k best packings of all
the items: a straightforward KP application would solve it with
k successive KPs. However, the similarity with KP motivates
the use of a dynamic programming, a useful technique for a wide
range of KPs [6], in a way that is suited to the present problem.

5.1 High-Level Description And Correctness
We use a table T each entry of which represents a unique vertex

of K. T is initialized with m entries, and the algorithm iterates
k times, adding at most one entry to T in each iteration. The
algorithm terminates with less than (k + m) entries in T.

Conceptually, we subdivide the entries of T into two groups:
non-empty entries and empty entries. Since the total number
of vertices of K is 2m, the sum of empty and non-empty entries
of T is 2m – this is for clarity of presentation only: we will not
store or work with all 2m entries at any time, but only with
the non-empty entries, which will number at most k + m. The
table is formed so that the i1, . . . , ik are represented by non-
empty entries. Specifically, there will be a 1-to-1 correspondence
between a vertex of K and a non-empty entry of T: a non-empty

entry is defined as an entry which is “bound to” a vertex of K
(for convenience, we will also say that the vertex is bound to the
non-empty entry). An empty entry could be potentially bound
to a number of vertices (based on its column in T, as we will see
below), but the exact binding occurs as the empty entry becomes
non-empty. In this terminology, binding an empty entry to a
vertex means that this entry becomes non-empty. Our algorithm
can be viewed as a way of finding a suitable binding for a suitably
chosen subset of entries of T. In the description below, we rely
extensively on the 1-to-1 correspondence between a non-empty
entry and the vertex of K to which it is bound, which will be
formally defined in section 5.4, and we refer to an entry of T and
the vertex it is bound to interchangeably.

We say that a non-empty entry of T, or the vertex to which it
is bound, is ordered, if its order is known (recall that ij has order
j). When a vertex is first bound to an entry, it is unordered.
At any given point in the algorithm, the set of non-empty but
unordered entries in T forms the frontier of T, denoted F . We
denote by F+ the non-empty entries which are not on F , i.e., the
set of ordered vertices, and by F− the remaining vertices of K,
which correspond to empty entries in T. Observe that F ∪F+ is
the set of vertices bound to non-empty entries of T, in short, the
set of non-empty entries.

Our aim is to have k entries in F+. The algorithm works
by performing iteratively two steps: 1) ordering a vertex, i.e.,
finding the order of an element of F bound to a certain vertex
of K, then 2) shifting the frontier, i.e., binding an entry of F−
to an unordered vertex, thereby moving it from F− to F . Let
arg max r(i), i ∈ F , be a vertex in F of maximal rank.

Claim 5.1.1 If ∀i− ∈ F−, ∃i ∈ F such that r(i−) ≤ r(i), then
algorithm 2 returns k rank-wise maximal vertices of K:

Algorithm 2 minimum raise computation (top-level)

1: Initialize F and F−, F+ = ∅ //Section 5.3
2: while |F+| = t < k //Less than k vertices ordered
3: it+1 = arg max r(i), i ∈ F //Section 5.3
4: F+ = F+ ∪ {it+1}
5: F = F \ {it+1} //Delete it+1 from frontier
6: Shift F //Section5.4
7: return {i1, . . . , ik}, g∗ = r(ik)

Proof. Follows from the condition that no vertex of F− can
have a strictly larger rank than a vertex of F of maximal rank.

5.2 Table Properties
Let Ti,j (i, j ≥ 0) denote the entry of T at row i and column

j, and T:,j denote T’s jth column. We impose the following key
condition: Ti,j can be bound to a vertex i of K if and only if
i(j) = 0 and i(j′) = lj′ , ∀j′ > j. Therefore, the number of
columns in T is m, and entries in T:,j only differ in one or more

of their 0th through (j − 1)st coordinates. Note that a vertex
may be bound to one column only, corresponding to the position
of its rightmost 0 coordinate. Any vertex i such that i(j) = 0 and
i(j′) = lj′ , ∀j′ > j, is said to belong to T:,j . We denote this by

