Efficient Block-Based Parameterized Timing Analysis
Covering All Potentially Critical Paths

Khaled R. Heloue

Department of ECE

University of Toronto
Toronto, Ontario, Canada

khaled @ eecg.utoronto.ca

ABSTRACT

In order for the results of timing analysis to be useful, they must
provide insight and guidance on how the circuit may be improved
so as to fix any reported timing problems. A limitation of many
recent variability-aware timing analysis techniques is that, while
they report delay distributions, or verify multiple corners, they
do not provide the required guidance for re-design. We propose
an efficient block-based parameterized timing analysis technique
that can accurately capture circuit delay at every point in the
parameter space, by reporting all paths that can become critical.
Using an efficient pruning algorithm, only those potentially criti-
cal paths are carried forward, while all other paths are discarded
during propagation. This allows one to examine local robustness
to parameters in different regions of the parameter space, not
by considering differential sensitivity at a point (which would be
useless in this context) but by knowledge of the paths that can
become critical at nearby points in parameter space. We give
a formal definition of this problem and propose a technique for
solving it that improves on the state of the art, both in terms of
theoretical computational complexity and in terms of run time
on various test circuits.

1. INTRODUCTION

Signal and clock path delays in integrated circuits are subject
to variations arising from many sources, including (manufactur-
ing) process variations, (supply/ground) voltage variations, and
temperature variations. These are collectively referred to as PVT
variations. During design, one accounts for the delay variability
by either “padding” the path delays with a timing margin, so
that the chip would yield well at all process corners in spite of
the variations (ASICs approach), or by “binning” the resulting
chips at different frequencies (microprocessors). While this is not
a new problem, the scale of the problem has increased recently,
because %) an increasing number of circuit parameters have signifi-
cant variability, causing an increase in the number of corners, and
1) within-die variations are becoming more significant, and they
cannot be handled by the traditional corner-based approach. The
variables or parameters under study are of two types: many tran-
sistor and metal line parameters are directly related to underlying
statistical process variables, so they may be modeled as random
variables, with certain distributions; on the other hand, the sup-
ply/ground voltage and temperature are not random, and must
be modeled as simply unknown or wuncertain variables, within
known bounds.

Given the two types of variables under study, two types of so-
lution techniques have emerged: statistical static timing analysis
(SSTA) and multi-corner static timing analysis (MCSTA). SSTA
models parameters as random variables, assuming that their dis-
tributions and correlations are known a priori [1, 2, 3], and pro-
vides the distribution of circuit delay, from which the timing yield
can be estimated. On the other hand, MCSTA models the PVT

*This work was supported in part by Intel Corp.

978-1-4244-2820-5/08/$25.00 ©2008 IEEE

Sari Onaissi
Department of ECE
University of Toronto

Toronto, Ontario, Canada

sari@eecg.utoronto.ca

173

Farid N. Najm
Department of ECE
University of Toronto

Toronto, Ontario, Canada

f.najm @utoronto.ca

parameters as uncertain variables, within given bounds, and at-
tempts to verify the timing at all corners in a single timing run [4].
All these techniques consider the circuit delay to be dependent
on a number of PVT parameters, be they random or uncertain.
Therefore, one can describe the required overall solution to this
problem as parameterized static timing analysis (PSTA).

The motivation for this work is the simple notion that, in or-
der for the results of timing analysis to be useful, they must
provide guidance on how the circuit may be improved so as to
fix any reported timing problems. To understand the need for
PSTA in general, consider the simple case where delay is linear in
the variational (PVT) parameters. In a circuit, the delay of any
input-output path becomes a linear expression in terms of the
parameters, or what we refer to as a hyperplane. At the nominal
PVT point, the hyperplane corresponding to the path with the
largest delay (under nominal conditions) is dominant (over all
others). As we move around in PVT space, some other path may
become critical, and, correspondingly, another hyperplane may
become dominant. Overall, across the whole PVT space, the to-
tal circuit delay follows some piece-wise planar (PWP) surface.
This surface is defined by all the hyperplanes which can become
dominant at some point in PVT space. We refer to these hyper-
planes as potentially dominant and to their corresponding paths
as potentially critical.

Suppose we are at some operating point in PVT space, and
we are interested in the robustness of the circuit at that point.
In other words, we are interested in the impact of variations on
overall circuit delay around that point. What information would
be useful to the designer in this case? One could consider pro-
viding the sensitivity of delay, at that point, to the various PVT
parameters, such as by means of the partial derivatives of delay
to each of the parameters. However, because of the PWP nature
of the delay surface, such point metrics are actually useless. One
may find the derivatives to have low values at that point, yet one
may be very close to a “break point” in the surface where another
hyperplane with much larger sensitivities suddenly becomes dom-
inant. Instead, one must be able to quickly discover what paths
(i.e., hyperplanes) become dominant in a certain neighborhood
around the point of interest. Given a list of problematic paths in
the neighborhood, when working on fixing some path, one avoids
being “blind-sighted” to the criticality of other paths. Thus, in
order for the results of timing analysis to be useful, we believe
that the whole PWP surface is required. It is not enough to give
the user the worst-case corner; that does not provide a full pic-
ture of what needs to be fixed. Also, simply providing the timing
yield, as is done in SSTA, or simply providing a list of a large
number of paths, with a failure probability for each, does not
give sufficient insight for what paths need to be fixed around the
operating point. Instead, a PWP surface (for the total circuit de-
lay) allows one to examine the local neighborhood in order to see
which parameters and paths may be problematic (so that one can
focus on them as part of redesign). It should be mentioned that
the “broken” nature of the delay surface is not due to the linear-
ity assumption. Instead, it is actually due to the maz function

which is implicit in the problem of timing verification of setup
constraints (a similarly broken delay surface results from the min
function, in the similar problem of verifying hold constraints).
If one assumes a non-linear, say polynomial, delay dependence,
one simply ends up with a piece-wise polynomial surface, which
presents the same sort of problems.

