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Abstract—Process and environmental variations continue to (SSTA) is one example of PSTA, in which parameters are
present significant challenges to designers of high-performance modeled as random variables with known distributions and
integrated circuits. In the past few years, while much research ha correlations [1], [2], and timing vyield is estimated from
been aimed at handling parameter variations as part of timing ! o . .
analysis, few proposals have actually included ways to interpret the correspondlng ,d's”'t_’“t',o” .Of circuit delay. _ln praeti
the results of this parameterized static timing analysis (PSTA) however, the statistical distributions and correlatiohsame
step. In this paper, we propose a new post-variational analysis PVT parameters may be unknown or unavailable. Also, some
metric that can be used to quantify the (timing) robustnessof parameters, such as supply voltage or temperature, are not
designs to parameter variations. In addition to helping designers truly random and are better modeled as simply unknown or

diagnoseif and when different nodes can fail, this metric can - . . .
guide optimization and can give insights onwhat to fix, by uncertain variables. Thus, some alternative PSTA teclesiqu

identifying nodes with small robustness values and proceeding have also been proposed, such as multi-corner static timing
to fix those nodes first. Inspired by the rich literature ondesign analysis (MCSTA). MCSTA models parameters as uncertain
centering, tolerancing, and tuning(DCTT), we use distanceas variables within given or known bounds, and attempts tafyeri
a measure for robustness. Our analysis thus determines the circuit timing at all corners in a single timing run [3], [4].
minimum distance from the nominal point in the parameter Alth h the circuit delay i tured tel tth’slv
space to any timing violation, and works under the assumption oug € circuit delay Is capture f”lccura ely at the ,or .
that parameters are specified as ranges rather than statistical Cas€ corner, the same cannot be said about other points in
distributions. We demonstrate the usefulness of this distance- the parameter space. Recently, some PSTA techniques ]5], [6
based ro_bustness metric on circuit blocks extracted from a have addressed this limitation by proposing to capture, in a
commercial 45nm microprocessor. single timing run, circuit delayexactly at all points in the
|. INTRODUCTION PVT space. This can be done by propagating in the timing
With the continuous scaling of integrated circuits, thgraph all the paths that can become dom'”am (critical) nt an
. setting of the PVT parameters, and pruning all other redainda
control over process and environmental parameters Ha . :
b . X - paths. In any case, the end result of all PSTA techniques is to
ecome increasingly difficult. As a result, PVT (proi =~ . : . L B
.. provide designers with parameterized timing quantitiesua
cess/voltage/temperature) parameters are found to eldnigpe . . .
e . ) : . tI{nes and/or slacks) which are expressed as functions of PVT
deviations from their nominal values, which causes circui
- . - . parameters.
delay variations and possibly timing failures. Therefarae
needs to account for variability as part of the timing veri- .
fication step. For ASICs, corner case analysis is traditioﬁ-‘ Scope of This Work
ally used, whereby timing is verified at all process corners While a large body of research has focused onahalysis
corresponding to extreme settings of PVT parameters. Fiep, very few proposals have presented clear answersyior ho
microprocessors, the resulting chips are typically “bufihat to interpret and utilize the results of PSTA in design. The
different frequencies to account for variations. In theerdgc crux of the matter, and this is what motivated PSTA in the
past, this problem has become worse because, not only hasfitts¢ place, is that the goal is to producesafe design, in
number of parameters subject to variations increasedinigadthe sense that it must rebustto variations. In order to do
to a larger number of corners, but also the within-die (Ipcathat, an essential requirement is to be ablenteasurethe
variations have become more significant, and they cannot sefety or robustness of a given design, i.e.sitsceptibility to
handled using traditional corner analysis. timing failure due to variations. But how does one formally
With the traditional approaches to timing verification bedefine robustness? How does one quantify the susceptitality
coming too expensive and unable to handle local variatiorfajlure and determine how far a nominally safe design is from
new alternatives have emerged in recent years. These tetle “edge of the cliff”? Finally, what does one need to do in
nigues have focused on assessing the effects of parameteler to improve the robustness of a given design? One way to
variations on timing as part of the timing analysis stemguantify robustness, which is used in SSTA, is to use thenoti
All these techniques consider circuit delay to be dependasftyieldto assess the safety of timing quantities. Indeed, timing
on a number of PVT parameters, and therefore can ield is one measure of robustness - it provides designehs wi
collectively described under the heading parameterized the probability of meeting/violating the timing constr&n
static timing analysi§PSTA). Statistical static timing analysisHowever, yield analysis via SSTA requires that all paramsete