i ∈ T:,j . Clearly, 2j vertices belong to T:,j . If all entries of T:,j are
bound to vertices, thus non-empty, we say that T:,j is full. When
T:,j is not full, a number of vertices which belong to T:,j are not
bound and correspond to empty entries in T:,j , or equivalently, to

elements in F−∩T:,j . The sum of non-empty and empty entries in

T:,j is therefore 2j . Observe that, ∀Ti,j (whether empty or not),

i ≤ 2j − 1. Define the operator T−to−V(.) which takes a non-
empty entry of T and returns the vertex of K to which it is bound.
For simplicity of notation, we denote r(Ti,j) = r(T−to−V(Ti,j)),
i.e., the rank of the vertex bound to a non-empty entry Ti,j .

In every column T:,j , we preserve the following properties: T1):
If F ∩ T:,j = ∅, then T:,j is full and F− ∩ T:,j = ∅, and T2): If

Ti,j ∈ F , then ∀i ∈ F− ∩ T:,j , r(i) ≤ r(Ti,j), where a vertex i of
K is in F− ∩T:,j if i ∈ T:,j but i is not bound to an entry of T:,j .

Claim 5.2.1 T1 and T2 guarantee correctness of algorithm 2.

Proof. ∀i ∈ F− ∩ T:,j , by T1, ∃i such that Ti,j ∈ F . By T2,
r(i) ≤ r(Ti,j). Correctness follows from claim 5.1.1.
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When an empty entry becomes non-empty, we say this entry is
filled. For two entries Ti1,j and Ti2,j , we say that Ti1,j is NORTH
of Ti2,j if i1 ≤ i2, and that Ti2,j is SOUTH of Ti1,j if i2 > i1.

To satisfy T1 and T2, our strategy is to fill every column from
NORTH to SOUTH, filling at most a single entry in a single
column in every iteration (up to k), such that the non-empty
entries are guaranteed to have non-increasing ranks going SOUTH
on any column at all times. Let Ni,j = {T0,j , . . . , Ti,j} be the
set of entries NORTH of Ti,j , and let T:,j \ N (i, j) be the set of
vertices belonging to T:,j save those bound to elements of N (i, j).
Formally, we fill T upholding this property:

T3. ∀Ti,j , if Ti+1,j ∈ F ∪ F+, then a) Ti,j ∈ F+, b) Ti+1,j

is bound to arg max r(i), i ∈ T:,j \ N (i, j).

Claim 5.2.2 Initializing each T:,j with the rank-wise largest
vertex that belongs to it and always upholding T3 guarantees T1
and T2.

Proof. From T3(a), there may be only one non-empty, un-
ordered entry in any column T:,j which must be its SOUTH-
MOST non-empty entry. T3(b) implies that consecutive entries
going SOUTH on a column T:,j are bound to a rank-wise max-
imal unbound vertex which belongs to T:.j . Such a vertex must

exist, unless T:,j is full (i = 2j − 1) and all its entries ordered.
This establishes T1.
T3(a) implies that no non-empty entry of T:,j may be SOUTH

of any empty entry of T:,j . In particular, the entry in F ∩ T:,j

must be NORTH of all the empty entries of T:,j . T3(b) gives that
no empty entry of T:,j may be bound to a vertex with a strictly
larger rank than any non-empty entry of the same column, in
particular, the one in F ∩ T:,j . This establishes T2.

We can shift the frontier F based on T3(a): when the SOUTH-
MOST non-empty entry of a column is ordered, fill the entry
below it by binding it to a vertex, which must be unordered and
therefore on F . Thus, the frontier expands SOUTH on every col-
umn. How to choose the vertex with which to form the binding
is according to T3(b), and will be discussed in section 5.4.

For clarity of presentation, we state three direct corollaries to
the above. C1) All non-empty entries of a column are bound
to vertices of non-increasing ranks going SOUTH, C2) Unless a
column is full and all its entries ordered, it has one entry and one
entry only on the frontier, which is its SOUTHMOST non-empty
entry, and C3) All entries strictly NORTH of the frontier on a
column are non-empty and ordered.