In order to faithfully represent the PWP surface for the total
circuit delay, we must include (during propagation in the timing
graph) all the hyperplanes that can become dominant somewhere
in PVT space. Simply carrying along all paths can be prob-
lematic due to possible path count explosion; hence, an efficient
pruning strategy is needed, whereby redundant paths that can-
not become dominant anywhere in PVT space are identified and
pruned during the propagation. This problem was studied in [5],
where an exact pruning algorithm and a sufficient condition for
pruning were proposed, and where it was found that indeed the
number of potentially dominant paths is manageable and does
not explode. In that work, the exact algorithm (as we will see)
has time complexity O(p?n2), where p is the number of PVT
parameters and n is the number of hyperplanes to be pruned,
and the sufficient condition is O(pn?). In this paper, we pro-
pose: (1) a more efficient exact solution to the pruning problem
that takes O(p?mn) time, where m is the number of potentially
dominant hyperplanes at the circuit outputs, and (2) a sufficient
condition for pruning that is O(pn). We will see that the resulting
improvements in run-time can be significant for hard circuits.

The rest of the paper is organized as follows. In section 2, we
review some basic terminology and formally describe the prun-
ing problem. We also describe the pruning techniques presented
in [5], and assess the complexity of their exact pruning algorithm.
In section 3, we transform the pruning problem from the parame-
terized timing domain to the domain of computational geometry,
and show how it relates to two standard problems in that field.
In section 4, we present our exact pruning algorithm and our suf-
ficient condition for pruning, and study the complexity of these
pruning strategies. We provide test results and comparisons to
previous work in section 5, and conclude in section 6.

2. BACKGROUND

In this section, we first review some basic terminology covering
timing modeling and propagation. Then, we describe the problem
formulated by the authors of [5] and briefly review their approach.

2.1 Modeling and Propagation

In block-based timing analysis, timing quantities are propa-
gated in the timing graph in topological order, through a sequence
of basic operations, such as add operations on input arrival times
and arc delays, and max operations on the timing quantities re-
sulting from those additions. In this way, the output arrival time
is determined and is then propagated to subsequent stages. This
is shown in Fig 1, where the arrival time C at the output of the
AND gate is computed as the maz of the sums of arrival times
and arc delays at the inputs of the gate. In other words:

C =max (A+ D1,B+ D3) (1)

where A and B are input arrival times, and D; and D3 are timing
arc delays. This can be easily generalized to gates with more than
two inputs.

Since variability in the process and environmental (PVT) pa-
rameters affects transistor performance, gate delays should be
represented in such a way to highlight their dependence on these
underlying parameters. First-order linear delay models have been
extensively used in the literature, and they generally capture well
this dependence. In this work, we assume that gate delay is a
linear function of process and environmental parameters, such
as channel length L, threshold voltage V%, supply voltage Vg4,
and temperature 7. These parameters are assumed to vary in
specified ranges, however, without loss of generality, we can eas-
ily normalize these ranges to [—1, 1], similarly to what was done
in [4]. Hence, gate delay D, can be expressed as follows:

P
D=do+ Yy diXi, —1<X;<1 Vi 2)

i=1

174

Figure 1: Propagation for a single gate

where d, is the nominal delay, X;’s are the normalized PVT pa-
rameters, and d;’s are the delay sensitivities to these parameters.
Since D is a linear function of p parameters, then it is referred to
as a delay hyperplane.

The delay of a path is simply the sum of arc delays of all gates
on that path. Since arc delays are expressed as hyperplanes, so
will be the path delay; in the rest of the paper, when we refer
to the delay of a path, it is understood that we mean path delay
hyperplane. Although this is true for a path, the arrival time at a
node, which is the maz of all path delay hyperplanes in the fan-in
cone of that node, is not necessarily a hyperplane. This is shown
in Fig. 2, where four paths, P — P4, converge at a node. The
arrival time, A, at that node is given by:

A = max(P1, P2, P3, P1) (3)

Shown as the broken dashed line, A is a piecewise-planar (PWP)
surface because either P;, P, or P3 can become the maximum
(or dominant) hyperplane, depending on which region of the pa-
rameter space is under consideration. Note that P is always
covered by another hyperplane, and therefore does not show up
in the PWP surface. Paths, such as P; — P3, which can become
dominant are referred to as potentially critical or non-redundant
paths, whereas paths, such as P4, which cannot become critical
are referred to as redundant or prunable paths. We will formally
define these terms in the next section. Ideally, during analysis,
only those potentially critical paths (or non-redundant hyper-
planes) must be propagated to subsequent stages, while all other
hyperplanes must be discarded or pruned.

2.2 The Pruning Problem

Let D; be the delay hyperplane of path j in a set of n paths
converging on a node, so that D; is given by:

P
Dj:aoj‘i‘zainiv j=1...,n (4)
i=1

The hyperplane D; is said to be redundant or prunable if and
only if:

VX,

(5)
In this case, no matter where we are in the parameter space,
D; will never show up as the maximum hyperplane, as other
hyperplanes will be dominating it. An example of this is path Py
in Fig 2; such a redundant hyperplane can be pruned from the
set without affecting the shape of the piecewise-planar surface
representing the max. On the other hand, if (5) is not satisfied,
then D; is a non-redundant hyperplane and must be kept in the
set. An example of this are paths P; — P3 which show up in the
PWP surface.

Formally, the pruning problem can be stated as follows. Given
a set P of n hyperplanes D;, find the set @ CP , such that Q
is an irreducible set of m non-redundant hyperplanes D;, where
m < n, and such that:

max(D1,...,Dp) =max(D1,...,D;j_1,Dj41,...,Dn),

-7Dn) :maX(Dlv--me)» (6)

Only those m non-redundant hyperplanes are needed to describe
the shape of the PWP surface defined by the max. This pruning

max (D1, .. vX;

X; 1
Figure 2: MAX of path delay hyperplanes

problem was studied by the authors of [5] who proposed two tech-
niques for pruning. We now review these techniques and describe
some of their limitations.