be modeled as random variables with known distributions
and correlations. As we noted earlier, the distributiond an

correlations of PVT parameters may not always be available ! oo 2 %
or fully specified. Hence, for those PSTA techniques where 3

parameters are e_it_hé) modeled__as uncerta_in _(nor_l-random) (a) Inverter (b) 3-input OR
variables in specified ranges, @ where distributions are

unknown or unavailable, we need to define some other metric di ATy d"fa

which can be used to assess the robustness of timing geantiti ATi O———0 AT, AT O— 330 AT,
resulting from these methods. One possible way of doing that ATs

is to use thevolumeof the feasible region as a measure of

robustness. As part of their work on yield prediction, the Fig. 1. Timing graphs for (a) Inverter, and (b) 3-input OR gate
authors of [7] have proposed two techniques for approximgati

the volume of the feasible region, tiparallelepiped method first. We also show that our robustness analysis can handle
and theellipsoid method However, it was found that, while parameterized timing quantities resulting from eithercéXa),

both techniques are accurate, they may not scale well with ] or bounded/approximate [3], [4] PSTA techniques. Also,
number of PVT parameters or the number of paths. Thus, tieigr metric is computed efficiently and scales well (linear

approach can be costly on large designs. complexity) with the number of PVT parameters and the
] number of paths.
B. Overview The rest of the paper proceeds as follows. Section Il covers

In this paper, we hope to answer some of the above opgpme basic terminology and describes how parameterized
guestions as we present a new metric that can be usediming quantities are represented in PSTA. In Section I, w
guantify the (timing) robustness of a design to variations inover robustness analysis in detail, first by comparing the
the case where parameters are given as ranges rather tlyan figtions of robustness and sensitivity, and then by defining
specified distributions. Our methqatocesseshe parameter- robustness using normed distances in higher dimensions. We
ized timing quantities resulting from PSTA so as to extrashow some results in Section IV and conclude in Section V.
useful information about the susceptibility to timing tais.
We will define robustness as the minimudistance from the
nominal point in the PVT parameter space, to any other pointWe will review the terminology used in static timing
where a timing violation occurs. Such distance-based osetranalysis (STA) and describe how STA is extended to handle
have been used in a different context in the realm of desiff¥T variations as part of parameterized static timing asialy
centering, tolerancing, and tuning (DCTT) [8], [9]. In DCTT(PSTA).
optimal nominal values for somedesignable parameterare
selected so that thdistancefrom the nominal point (center
point of the design) to the boundary of theceptability region  In static timing analysis, the circuit under study is repre-
is maximized in the hope of maximizing the process yiel@ented as a timing graph by creating a graph node for every
Traditional DCTT operates in the space of design parametegtectrical net in the circuit (primary input, output, orental
whereas our distance metric is measured in the PVT paramdtefle) and a graph edge for evetiyning arc (logic gate
space. It is also important to note that design centering hagut/output pair). The weight of every edge correspondbéo
only been traditionally applied to small, typically analogdelay value from that input pin to the output pin. Taeival
circuits, not to large digital integrated circuits; thishiscause time at the output of a gate is computed first &giding the
it relies on expensive statistical simulations to detegniime input arrival times to their corresponding timing arc delay
acceptability region of the design parameters, not to roanti(édge weights), and then taking tmeax over the result of
that the number of those parameters increases with ciiigeit s those additions. This procedure is repeated while topotdigi
We will see that, in our use of a distance metric in PVT spacéaversing the timing graph and computing the arrival tiraes
these complications do not arise and the resulting apprisactevery node.
computationally efficient. Fig. 1 shows the timing graphs for two simple logic gates,