5.3 Initialization And Vertex Ordering
Initializing any T:,j with the rank-wise maximum vertex that

belongs to it is direct: this is the vertex i+j such that i+j (j) = 0,

i+j (j′) = lj′ ,∀j′ �= j. Let Ti,j ← i denote that entry Ti,j binds

with vertex i. This expands line 1 of algorithm 2:

1: F+ = F = ∅, F− = T
2: for j = 0, . . . , m− 1
3: T0,j ← i+j , F = F ∪ T0,j , F− = F− \ T0,j

Ordering the next largest vertex into F+ is equally direct. Let
us say that T:,j is complete if it is full and all its entries ordered.
Expanding lines 2 through 5 of algorithm 2:

1: while |F+| = t < k
2: for all j = 0, . . . , (m − 1) such that T:,j is not complete
3: Compare the SOUTHMOST entry of each T:,j

4: Select Ti∗,j∗ with maximal rank //Ties may occur

5: it+1 = T−to−V(Ti∗,j∗ ), F+ = F+∪Ti∗,j∗ , F = F\Ti∗,j∗

Ties which may occur on line 4 of the above need to be broken
by selecting the leftmost entry in the tie (see section 5.4). Since
there is at most one entry in F per column, this choice is unique.

Claim 5.3.1 Let Ti1,j1 ∈ F+, and consider some Ti2,j2 a)
if r(Ti2,j2 ) > r(Ti1,j1 ), then Ti2,j2 ∈ F+, b) if r(Ti2,j2) =

r(Ti1,j1 ), and if j2 < j1, then Ti2,j2 ∈ F+.

Proof. (a) is immediate, (b) follows from ordering the left-
most entry on F with maximal rank in a tie.

5.4 Frontier Shift And Vertex-Entry Binding
We assume, without loss of generality, that l0 ≤ . . . ≤ lm−1

(see section 4.1). Recall that we can denote a vertex i as the union
set of all its non-zero coordinates. and that only the coordinates
corresponding to l0, . . . , lj−1. may change among different ver-
tices belonging to T:,j . The following is easy to see:

Claim 5.4.1 ∀i1 ∈ T:,j1 , j1 > 0, ∃! i2 ∈ T:,j2 , j2 < j1, such
that i1 = i2 \ {lj1}.

In the above, we say that i1 is paired with i2, and write i2 =
Π(i1). Note that i1 and i2 share all their coordinates except the
j1st: i2(j1) = lj1 , i1(j1) = 0. In this perspective, observe that

the initial entry i+j of any T:,j (section 5.3) is paired with i0.

Note that a vertex is fully determined by the column to which it
belongs and the vertex with which it is paired.

A similar description can be given in terms of the entries of T.
If Ti1,j1 and Ti2,j2 are bound to i1 and i2, the above claim can
be viewed as forming Ti1,j1 by pairing T:,j1 with Ti2,j2 , j2 < j1.
For convenience, we simply say that Ti1,j1 is paired with Ti2,j2
and write Ti2,j2 = Π(Ti1,j1 ). We can thus define T−to−V(Ti,j)
recursively, as follows:

T−to−V(Ti,j) =

	
T−to−V(Ti,j) = i+j , if i = 0

T−to−V(Π(Ti,j)) \ {lj}, otherwise
(14)

Notice that pairing some entry Ti+1,j with another entry Ti′,j′ ,
bound to a vertex i′, is equivalent to binding Ti+1,j to i′ \ {lj}.
As Ti+1,j is paired, it gets filled and becomes part of F : the
frontier shifted into Ti+1,j . Therefore, selecting the vertex to
which Ti+1,j is bound is equivalent to selecting the entry Ti′,j′
with which to pair Ti+1,j . The question becomes how to select
Ti′,j′ in a way that satisfies T3(b).

Let r0 =
�m−1

j=0 lj , we can write:

r(Ti,j) = r0 − lj − (r0 − r(Π(Ti,j))) = r(Π(Ti,j)) − lj , (15)

which immediately leads to:

Claim 5.4.2 r(Ti1,j) ≤ r(Ti2,j) if and only if r(Π(Ti1,j)) ≤
r(Π(Ti2,j)).