2.2.1 Pairwise Pruning

The first technique is based on pairwise comparisons between
hyperplanes, to check if any hyperplane can prune another hy-
perplane, as follows. Let D; and D2 be two hyperplanes:

P
ao1 + Z a;1X;

1=1

Dy (7)

P
Do ao2 + Z a;2X; (8)

i=1

If D1 — D2 < 0 for all values of X;, then D; is pruned by Do,
denoted by Dy < Dsz. Since —1 < X; < 1, then Dy < D> if and
only if:
P
o1 — Go2 + Y |ai1 — aiz| <0
=1
which can be easily checked.

The pairwise pruning procedure [5] is shown in Algorithm 1,
where we have preserved the same flow as in [5] for clarity. It
has two nested loops that cover all pairs of hyperplanes, checking
if D; < D;. Note that this algorithm is only a sufficient con-
dition for pruning and is not an exact solution for the pruning
problem. In fact, the resulting set Q is not necessarily an irre-
ducible set. Going back to Fig. 2, PAIRWISE will fail to identify
P, as a redundant hyperplane since Py, --- , P4 are pairwise non-
prunable. In addition, the complexity of PAIRWISE is O(pn?),
where p is the number of PVT parameters and n is the number
of hyperplanes. This quadratic complexity can be problematic,
particularly if a large number of redundant hyperplanes, which
are identified as non-redundant by PAIRWISE, are propagated
to subsequent stages, potentially causing a blow-up in the num-
ber of hyperplanes, as reported by [5] on one of the test circuits.

2.2.2 Feasibility Check

The second pruning technique is a necessary and sufficient
condition for pruning. It is therefore an exact solution for the
pruning problem, which guarantees that the resulting set Q is an
irreducible set of non-redundant hyperplanes. The idea is to per-
form a feasibility check for every hyperplane D; by searching for
a point in the space of X;’s where D; is dominant over all other
hyperplanes. If this is feasible, then D; is non-redundant, other-
wise, D; is redundant and can be pruned from the set. Thus, D;
is non-redundant if and only if the following system of inequalities
has a feasible solution:

DJZDkH k:177n7k7£.7
-1<X; <1,

(9)

(10)
i=1,...,p

Algorithm 2 describes FEASCHK, where a feasibility check is
formulated for every hyperplane in the starting set P (line 6). If

175

Algorithm 1 PAIRWISE
Input: P ={D1,...,Dn};
Output: Q DO{ D, ..., Dm};
: Mark all hyperplanes in P as non-redundant;
:fori=1:ndo
if (D; is marked redundant) then
continue;

1
2
3
4:
5: end if
6
7
8
9

for j=1:ndo
if (D; is marked redundant) then
continue;

end if

if (D; < D;) then
11: Mark D; as redundant;
12: end if
13: end for
14: end for

15: Add all non-redundant hyperplanes to Q;

there is a feasible solution, then the hyperplane is non-redundant
and is added to Q. Otherwise, it is marked as redundant and is
pruned from the set.

Algorithm 2 FEASCHK
Input: P ={D1,...,Dn};
Output: Q = {Dl, R Dm};
1: Mark all hyperplanes in P as non-redundant;
2: for j=1:ndo

3: if (D; is marked redundant) then

4: continue;

5: end if

6: Formulate (10) for D; excluding redundant hyperplanes;
7: if (feasible) then

8: Add Dj to Q;

9: else

10: Mark D; as redundant;

11: end if

12: end for

Note that the feasibility check in (10) consists of solving a Lin-
ear Program (LP) with p variables and (n+ p) constraints, which
has a complexity of O (p?(n + p)), if an interior-point based LP
solver is used [6]. Therefore, the complexity of FEASCHK, which
requires n feasibility checks to determine the irreducible set of
non-redundant hyperplanes is O (p2(n —‘,—p)n)7 which is O(p®n?)
if p < n, which is usually the case. Given that this pruning al-
gorithm would potentially be applied at every node in the timing
graph, its O(n?) behavior in the number of hyperplanes can be
expensive.

In the following sections, we present a more efficient method
for solving the pruning problem. By transforming this problem
into a standard problem in computational geometry, we present
an exact pruning algorithm which is O(p?mn), where n is the
number of hyperplanes in the initial set P, and m is the number
of non-redundant hyperplanes in the final irreducible set Q. We
also propose a sufficient condition for pruning that can be used
as a pre-processing step, and which is O(pn).

3. PROBLEM TRANSFORMATION

In this section, we show how we map our parameterized tim-
ing pruning problem into a standard problem in computational
geometry.

3.1 From Computational Geometry

The field of computational geometry deals with the study of
algorithms to solve problems stated in terms of geometry. Typ-
ical problems include Convex Hull, Vertex/Facet enumeration,
and Voronoi diagrams, to name a few [7]. We have identified two
standard problems that can be related to the pruning problem:

Enumeration of Extreme Points of a Convex Hull and its equiva-
lent (dual) problem of Minimal Representation of a Polytope. We
first review these problems and show how the pruning problem
can be transformed into a standard problem.

3.1.1 Extreme Points Enumeration
To understand this problem, let us start by defining the follow-
ing terms:

DErFINITION 1 (CoNVEX HULL). The convexr hull of a set P
of n points, denoted as conv(P), is the smallest convex set that
contains these points.

DEFINITION 2 (EXTREME POINTS). Given a set P of n points
in d dimensions, the minimal subset E of P for which conv(P) =
conv(E) is called the set of extreme points. In other words, if
point e € E, then conv(P \ {e}) # conv(P).