Thus, the novelty of this paper is in its proposed applan inverter and a 3-input OR gate. The edge weight,
cation, where we extend the use of such distance metricsc@responds to the arc delay from inpub the output. Since
the timing verification of large logic circuits, which, to 1ou the inverter has one input, the arrival timé() at its output
knowledge, was never done before. Using this new distand@-Simply:
based robustness metric, designers can not only diagnose if AT, = AT, + dy, 1)

and when d|.ﬁ‘erent nodes can fail timing, b.UI also get InJs@l}or the OR gate, its output arrival time is the maximum of the
on what to fix In fact, our robustness metric can be used o

evaluate design quality and to guide optimization by ragkinzl;:?l c;f. its three input arrival times and their correspondirg
different nodes according to their robustness, thus itiend ys:

3
the least robust nodes and proceeding to fix those nodes AT, = max(AT; + dio) )

Il. PRELIMINARIES

A. Nominal Static Timing Analysis



(e.g. Gaussian) to model the parameters, other PSTA tech-
niques [3]-[6] model them amcertainvariables that are spec-
ified in given ranges. We will adopt this more general model,
based on uncertain parameters, because the distributimhs a
correlations of some PVT parameters may be unknown or
unavailable in practice. For simplicity, and without losk o
generality, we will assume that the variation range of every
uncertain parametekX; is normalized to[—1,1]. Following
standard terminology, the linear model in (4) will be reéetr
to as a delayhyperplane

Because path delay is the sum of gate and interconnect delay
hyperplanes on that path, it is also modeled as a hyperplane.

Fig. 2. Parameterized Arrival Time However, arrival times are not simply hyperplanes because,
] ] ) ) when different paths converge at a node, a (nonlinezax

While arrival times are computed during forward propagperation must be performed to determine the arrival time at
gation in the timing graphrequired times(RT), which are ihat node. For example, consider Fig. 2, wheie Ao, and A
defined as the latest acceptable arrival times that would ri@bresent path delay hyperplanes. For purpose of illisirat
viola_te the t?ming constraints, must be computed based Qsingle parameteX;; is considered, so that the hyperplanes
the information downstream, and thus require a backwagds simply straight line segments. The dashed piecewisarlin
propagation from the primary outputs. For a node to paggction (in general piecewise planar) resulting from thexm

timing, its arrival time must not exceed its required timeperation corresponds to the exact representation of tialar
The concept ofslack which is the difference between thejme as:

required time and the arrival time at a node, is generallguse
as a measure of how close a node is to violating its timing
constraint. In general, we require the slagko be positive:

AT = r[lELX(AAl7 AQ, Ag) (5)

where theA;’s have the form in (4).
S=RT—-—AT >0 (3) A similar piecewise planar function representing tinén
operation arises when one is dealing with parameterized
In nominal static timing analysis, all the above timingacks. For example, consider the circuit in Fig. 3 having tw
quantities AT, RT, S) are computed under the assumptioRrimary outputs at registet®; and R». The arrival timeAT}
that process and environmental parameters - and conséquestt the data input of registeR; is represented by a piecewise
timing arc delays which depend on these parameters - l8nar surface, say7T; = max(A;, A5, A3). Note however,
fixed, typically at either theirnominal or corner values. that the required timeRT; at the data input of?; is not a
However, due to the increasing significance of variabilitynax surface but a (single) hyperplane. This is because we are
parameterized static timing analysis (PSTA) technique hagssuming that the arrival time at the clock inptt, is the
emerged, with the goal of handling parameter variations gglay hyperplane corresponding to a clock tree path. Hence,
part of the timing analysis step. the parameterized slack , at the input of registeR; will be
i o ) given as a minimum of a set of hyperplanes, as follows:
B. Parameterized Static Timing Analysis
A key component of any PSTA technique is thelay model Sy = RN - ATy (6)
that captures the dependence of gate/interconnect defayre o RTy — max(Ay, Ay, As)
underlying process and environmental parameters. Fidgro .
linear delay models are often used in the literature, ang the R_Tl +min(=Ay, — 4z, —As)
generally capture well this dependence. Under such a linear = min ((RTy — A1), (RTy — Az), (RT} — A3))
model, the delayD of a timing arc is expressed as:

where we have used the fact thatx(a,b) = — min(—a, —b).
P A similar reasoning follows for the parameterized slatkat
D =d, + Z di X (4 the input of registeR,. As a result, the minimum slack for
=1 this circuit, being the minimum of all parameterized slaeks
where d, is the nominal delay value and; is the (first- registers inputs will also be represented as a piecewisepla
order measure of) sensitivity to paramef€y. Note thatX; surface defined by the min operation above.
can represent the variation of any parameter, such as chann&Vhile some PSTA techniques [5], [6] capture exactly the
length, supply voltage, or temperature. Also note thatnd piecewise planar surfaces representing the nonlinear méx a
the d;’s are determined during library characterization. min operations, other techniques [3], [4] approximate and/
Another component of PSTA is the model for the PV'bound those operations using a single hyperplane. In genera
parameters. As noted above, while SSTA techniques [1], [Bpth exact and approximate PSTA techniques result in timing
use random variables with known probability distributionguantities (arrival times/slacks) being parameterizeduas-
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Fig. 3. Slack Computation Fig. 4. Sensitivity and Robustness
tions of the PVT parameters, as follows: As an example, Fig. 4 shows a comparison of two param-
eterized slacksS;(X) and S5(X), where we have assumed
ao+ 30 a; X, approx. PSTA 51(X) 2(X)

a single parametek, varying in [0, Xy,ax]. Fig. 4a shows a
maxj_; (ao; + 31—y ai; Xi), exact PSTA  caqe where the slack with the larger nominal value turnsaut t
(7) be less robust. In fact, althoughy (0) > S>(0), S1(X) fails
S(x) {so +37 s X, approx. PSTA ;before” SQ(X)(,i bepause IIthe \éaluatla oXh for vlvhichfsj‘é(?()
= n p ecomes zerod;, is smaller thand,, the value o or
minj_, (soj + 37—y 815 X:), exact PSTA which S5(X) becomes zero. In this case, the more sensitive
(8) slack turns out to be the one that is less robust. On the other

wheren is the number of hyperplanes that define the piecewi§@nd. Fig. 4b shows a case where the opposite happens: even

X; < 1 for all i. more robust. This is becausg(X) does not fail in0, X ax],

while S3(X) fails for X = d,. Therefore, while robustness
[1l. ROBUSTNESSANALYSIS is related to thesusceptibility of a node to violating timing

Although parameterized expressions of timing quantitées ysensitivity is related to the magnitude of timing deviation
sulting from PSTA are very useful, they do raitectly provide Per unit parameter variation, irrespective of whether ot no
a metric of robustness of these timing quantities to vamsti timing is actually violated. Thus, a node having the larger
Some furtherprocessingof these expressions is required, t§ensitivity yet not failing anywhere in the parameter space
extract this information. We are interested in transfognin’S ‘more robust” than a node having smaller sensitivity, yet
complex expressions of PVT parameters, such as (7) and (8ling somewhere in the parameter space.
into a measurable or quantifiabtebustness metricin this ~ In order to fully capture the notion of design robustness,
section, we first define such a metric as a measure of how cl¥4 need to somehow make use of both the nominal values
a node is to violating its timing constraint. We also Compa,@ndthe sensitivities, in relation to the threshold where tignin
robustness and sensitivity and highlight the subtle difiee failure occurs.
between the two notions. Finally, we present our mathelati
formulation for robustness analysis and describe our dhgor