We can now compute the appropriate vertex to bind to a table
entry Ti+1,j , satisfying T3(b). We assume that 1) all entries of
N (i, j) = {T0,j , . . . , Ti,j} are non-empty and ordered, and 2) we
are looking to shift the frontier into Ti+1,j .

Let Π(N (i, j)) =



Π(Ti′,j′), Ti′,j′ ∈ N (i, j), be the set of
table entries with which the elements of N (i, j) are paired. Let
arg max r(Ti,j) be a table entry bound to a vertex of maximal
rank. The following is key:

Corollary 2. Π
�
arg maxi∈T:,j\N (i,j) r(i)

�
= T−to−V(Tip,jp ),

where Tip,jp ∈ F+ and is given by:

Tip,jp = arg max r(Ti′,j′ ), j′ < j, Ti′,j′ /∈ Π(N (i, j)). (16)

Proof. (16) follows from claim 5.4.2. Note that, if Tip,jp ∈
Π(N (i, j)), then pairing Ti+1,j with it means binding a vertex to
Ti+1,j that is already bound to some entry in N (i, j). We still
must prove that Tip,jp ∈ F+.

Let T−
j = {T:,0, . . . , T:,j−1}. We prove that Tip,jp ∈ F+ by

showing that a) ∃Ti1,j1 ∈ (F+ ∩ T−
j ) \Π(N (i, j)), and b) Tip,jp

never has to be necessarily in F .
Let Π(Ti,j) = Ti0,j0 . From (15), r(Ti,j) < r(Ti0,j0 ). Since

Ti,j ∈ F+, then by claim 5.3.1, Ti0,j0 ∈ F+. We distinguish two
cases: 1) j0 < j − 1, and 2) j0 = j − 1.

Case 1: Consider Ti1,j−1 such that Π(Ti1,j−1) = Ti0,j0 . Be-
cause lj−1 ≤ lj , r(Ti1,j−1) ≥ r(Ti,j), so Ti1,j−1 ∈ F+ (see
claim 5.3.1). Also, r(Ti1,j−1) < r(Ti0,j0 ). Since Π(Ti,j) = Ti0,j0 ,
then if Ti1,j−1 ∈ Π(N (i, j)), we would have a contradiction
with (16).

Case 2: Let i be the vertex bound to Ti0,j0 (j0 = j − 1).
Unless T:,j is complete (cannot fill Ti+1,j), ∃j′ < j0 such that
i(j′) = lj′ . Letting i(j′) = 0 yields a vertex i′ ∈ T:,j0 such

45



that r(i′) ≥ r(Ti,j). By claim 5.3.1, i′ must be bound to some

Ti1,j0 ∈ F+. Also, r(Ti1,j0 ) < r(Ti0,j0 ), implying that Ti1,j0 /∈
Π(N (i, j)), to not contradict (16).

Cases 1 and 2 establish a). From a) and claim 5.3.1, r(Ti1,j1 ) ≥
r(Ti2,j2 ), ∀Ti2,j2 ∈ F . This establishes b).

Let Φ(Ti,j ) denote the order of (the vertex bound to) Ti,j , and

Φ−1(x) the table entry (or the vertex bound to it) of order x. As a
result of corollary 2, if Ti∗,j∗ is ordered at iteration t (section 5.3),
and say Ti∗,j∗ is paired with some Ti0,j0 , and we want to shift the
frontier on T:,j∗ , we pair Ti∗+1,j∗ with the entry of smallest order
greater than Φ(Ti0,j0 ), which must be of maximal rank less than
r(Ti0,j0 ), and which belongs to a column less than j∗. Thus, we
can expand line 6 of algorithm 2 as:

1: if T:,j∗ is not complete then
2: Ti1,j1 = fsog(Ti∗,j∗ )
3: Fill Ti∗+1,j∗ such that Π(Ti∗+1,j∗ ) = Ti1,j1