The Extreme Points Enumeration problem can be stated as
follows. Given a set P of n points, determine the minimal subset
E of m extreme points, where m < n. This is shown graphically
in Fig. 3a where the shaded region is the convex hull, and points
1 through 4 are the set of extreme points. Note that points 5 and
6 do not contribute to the convex hull and can thus be removed.

3.1.2 Minimal Polytope Representation
We begin by defining some terms that will help us introduce
this standard problem:

DEFINITION 3 (HYPERPLANE). It is the set {x | aTx = b},
where a € R?, a # 0 and b € R. It is the solution set of a non-
trivial linear equation among the components of x. A hyperplane
divides R? into two half-spaces.

DEFINITION 4 (HALF-SPACE). It is the set {xz | aTx < b},
where a € R, a # 0 and b € R. It is the solution set of one
nontrivial linear inequality.

DEFINITION 5 (POLYHEDRON/POLYTOPE). A polyhedron is the
set P C R®, such that:

yn} (11)

It is therefore the intersection of a finite number of half-spaces. A
bounded polyhedron is called a polytope. A polyhedron/polytope
can be written in matriz form as follows:

P:{x|a?z§bj, ji=1,...

P={z| Az <b} (12)

where A is an n X d matriz, and b € R™. Note that A is not
necessarily the minimal representation of P.

DEFINITION 6 (SUPPORTING HYPERPLANE). If one of the two
closed half-spaces of a hyperplane h contains a polytope P, then
h s called a supporting hyperplane of P. Note that every row
in the matriz representation of the polytope P corresponds to a
supporting hyperplane.

For example, the shaded region in Fig. 3b is a polytope de-
fined as the intersection of six half-spaces, each bounded by a
hyperplane, and all six hyperplanes are supporting hyperplanes.

DEFINITION 7 (BOUNDING HYPERPLANE). A hyperplane that
is spanned by its intersection with a polytope P is called a bound-
ing hyperplane of P. Those rows in the matriz representation of
P, which can be satisfied with equality for some values of x, cor-
respond to bounding hyperplanes of P.

For example, in Fig. 3b, only hyperplanes 1 through 4 are
bounding hyperplanes; they appear at the boundary of the poly-
tope.

With the above definitions, the problem of Minimal Polytope
Representation can be stated as follows. Given a polytope P with
n supporting hyperplanes, find all m bounding hyperplanes of the
polytope, where m < n. This will correspond to the minimal

176

(a) Convex Hull

I
I
|
(b) Polytope

Figure 3: (a) Extreme Points of Convex Hull (b)
Minimal Polytope Representation (dual problem)

representation of P. In other words, if P is defined as A~x <b,
where A is an n X d matrix, and b € R™, find a reduced A and b
such that:

P={x| Az <b} = {x| Az < b} (13)
where A and b are the rows of A and b that correspond to the
m bounding hyperplanes of P. Referring again to the example in
Fig. 3D, if hyperplanes 5 and 6 were removed, it would not affect
the shape of the polytope.

The above two problems have obvious similarities; in fact, these
two problems are equivalent, as one is the dual of the other. This
can be explained by the the point-hyperplane duality in com-
putational geometry [7]. Point-hyperplane duality is a common
transformation whereby a point p at distance r from the origin O
is associated with the hyperplane normal to Op at distance 1/r
from the origin. Under this transformation, extreme points enu-
meration and minimal polytope representation are two equivalent
problems. This is shown in Fig 3, where the extreme points 1 to
4 of the convex hull are transformed to the bounding hyperplanes
1 to 4 of the polytope; also, the points 5 and 6 on the interior of
the convex hull are transformed to hyperplanes 5 and 6, which do
not appear in the minimal polytope representation. Therefore,
an algorithm that can solve one problem efficiently can also be
used to solve the other problem, and vice-versa. We have iden-
tified an efficient algorithm in [8], which solves extreme points
enumeration. The same algorithm can be used to solve the dual
problem of minimal polytope representation. In the next section,
we show how the pruning problem, defined in section 2.2, can be
transformed to minimal polytope representation problem. Once
this is established, we can adapt the algorithm in [8] to solve the
pruning problem efficiently.

3.2 To Parameterized Timing

Recall the pruning problem, where given a set of n delay hy-
perplanes Dj, we want to determine every hyperplane that can
become the maximum hyperplane, for some setting of the PVT
parameters. These hyperplanes are referred to as non-redundant,
whereas other hyperplanes that cannot become dominant are re-
ferred to as redundant hyperplanes, and should be pruned. Let
Dmax be the PWP maximum of all n hyperplanes, i.e., Dmax =
max (D1, -, Dy),VX;, such as the broken line in Fig. 2. As a
result, the following condition holds:

p
Dmax > Dj = ao; + Y aijXi, —1< X, <1, Vi, Vj

=1

(14)

Note that if D; is a non-redundant hyperplane, then the above
inequality will be satisfied with equality, i.e., Dmax = D;, when
D; becomes the maximum hyperplane for some setting of X;’s.
Otherwise, if D; is redundant, then Dmax > D; for all X;’s.

By rearranging (14) so as to include Dmax in the parameters,

we get the following:

P
Zaini_DmaxS_aojy j:l,...,n (15)
i=1
Let ¢ = [X1 Xo . Xp Dmax]T, hj = [a1j agj -+ Qpj — 1}T,
and b; = —a,;. Then, we can write the above inequality as:
hlz<bj, j=1,...,n (16)
Finally, if b = [by by --- by]T and H = [hy ha --- hy]T. Then,
we can write the above inequalities in matrix form:
Hxr<b, —-1<X;<1 (17)

This defines a polytope H in p + 1 dimensions, where p is the
number of the PVT parameters. Now if we were to find the min-
imal representation of H, this would result in determining all the
rows that correspond to bounding hyperplanes, that is, the rows
that can be satisfied with equality, as explained in Definition 7.
If row j is a bounding hyperplane, then thz = b; is satisfied for
some parameter setting. By rearranging this equality in terms
of Dmax, we get Dmax = Dj, which is the condition for which a
delay hyperplane is non-redundant in the pruning problem, as ob-
served above. Therefore, determining the minimal representation
of H would actually solve the pruning problem and determine the
set of non-redundant delay hyperplanes.