AT(X) = {

%. Quantifying Robustness

o For the simplified scenario shown in Fig 4, one can define

A. From Sensitivity to Robustness robustness as simply the value &f for which timing is

Suppose that one is comparing two design realizatiom®lated. This would be a good metric to use because it is
of the same circuit, for which PSTA has provided the twquantitative; it would allow one to conclude, for exampleatt
different parameterized slacks at some nodg(X) and S, is more robust tha$; wheneverd, > d,. However, in the
S2(X). Alternatively, suppose thaff; (X) and S2(X) are the general case where several parameters are varying, ané wher
parameterized slacks at two nodes of the same design. Eitharameterized timing quantities are piecewise planaases,
way, we are interested in comparing the robustnes$;0X) each with a different set of sensitivities, things can geteno
and S (X). If, at the nominal pointX = 0, it turns out that complicated. For one thing, finding a setting for the paramet
S1(0) > S2(0) > 0, then one might be inclined to assumevector X where timing is violated is not as simple as finding
that S; is more robust tharb, because it is larger, and thusthe z-intercept in Fig. 4, and requires a search in a higher-
variations would seem to affect it less adversely. Howeés, dimensional space. Furthermore, there could be be many such
is not always true, as it may turn out th$i is moresensitive settings, making it hard to judge which one to use as a measure
to variations thars, and consequently more prone to failureof robustness.
Hence, sensitivity is an important measure that is closely t 1) Distance-based Metric:We propose that a distance-
to robustness. based metric is a good choice for robustness analysis. fBpeci



A X A X A % S(X), however, the same analysis can be easily applied to
the case of parameterized arrival times. Recall $@X) is

i% defined in (8) as the minimum of hyperplanes:
1 X4 1 )iw 1 >£1

wheren > 1 (for approximate PSTAp = 1), and where:

(a) Lo-norm (b) L,-norm (c) L;-norm p
57(X> :soj""_zsinia j:l,...,n (10)
=1

Fig. 5. Unit Ball in different norms
cally, we define the robustness metric asntisimum distance We also assume that this set of hyperplanes has already
from the nominal poinin the PVT parameter space to anyeen reduced using pruning techniques, such as in [5], §6], s
point where a timing violation occurs. Distance can easiljpat every hyperplané;(X) can become the minimunge.,
abstract the large dimensionality of the problem by présgnt S(X) = S;(X), for someX.

a simple quantifiable measure that can be computed with littl With the above expressions for slack, the space where

effort. By measuring distance frothe nominal point, we are timing is satisfied,C, is defined byS(X) > 0, which can

implicitly assuming that the nominal design is feasible,,iit be expressed as a convex polytope (intersection of linear

meets the timing constraints. Thus, the minimum distance ¢onstraints) by replacing(X) by its expression in (9), as

any timing violation reflects the smallest (magnitude) déen the minimum ofn hyperplanes:

from the nominal point that would “break” the design. »
In fact, such distance-based metrics have been used in tpe_ {X ‘ S (X) = s05 + ZSiJ’Xi >0, j=1,... )n}

past as part of design centering for yield maximization [8]- P

[10]. The goal of design centering is to determine the optima (11)

nominal settings of thedesign parameterswhich are con- Also, we assume that the ranges &f's are normalized to

strained to satisfy performance specifications in the mese [—1,1], so that the parameter spac®, is defined as the

of tolerances. These nominal values (which define the centeflowing p-cube:

point of the design) are optimized such that thstance from .

the design center to the boundan§ the acceptability region D= {X ‘ —l<Xi<1, i=1,... »P} (12)

is maximized, n the_hope of maximizing yield. Distance Iﬁ'herefore, the intersection @f with D corresponds to alX

therefore used in design centering as a measure of safetg, si

the more “distant” the center is from the boundary, the hlghIn D for which timing Is met,.e ’S(X) 20 Wg refer to this
) . . N D as thefeasible regionAs mentioned earlier, we assume
is the expected yield. In our case, where we work with P

: that the nominal design is feasible (meets timing), so that t
parameters, rather than design parameters, we do not try 10 . . 2 . .