4: F = F ∪ Ti∗+1,j∗ , F− = F− \ Ti∗+1,j∗

fsog returns the table entry Ti1,j1 of smallest order greater
than x = Φ(Π(Ti∗,j∗ )) which is in columns left of T:,j∗ . A key
observation is that Φ(Ti1,j1 ) ≥ x + 1. Therefore, we may first
attempt to pair Ti∗+1,j∗ with Ti1,j1 = Φ−1(x+1). If j1 < j∗, the

pairing is successful. Otherwise, we could traverse F+ by vertices
of increasing order, starting at Ti1,j1 until reaching the first vertex
left of T:,j∗ . But this can be avoided with some bookkeeping. Let
Ti(t),j(t) be the entry bound to it (Ti∗,j∗ := Ti(t+1),j(t+1) ), and

define fsog(Ti∗,j∗ ) as follows:

1: if j∗ ≥ j(t) then
2: if needs next pairing(j(t)) == false then

3: needs next pairing(j(t)) = true

4: needs next pairing at row(j(t)) = i(∗,t)

5: for all j = j∗ + 1, . . . , m− 1
6: if needs next pairing(j) == true then
7: i = needs next pairing at row(j)
8: jump to(Ti,j) = t + 1
9: needs next pairing(j) = false
10: jump to(Ti∗,j∗ ) = t + 2

11: Ti1,j1 = Φ−1


Φ(Π(Ti∗,j∗ )) + 1

�
12: if j1 < j∗: return Ti1,j1
13: else: t′ =jump to(Ti1 ,j1 ); return T

i(t
′),j(t

′)

Clearly, traversal of F+ would be O(t) in iteration t, for a total of
O(k2) for the k iterations. The above procedure does the job in
O(m) per iteration (line 5, everything else is O(1)), for a total of
O(mk), by storing in jump to(Ti,j ) the order of the entry to which
to jump directly, should a pairing between an entry of T:,j and Ti,j

be attempted. We omit a detailed proof of its correctness noting
that it follows from the fact that, by corollary 2, an ordered vertex
of maximal rank exists in columns less than j∗ when a pairing
between two entries of T:,j∗ is attempted.

5.5 Complexity And Sample Run
Clearly, the initialization phase is O(m) (section 5.3). Vertex

ordering is O(m) per iteration (section 5.3). All operations in
frontier shifting are O(1), except fsog which is O(m) per iteration
(section 5.4). Therefore, the total cost is O(mk), to fill the table
with k entries bound to vertices of maximal ranks. Next we need
to compute ik (line 7) of algorithm 2. By outputting i1, . . . , ik
sequentially, a vertex is always output after the vertex with which
it is paired, so that T−to−V becomes O(m) per vertex, for a total
O(mk), which is the asymptotic complexity of the algorithm. In
terms of memory footprint, it is clear that we only need to store
non-empty entries: at the end of the algorithm, we have k ordered
entries and at most m on the frontier, i.e., O(k+m). For reference,
a sample run of algorithm 2 is shown in table 1.

6. CONSTRAINT PROJECTION
If I is the set of indices of current sources included in a global

constraint G :
�

j∈I ij ≤ g, we are interested in finding a set

Ip ⊂ I such that the projected constraint Gp :
�

j∈Ip
ij ≤ g

leaves out at most k vertices of K, and compute these vertices.

Table 1: Sample run of algorithm 2. For every entry
is shown a pair (Π,Φ), where Π is the entry with
which it is paired and Φ its order, and the vertex
bound to it, as the union of its non-zero coordinates.

l0 = 1 l1 = 2 l2 = 2 l3 = 2.5

(i0, 1)
{l1, l2, l3}

(i0, 2)
{l0, l2, l3}

(i0, 3)
{l0, l1, l3}

(i0, 6)
{l0, l1, l2}

Complete
(T0,0, 4)
{l2, l3}

(T0,0, 5)
{l1, l3}

(T0,0, 8)
{l1, l2}

Complete
(T0,1, 7)
{l0, l3}

(T0,1,F)
{l0, l2}

(T1,1,F)
{l3}

Table 2: Results on small grids where comparison
with the exact solution is practical. The exact solu-
tion was computed based on 30 time steps.