4. PRUNING ALGORITHM

In this section, we present two pruning algorithms: (1) an exact
solution to the pruning problem, which is a modified version of
the algorithm in [8], and (2) a sufficient condition for pruning
that is linear in the number of hyperplanes, and which can be
used to speed up the pruning algorithm by reducing the number
of calls of the exact algorithm during propagation in the timing
graph.

4.1 Exact Algorithm
4.1.1 Description

In the minimal polytope representation problem, one needs to
identify which rows of the defining polytope matrix correspond
to bounding hyperplanes. Let H be a polytope defined by the
system of inequalities Hx < b, and let hfx < b; be a row in

that system. In order to test whether hJTx < b; corresponds to

a bounding hyperplane, we need to check if hTz = b; is satisfied
for some value of z; this can be tested using the following LP:

maximize

such that

v:h?z
Hx <b

(18)

If the solution is v* < b;, then the hyperplane hJT:c = b; is not
a bounding hyperplane and can be removed (pruned) from the
system; this means that other inequalities are acting in such a
way that h]T:v < b; is never “pushed to its boundary.” Otherwise,
if the solution is v* = b;, then hfx = b; is a bounding hyperplane
of the polytope and should be kept in the system.

The LP in (18) is formulated in Procedure 1, Check_Redund(),
below. This procedure takes as inputs a set of delay hyperplanes
B, and a hyperplane D € B that we're trying to prune. The
delay hyperplanes are first transformed from the parameterized
timing domain to the computational geometry domain, where a
polytope Hx < b is created. Then, hJT:c < b; is checked to see
if it corresponds to a bounding hyperplane of the polytope by
formulating the LP in (18). If so, then pruned=FALSE, and D is
non-redundant, otherwise, pruned=TRUE and D is redundant.
The procedure also returns x*, which is a solution witness gen-
erated by the LP solver, i.e., it is the value of & at which the LP
maximum v* is found. Recall that the complexity of an LP is
linear in the number of constraints [6]. Therefore, the complex-
ity of Check_Redund() is linear in the size of B; specifically, it is
O(p?|B)).

177

Procedure 1 Check_Redund(D, B)

Inputs: Hyperplane D, and a set of hyperplanes B including D;

Outputs: pruned={TRUE, FALSE}, z* solution witness;

1: D= h?x < bj and B = Hz < b; {transform inputs from
delay domain to polytope domain as described in section 3.2}

2: Formulate the LP in (18) and get «* as solution witness;
3t if (h]a* = b;) then

4: pruned = FALSE;

5: else

6: pruned = TRUE;

7: end if

8

: return (pruned, z*)

Algorithm 3 describes the exact pruning algorithm PRUNE,
which uses Check_Redund(). PRUNE takes a set of delay hyper-
planes P and determines the set @ CP of non-redundant hy-
perplanes. The algorithm starts by determining a small subset of
non-redundant hyperplanes by calling a procedure Get_Initial NR(),
shown in Procedure 2. Get_Initial NR() probes the delay hyper-
planes at a predefined set of points in the parameter space X;, in
order to determine which delay hyperplane is maximum at every
point. Those hyperplanes that show up as maximum hyperplanes
are non-redundant, and are therefore added to the initial set. In
addition to the nominal probing point, X; = 0 Vi, 2p probes are
chosen such that X; = £1, X; =0Vi # 34, j =1,...,p, which
makes Get_Initial NR() linear in the number of hyperplanes and
the number of probes; specifically, it is O(pn).

Algorithm 3 PRUNE

Input: Set of hyperplanes P = {D1,..., Dyn} of size n;
Output: Set of all non-redundant hyperplanes Q of size m < n;
1: Q = Get_Initial NR(P);

2: PP=P\ G

3: repeat

4: Let D be the next hyperplane in P’;

5: Remove D, P' =P’ \ {D};

6: [pruned, z*] = Check_Redund(D, Q U{ D}); {run a small
LP}

7: if (pruned = TRUE) then

8: D is redundant and is not added to Q;

9: else

10: [pruned, z*] = Check-Redund(D, Q UP’ U {D}); {run

a large LP}

11: if (pruned = FALSE) then

12: D is non-redundant;

13: Add it to set, @ = QU{ D};

14: else

15: D is redundant and is not added to Q;

16: Use witness z* to get a set W of non-redundant hy-
perplanes containing z*;

17: Add W to set, Q = QUW;

18: end if

19: end if

20: until P’ = {}

Once this initial set of non-redundant hyperplanes is deter-
mined, PRUNE creates the set of remaining hyperplanes P’ (line
2), and starts a loop until P’ is empty (line 20). In every run of
the loop, a hyperplane D is removed from P’ and is first checked
for redundancy against the set Q of non-redundant hyperplanes
that were discovered so far, by calling Check_Redund() (line 6). If
Q prunes D, then D is definitely pruned by the bigger set P, and
is therefore discarded as a redundant hyperplane. Otherwise, if
D is found to be non-redundant against Q, then we cannot claim
that it is non-redundant in P. Hence, Check_Redund() is called
again (line 10) where D is checked against the bigger set DU P’.
If D could not be pruned (line 11), then D is a non-redundant
hyperplane and is added to Q. Otherwise, D is pruned and dis-

carded as a redundant hyperplane. Recall that Check_Redund|()
formulates the LP in (18) and returns a solution witness z*. Al-
though D is identified as redundant (line 15), the solution witness
z* can be used to check which constraints of the LP were satisfied
with equality at z*; those satisfied would correspond to bound-
ing hyperplanes of the polytope. Hence a set W of non-redundant
delay hyperplanes can be identified (line 16), which are added to
Q. The authors of [8] prove that at least 1 new non-redundant
hyperplane is discovered in this step. The reader is referred to [8]
for more details about the proof of correctness of this algorithm.