; . . e ngminal pointX = 0 is inside the feasible region. If one starts

recenter our design so that distance is maximized. Instea . .

at the nominal point and moves outward, then two cases may

we only use distance as a measure of how robust a timinﬁ : .
uantity (or a design) is in the face of PVT variations Intfaca se. Either the boundary af is encountered and crossed
q ' first at which point timing is violatedi.g., S;(X) < 0 for one

in our problem, the nominal PVT point is fixed, as well as . :
o . : : or morej), or the boundary oD is encountered and crossed
the ranges of variation, whereas in design centering, theesp

) . first, at which point the range is exceedée.( |X;| > 1 for

under study is that of the design parameters, whose nomina ) . Il .
- Qne or morej). For robustness analysis, we are interested in

values, as well as tolerances (ranges) are to be determined. - . . . )

e minimum distance from the nominal point to any point

C. Mathematical Formulation within the rangeD at which timing is violated. Therefore, we

In this section, we present the mathematical formulation 8Le interested in the minimum distance to the boundarg, of

our robustness analysis by meansnofmed distanceto the obviously prov@ed thati(X) fails somewhere insid®. .
boundary of the region where timing is met. 2) Normed distance to a hyperplan&/e want the mini-

. . ; distance to the boundary of the convex polytGpde-
1) The Feasible Spacein general, given a parameterized, um : S i
timing quantity 7(X), we define its robustness, as the Cg;]ed by the set of, linear constraints in (11)5;(X) > 0, ¥J.

minimum distance (using some vectwrm) from the nominal The b9undary corresponds #ohyperplanesh;, j = 1,...,n,
PVT point, X = 0, to any point in the PVT space wheTg X) where:

violates timing. Recall that we have assumed in Section II-B h;y + S;(X)=0 (13)
that PSTA has already been used to analyze the design, and »

that parameterized slacks(X) and/or arrival timesAT'(X) . Z 51, Xi = —So (14)
are available. Each timing quantity is either a hyperplane o P

a collection ofn hyperplanes defining a piecewise planar . a;*-FX = b, (15)

surface, as shown in (7) and (8). In the analysis that follows
we assume that one is dealing with parameterized slackberea; is the vectora! £ [s1; so; -+ sp;] andb; 2 —s,;.



Let d,,(X,, h;) be the distance, in an arbitrary vector norm N N

[IX]|, from a pointX, to the hyperplané:;. This so-called 1 1
normed distancean be expressed in terms of the norm’s unit $ $
ball, B, = {X | || X| <1}, as follows [11]:
(
dn(Xo, hj) = min{|A| | (X, + M\B,) Ny # 0} (16) > N - Lo sy,
Therefore, in order to determine the normed distance figm
to h;, one needs to dilate the unit ball Byaround.X, until S >
it touchesthe hyperplane. Fig. 5 shows different unit balls
Bz, B, and B; (in 2-D) for the Ly-, Lo.-, and L;-norms, (a) Lo-normed distance (b) L., -normed distance
respectlvely, where: Fig. 6. Robustness Analysis
Lo-norm = [ X|, = 17) If the above.expression ig positive, it simply means ﬂi\éal(')
does not fail anywhere in the parameter space and, in that
» case, we set = oo. Nodes withr = oo are the most robust
Log-norm = [ X[, = max | X;| (18)  since they are not prone to timing violations anywheredin
p
Li-norm = | X[, =) |X)] (19)  Algorithm 1 r — Find_Robustnesss(X))
=1