Grid size # Current Runtime Runtime Average
(#nodes) sources (exact (proposed overestimation

solution) method) (%)
94 20 3 min. < 1 sec. 5.64
124 20 5 min. < 1 sec. 6.31
391 90 1.1 hrs. 1.5 sec. 6.02
612 110 4 hrs. 4 sec. 4.12

We say that Gp is formed over Ip. Note that g is the value of
both G and Gp. Our strategy is to form several global constraints
of value g over different subsets of I and to select among them
one or many to form the projection.

Let Ip1 and Ip2 be two distinct subsets of I, and let Gp1 and
Gp2 be the global constraints formed over them, respectively. In
general, the local constraints corresponding to currents in Ip1
and Ip2 differ and so must the local constraint hypercubes cor-
responding to Gp1 and Gp2 . We make this explicit by denoting
by K(Gp) the hypercube formed by the local constraints included

in Ip. Similar to section 5, we let ik(Gp) denote a kth rank-wise
maximal vertex of K(Gp) left out by Gp.

Algorithm 2 is our workhorse. Recall the rank r(i) =
�

j∈Ip
i(j)

of a vertex i (j ∈ Ip was implicit in previous sections). Observe
that Gp leaves out at most k vertices of K(Gp) if and only if
r(ik(Gp)) < g. Therefore, for any Ip, we can run algorithm 2 and
output the k rank-wise largest vertices of K(Gp), and compute
r(ik(Gp)).

Our approach is to start with Ip = ∅ and add one current
source to Ip at a time until r(ik(Gp)) ≥ g, invoking algorithm 2
every time. The next current source to add to Ip can be chosen
in many ways. We propose two such possibilities: highest-to-
lowest : add the current source with the largest local constraint
not included so far. This would include in Gp many potential big
offenders (e.g., I/O pads, clock pins) among the currents in I, and
lowest-to-highest, which works the other way, and would result in
Ip including a large numbers of currents originally in I. In terms
of complexity, every run of algorithm 2 is O(k|Ip|). If |Ip| = 1 up
to m−1 at most, we end up with O(km2), in line with algorithm 1.

7. EXPERIMENTAL RESULTS
To test our method, we wrote a C++ package that enables us

to generate power grids from user specifications, including grid
dimensions, metal layers (M1 – M9), pitch and width per layer,
and C4 and current source distribution. A global constraint is
specified by the spatial region and metal layers it includes. All
the reported results are on grids with seven global constraints
covering the entirety of the grid area, and runtimes follow the
application of all seven global constraints. Minimum spacing and
sheet and via resistances were specified according to a 90 nm
technology. All results were obtained on a 1.1 GHz Sun machine,
with 4 GB of memory.

Table 2 shows the accuracy of our proposed technique for es-
timating the vector of voltage drop upper bounds, by comparing
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Table 4: Prototyping of various grid configurations.
Configuration Base configuration Layers Modifications from base # Nodes Max voltage drop Location Runtime

B0 – M1–M6 – 570,000 4% Vdd (3.6, 2.7) on M1 1.5 hrs.
B1 B0 M1–M6 pitch M2 ×2 357,000 12% Vdd (3.6, 2.25) on M1 47 min.
B2 B0 M1–M5 pitch M2 ×1.5 263,000 7.5% Vdd (3.6, 2.25) on M1 30 min.

pitch M3,M4 ×2.3
width M3 ×0.6
width M4 ×0.45
width M5 ×0.36

B3 B2 M1–M5 pitch M2 ×2 170,000 9.9% Vdd (3.15, 2.25) on M1 27 min.
B4 B0 M1–M5 width M1,M2 ×0.9 438,000 5% Vdd (3.6, 2.7) on M1 55 min.

width M3,M4 ×1.2
width M5 ×1.5

B5 B4 M1–M5 pitch M2 ×2 245,000 13% Vdd (3.6, 2.25) on M1 30 min.

Table 3: Accuracy and speed comparisons of the
proposed approach with sequential linear programs.