Procedure 2 Get_Initial NR(P)

Input: Set of hyperplanes P = {D1,...,Dyn};
Output: Subset Q of non-redundant hyperplanes;

10 Q= {}

2: Find D; with maximum nominal delay ao;;
3: Q = Q U{ Dj};

4: Set X; to 0, Vi;

5: for i=1:p do

6: Set X; to 1;

7 Find D; with maximum value at Xj;
81 Q = Q U{ D]'};

9: Set X; to —1;

10: Find Dj; with maximum value at Xj;
11: 9=QU{D;};

12: Reset X; to 0;

13: end for

4.1.2 Complexity

The execution time of PRUNE is dominated by the time to
solve the LPs formulated in Check_Redund() at lines 6 and 10.
Line 6 is called for all hyperplanes in P/, which is O(n) times. The
LP in line 6 has at most p variables and O(m) constraints, because
m is the largest possible size of Q. So in total, this would take
O(np?m). As for the second LP formulated by Check_Redund()
in line 10, notice that every time it is called, a new non-redundant
hyperplane is discovered, either explicitly (as in lines 11-12), or
through the use of the solution witness z* (line 16). There-
fore, this LP, which has at most p variables and n constraints,
is solved at most m times, which is the total number of non-
redundant hyperplanes, so that its complexity O(mp?n). And
since Get_Initial NR() is O(pn), then the overall complexity of
PRUNE is O(p?mn) which is an improvement over the O(p?n?)
approach of [5], particularly when many hyperplanes are redun-
dant, i.e. when m < n.

4.2 Sufficient Condition

Applying the exact algorithm at every node in the timing graph
can be expensive. Because we are only interested in the non-
redundant hyperplanes at the primary outputs, it makes sense
to use a faster sufficient condition for pruning at the internal
nodes, provided that the number of hyperplanes remains under
control. Once the primary outputs are reached, the exact al-
gorithm is applied to determine the non-redundant hyperplanes,
which correspond to the potentially critical paths in the circuit.
We propose a sufficient condition for pruning based on the fol-
lowing idea. Recall that when a set of hyperplanes {D1, ..., Dy}
prunes a hyperplane D, the following condition, from (5), is sat-
isfied:

max(D1,..., Dy, D) = max(D1,...,Dy), VX; (19)
which can be written as,
max(D1,...,D;) > D, VX; (20)

and which can be checked using an LP.
Now assume one can find efficiently a hyperplane Dy, which
acts as a lower bound on max(D1,...,Dg). Then a sufficient
condition for pruning D would be to check if Dy, prunes D. If so,
then max(D1, ..., Dg) would also prune D, because:
D) > Dy > D, VX,

max(D1, .. (21)

178

— Max(D,0) 4
- Upper bound i
- Lower bound -

Figure 4: Bounding the max operation

We show next, based on our recent work in [9], how we can de-
termine a lower bound on the maximum of a set of hyperplanes.

4.2.1 Finding a lower bound

Let A and B be two delay hyperplanes. Let C = max(A, B)
be the maximum of A and B, and assume that either hyperplane
can become dominant. We are interested in finding a hyperplane,
C1p, that acts as a lower bound on C. It turns out to be useful to
explain the lower bound by first describing a useful upper bound
hyperplane Cy;, on C, as follows. We can write C as:

C =

max(A, B) = B + max([A — BJ,0)
B+ max(D,0)=B+Y

(22)
(23)

where D = A— B and Y = max(D, 0). Note that the difference D
is also a hyperplane, D = do+) . d; X;, and assume that Dmax and
Din are the maximum and minimum values of D over the space
of variation, which can be determined easily. Notice that Dmax >
0 and Dp,in < 0 since either A or B can become dominant.

Fig. 4 shows a broken solid line representing a plot of ¥ =
max(D, 0) between Dpin and Dmax, the extreme values of D. We
are interested in finding a linear function of D that is guaranteed
to upper bound Y’; unlike Y this linear function of D would also
be a hyperplane. The dashed-dotted line represents an affine
function of D which upper bounds Y and is exact at Dmax and

Dmin- The equation for Y, the upper bound on Y, can be
expressed as follows:
Dmax
Yup = D — Dp; 24
ub Dmax - Dmin (mlﬂ) ()

By replacing Y with Y,; in (23), we get an upper bound C,,;, as:

D
Cup=B+ Yy =B+ e ([A - B] - Dmin)
Dmax - Dmin
_ (Dmax) A_ < Dmin) B_ Dmax) Dmin
Dmax - Dmin Dmax - Dmin Dmax - Dmin
(25)

Note that, unlike C, C; is a hyperplane since it is a linear com-
bination of A and B. To gain a more intuitive understanding of
the above relationship, let us define the following terms:

® S = Dmax — Dmin to be the “spread” of D

® S4 = Dmax to be the “strength” of A, i.e. the region where
A dominates B (D > 0)

® Sp = —Dpnin = |Dmin| to be the “strength” of B, i.e. the
region where B dominates A (D < 0)
Sa

o o= is the fraction of space where A dominates B

Sa _ SB

o (1 -a)=1- =4 = =& is the fraction of space where B

dominates A

Then, using the above notations, we can rewrite C; as follows:
Cw=aA+(1—-a)B+a(l—a)-S (26)

where A and B are both weighted by their “extent of dominance”,
so to speak, and the last term accounts for the region where both
A and B are dominant, hence the product of a and (1 — «).

Using the same analysis, we would like to find a lower bound on
Y in order to find a lower bound on C' = max(A, B). Looking back
at Fig. 4, it is easy to see that any function in the form Yy, = aD,
where 0 < a < 1, is a valid lower bound on Y = max(D,0),
and, unlike Y, is also a hyperplane since D is a hyperplane. In
practice, we have found that limiting the choice of Y}; to one of
three functions depending on the values of Dyin and Dmax is
sufficient; Y3 is set to be one of the following:

D if | Dmax| >>| Dmin|
Yy, =40 if [Dmax| <| Dmin| (27)
<7Dm£¢ ‘Tl")mm> D otherwise

where the slope of Y}, in the third case is equal to that of the
upper bound Y,;. Note that > means “much larger than”, and
it was set to be at least 4 times.

Replacing each case of the above in (23) gives us Cjp, the lower
bound on C:

A if |Dmax| >>| Dmin|
Clb = B if |Dmax| <<| Dmin| (28)
aA+ (1 —a)B otherwise

where « is as defined in (26). Therefore, Cj; is a hyperplane since
it is a linear combination of A and B in either of the three cases.

Although the above analysis is restricted to finding a lower
bound on the maximum of two hyperplanes, it can be recursively
applied to find a lower bound on the maximum of n > 2 hyper-
planes. It is easy to show that the complexity of doing this for n
hyperplanes is O(pn).

4.2.2 Algorithm description

Algorithm 4 describes our lower bound based sufficient condi-
tion for pruning, PRUNE_LB. It takes as input a set P of n hy-
perplanes and returns a reduced set @ CP . Similarly to PRUNE,
PRUNE_LB starts by determining an initial set of non-redundant
hyperplanes by calling Get_Initial NR(), which takes O(pn) time.
Next, a lower bound Dj;, on the maximum of all hyperplanes in
this set is determined as shown in the previous section. This
takes O(p?) time since the size of the initial set is O(p). Then,
for every hyperplane D in the remaining set P’, the lower bound
is used to test whether D is prunable or not. If so, then D is
redundant in P, otherwise, D is added to Q; the cost of this loop
is O(np). Thus, the runtime of PRUNE_LB is O(p(p+n)), which
in practice is really O(pn) because one expects that it’s always
the case that p < n. This represents an improvement over the
O(pn?) sufficient condition of [5].

S. RESULTS

In order to verify the accuracy and speed of our pruning tech-
niques, we have tested this approach on a number of circuits from
the ISCAS-85 benchmark suite, mapped to a commercial 90nm
library. The timing engine was implemented in C++4, with an
interface to the commercial optimization package MOSEK [10],
which was used to solve the LPs in PRUNE and FEASCHK al-
gorithms. In our tests, the cell library was not characterized for
sensitivities to any specific process parameters. Instead, and in
order to allow us to test the approach under some extreme con-
ditions, we have assumed that cell delay depends on a set of 10
arbitrary parameters that are normalized to vary in [—1,1]. In ad-
dition, the delay sensitivities to these parameters were generated
randomly such that every cell exhibits a total of +20% deviation
in its nominal delay as a result of parameter variability. As to

Algorithm 4 PRUNE_LB

Input: Set of hyperplanes P = {D1,..., Dy} of size n;
Output: Reduced set Q CP ;
1 Q = Get_Initial NR(P);
: Find a lower bound Dj;, on the maximum of all hyperplanes
in Q;
PP =P\ Q;
repeat
Choose an arbitrary D € P’ and remove it from P’;
Check if Dy, prunes D, i.e. D < Dy,
if (D < Dyp) then
D is redundant in P {sufficient condition is able to
prune};
9: else
10: Add D to Q {sufficient condition fails, and D is not
pruned};
11: end if
12: until P’ = {}

PSR

the signs of these sensitivities, they were set at random, again in
order to better test the limits of our approach (as the sensitiv-
ity signs are made less correlated, one would expect to see more
non-redundant hyperplanes).

Two of the ISCAS-85 circuits were excluded from the analysis,
for the following reasons. Modern circuits are not very deep, i.e.,
they do not have a large number of logic levels between registers.
This is a result of high clock frequencies and heavy pipelining.
Thus, the number of input-output paths is not as large as it was
in older circuits that may have had 40-50 levels of logic. Given
this, and given our extreme settings of the sensitivities, we have
encountered unrealistically large dominant hyperplane counts in
c1355 and ¢6288, and we exclude these circuits from the results.
Given more realistic (less extreme) settings of the sensitivities,
even these circuits would be manageable. Indeed, for c1355, if
the sensitivity signs are all set to be the same, then the analysis
completes easily with 174 dominant hyperplanes at the circuit pri-
mary outputs. For c6288, if the range of variations is reduced to
5% and the sensitivities are made equal, then again the analysis
completes quickly, with only 68 non-redundant planes at the out-
put. In any case, we now present the results, under the extreme
settings for sensitivity, on all the other circuits.

We test our approach using the following flow: run PRUNE_LB
on every node in the timing graph and then apply PRUNE at the
primary output to determine the exact number of non-redundant
hyperplanes. For comparison, we also test the equivalent flow
from [5]: run PAIRWISE on all nodes and then apply FEASCHK
at the primary output. Table 1 shows the results, where we re-
port the number of hyperplanes reported at the primary output by
the sufficient condition (PRUNE_LB and PAIRWISE), the num-
ber of non-redundant hyperplanes found at the primary outputs
after exact pruning (PRUNE and FEASCHK), and the total run-
times. For example, for circuit c432, the number of hyperplanes
propagated by PRUNE_LB to the primary output is 1481, from
which only 639 hyperplanes are found to be non-redundant by
PRUNE. The overall runtime is found to be 128.49sec.