Grid size Analysis Runtime Runtime Average
(#nodes) type (sequential (proposed overesti-

LPs) method) mation(%)
2,380 TR 30 min. 7 sec. 4.39
3,780 TR 2 hrs. 11 sec. 4.78
24,000 DC 2.4 min./node 5 min. 5.55

(est. 40 days) (est.)
41,000 DC 6.5 min./node 9.5 min 6.02

(est. 187 days) (est.)

our estimates with the vector of exact voltage drop maxima at
the 30th time step, given the current constraints, Computing the
exact maximum voltage drop vector at the qth time step is done
as in section 5.1 of [1], and involves solving one LP per node,
over �nq , where n is the size of the power grid. Clearly, this
computation is extremely expensive, as it increases the dimen-
sion of each of the n LPs by a factor of q, and can only serve as a
benchmarking measure for small grids. Besides, it has the inher-
ent shortcoming of being able to handle a finite, and relatively
small, number of time steps, whereas the upper bound applies at
t → ∞. Column 5 shows the average accuracy of the estimate,
taken over the n nodes. These numbers show a relatively small
average overestimation following our approach, which could only
diminish if we were to compute the exact voltage drops over more
than 30 steps. Clearly, the proposed approach runs several orders
of magnitude faster than the exact computation.

Table 3 compares results of the proposed method with the exe-
cution of n LPs sequentially, one LP per maximum node voltage,
as in [1]. The top three rows are based on transient analysis (TR),
the bottom three DC. The number of current sources ranged from
110 to 270, and k∗ and kp were 1000. For transient analysis, col-
umn 3 refers to the time it took to compute Vu (upper bounds on
node voltage drops), which is essentially the cost of computing Va

by n LPs (see the corollary of theorem 1). Since the full vector Va

is needed for the computation of Vu, we had to solve all n LPs,
which limited the size of grids on which this comparison could be
made. Accuracy estimates were obtained on larger grids through
DC analysis, where we could test our method on a node-by-node
basis, without the need for all n LP solutions. For this purpose,
we chose 10 random nodes, solved the 10 corresponding LPs, and
estimated runtime (column 3) and accuracy (column 5) based on
these 10 nodes. Given the impractical runtimes of sequential LPs,
our method simply makes checking a power grid under uncertain,
constraint-specified currents, a feasible and practical proposition.

Table 4 shows how our method can be used for prototyping var-
ious grid configurations. Starting with a (5mm × 5mm) power
grid, and a power budget of 1.28 W non-uniformly distributed
over 156 current sources, we test out six different configurations
by varying the number of metal layers and the widths and pitches
of some layers. Each configuration has a base configuration (col-
umn 2), and the deviations between the two configurations are

summarized in column 4. Using the proposed technique, we are
able to visualize maximum voltage drop anywhere on the grid.
For illustration, we only show the worst-case maximum drop (col-
umn 6) and its location (column 7), in every configuration.

8. CONCLUSION
As power grid safety becomes increasingly important, so does

the need to start power grid verification early in the design cycle
and incorporate circuit uncertainty of the early stages into useful
power grid information. We resort to the framework of capturing
circuit uncertainty via constraints on currents and maximizing
node voltage drops over the constraint space, and propose a geo-
metric approach to transform a problem whose solution requires
as many linear programs as there are nodes, to another involving
a user-limited number of solutions of a single linear system. The
key is to determine, from the geometry of the problem, a lim-
ited number of points in the current space at which to solve the
power grid system, and to derive estimates of the power grid volt-
age drops from the solutions. This approach made the problem
of verifying full power grids under uncertain currents practicable
and scalable. Prior art simply couldn’t handle grids of more than
a few hundred or thousand nodes, suffering too prohibitive run-
times for any larger systems. This improves runtime manyfold,
doing in seconds what required hours, and finishing the verifica-
tion of grids of about half a million nodes in 1–1.5 hours. Our
approach is designed so that all approximation is conservative,
and our results showed inaccuracy was relatively small, rarely
exceeding 6% on average.
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