We can draw several conclusions from Table 1. First, it is
clear that the proposed approach is practical and offers the hope
that the timing of the circuit across the whole PVT space can
be provided for use by downstream tools. Secondly, note that
what determines whether a circuit is harder or easier to analyze
is not the number of gates in the design, but the number of hy-
perplanes that are non-redundant, i.e., the number of potentially
critical paths; this depends on circuit topology. While c7552 is
much larger than c432, we find that the latter takes more time
to analyze as the resulting number of non-redundant hyperplanes
is much larger. Notice that even under the extreme sensitivity
settings, described above, most circuits have a reasonably small
number of non-redundant hyperplanes at their outputs, which is
in-line with the observations in [5] where the number of poten-
tially critical paths was shown to be manageable for most circuits.
For easy circuits, the performance of our method is comparable

Table 1: Summary of hyperplanes at primary output and Run-times for (1) PRUNE_LB + PRUNE and (2)

PAIRWISE + FEASCHK

ISCAS-85 || PRUNE_LB || PRUNE | Run-time || PAIRWISE || FEASCHK || Run-time

Circuit Result Result (sec) Result Result (sec)
c432 1481 639 128.49 1114 639 338.25
c499 1918 520 156.09 1539 520 229.75

c880 16 12 0.62 16 12 0.57

c1908 63 37 2.09 46 37 2.24

c2670 556 126 18.32 270 126 18.85

c3540 60 30 2.80 56 30 3.55

c5315 18 12 2.22 12 12 2.12

c7552 14 9 3.67 11 9 4.57

0 21771 sec at the primary output before calling PRUNE to determine the

— exact number of non-redundant hyperplanes.

[J PRUNE_LB
PAIRWISE

30

20

Time (sec)

c432

c499 c880 c1908 ¢2670 c3540 ¢5315 c7552

ISCASSS5 Circuit

Figure 5: Comparison of PRUNE_LB and PAIR-
WISE Algorithms

to [5], while for harder circuits, such as ¢432 and c499, our ap-
proach becomes faster.

Another metric to look at is the quality of pruning by the suf-
ficient condition PRUNE_LB, and a comparison of that to PAIR-
WISE of [5]. As explained earlier, both algorithms are applied
on every node in the test circuits until the primary outputs are
reached. Table 1 shows a comparison of the two pruning tech-
niques in terms of how many hyperplanes they report at the pri-
mary outputs, as shown in the second and fifth column. For
example, PRUNE_LB and PAIRWISE report 1481 and 1114 non-
redundant hyperplanes at the primary output of circuit c432, re-
spectively, while the exact number of non-redundant hyperplanes
is 639. Notice that the PAIRWISE algorithm typically yields re-
sults that are closer to the exact solution. However this advantage
of PAIRWISE comes at a runtime disadvantage when compared
to PRUNE_LB, as can be seen in Fig. 5. This is particularly true
for c432, c499, and ¢2670, which are harder circuits compared to
the rest of the test circuits. For example, although the number of
hyperplanes reported by PRUNE_LB for circuit ¢432 is slightly
larger than that reported by PAIRWISE, the actual speed up is
44x. Also notice that the performance of the two methods, in
terms of both runtime and quality of pruning, is comparable for
all other easy cases where the number of hyperplanes seen at the
output is smaller.

Finally, we draw the reader’s attention is to circuit c2670 in
Table 1, where the total run-time for both flows is comparable.
This is due to the fact that PRUNE_LB predicted 556 hyperplanes
to be reduced by PRUNE, whereas PAIRWISE predicted only 270
hyperplanes to be reduced by FEASCHK. In a sense, the speed up
achieved by our sufficient condition, shown in Fig 5, is lost since
our exact algorithm had to reduce a larger set of hyperplanes. In
this case, an alternative approach may be to apply PRUNE_LB
on every node, then to apply PAIRWISE for additional pruning

180

6. CONCLUSION

In this work, we have proposed an efficient block-based param-
eterized timing analysis technique that can accurately capture
circuit delay at every point in the parameter space, by reporting
all paths that can become critical. Using efficient pruning algo-
rithms, only those potentially critical paths are carried forward,
while all other paths are pruned during propagation. After giv-
ing a formal definition of this problem, we have proposed (1) an
exact algorithm for pruning, and (2) a fast sufficient condition
for pruning, that improve on the state of the art, both in terms
of theoretical computational complexity and in terms of run time
on various test circuits. Our work has also established a link be-
tween the pruning problem in the parameterized timing domain,
and two standard problems in computational geometry.

7. REFERENCES

[1] H. Chang and S. S. Sapatnekar. Statistical timing analy-
sis considering spatial correlations using a single PERT-
like traversal. In IEEE/ACM International Conference on
Computer-Aided Design, pages 621-625, San Jose, CA,
November 9-13 2003.

C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and
S. Narayan. First-order incremental block-based statistical
timing analysis. In Design Automation Conference, pages
331-336, San Diego, CA, June 7-11 2004.

A. Agarwal, D. Blaauw, and V. Zolotov. Statistical tim-
ing analysis for intra-die process variations with spatial
correlations. In IEEE/ACM International Conference on
Computer-Aided Design, pages 900-907, San Jose, CA,
November 9-13 2003.

S. Onaissi and F. N. Najm. A linear-time approach for static
timing analysis covering all process corners. In IEEE/ACM
International Conference on Computer-Aided Design, pages
217-224, San Jose, CA, November 5-9 2006.

S. V. Kumar, C. V. Kashyap, and S. S. Sapatnekar. A frame-
work for block-based timing sensitivity analysis. In Design
Automation Conference, pages 688-693, Anaheim, CA, June
8-13 2008.

S. P. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

F. P. Preparata and M. I. Shamos. Computational Geometry:
An Introduction. Springer, 1985.

T. Ottmann, S. Schuierer, and S. Soundaralakshmi. Enumer-
ating Extreme Points in Higher Dimensions. Nordic Journal
of Computing, 8(2):179-192, 2001.

K. R. Heloue and F. N. Najm. Parameterized timing analysis
with general delay models and arbitrary variation sources. In
Design Automation Conference, pages 403—408, Anaheim,
CA, June 8-13 2008.

[10] MOSEK - http://www.mosek.com/.

(2]

(3]

[5]

[6]
[7]
(8]

	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