] ) ] Input: S(X) = min(S1(X),...,S.(X))
The normed distance in (16) can also be expressed in terms  whereS;(X) = so; + >, 5:;X;

of the dual norm|| X ||*, as follows [10], [11]: Output: 7 € R
aTX, b 1 if (S(0) < 0) then
N 195 Ao — 0y 2: return r=0
dn(Xo, hj) = l|a;]* 20) 3 erse if (m)gn{S(X)} > 0) then
where the dual norm iBu||* = sup{uTv ] ||lv]| < 1}. For the g elsreeturn reee
Ly-norm || X|,,, defined by: 6 = oo
1 7. for (j=1,...,n)do
P 8: Sj(X)IOthZS?XZ—SOj
i, = () I
_ ' 10:  if (r; <7)then
the dual norm is the ,-norm ||X||q, such that: 11: r=r,
1 1 12: return r
S-=1 (22)
p q N
Note that theL,-norm is self dual, and that the; and L. If both these corner conditions are not met, th&QX)

norms are duals of one another will fail somewhere in the parameter spafe In that case

Therefore, using the very simple normed distance exprddn€ 5), we first setr = oo (or some upper bound value).
sion in (20), we can efficiently determine the distance (ih"€N. We compute the normed distancg, from the nominal
any L,-norm) from the nominal PVT poink = 0 to every POINt X = 0 to the (boundary) hyperplank; defined by
hyperplaneh; defining the boundary of, and record the ©(X) = 0. To do that, we use the formula in (20) for
smallest such distance as the robustness metriof S(X).  SOme choice of,-norm and its corresponding dusj,-norm.

3) Algorithm and lllustration: A description of the algo- Typically, Ly-normed distances are mostly prevalent in the
rithm, Find Robustness, is shown in Algorithm 1. It takes al{érature on design centering, with some use /of-norm
input a parameterized slack(X), and returns its robustness(and its correspondind., dual norm). This is done for all
r, as defined above. The algorithm starts by checking t@undary hyperplanes;’s, and the smallest value of; is
corner cases. First, the nominal slack is checked, at tigeorded as the robustnessfX) (lines 10-11).
nominal pointX = 0 (line 1). If S(0) < 0, then the nominal ~ Fig. 6 is a simple 2-D example depicting graphically how
slack violates timing. In that cas& = 0 is not feasible, and robustness analysis works, when both fheand L., norms
we simply setr = 0. Nodes withr = 0 are the least robust are used. Note that the parameter space is defined by the
because they violate timing even before considering pamesquare region where the two parameters are restricted yo var
variations. The second corner case to check is whether tRhe—1 < X1, X2 <1, and the feasible space where timing is
minimum value (overX) of S(X) is positive (line 3). Since Met is defined by the grey triangle-like region that contains
S(X) is the minimum ofS;(X)'s and—1 < X, < 1, this can the nominal PVT pointX = 0. The striped region outside the
be easily checked as follows: boundary of the feasible space is the region where timing is

» violated. Fig. 6a shows the robustness, computed inLo-
min {S(X)} = min {Soj _ Z |511j|} (23) horm. This is equivalent to inflating ah,-normed unit ball
X j=1 P (disk) aroundX = 0 as shown, until it touches one of the
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D. Unbiased vs Biased Analysis 9

The robustness analysis presented so far has assumed (thet'f"), and channel length for both NMOS and PMOS
the PVT parameters are uncertain variables given in rang#yices (., andL,). In addition,L,, and L, are each divided
and having equal spreads (assumed to be [-1,1]). As a resiito two types, based on whether the device is nominal or
the analysis implicitly gives equal weights to all possibléow power, and further into three types based on layout
directions in the space. This option would be the most app;@ependent information. Parameter variations are assumed t
priate if absolutely no additional information is known abo be independent, so a total different PVT parameters were
parameter variations and their interactions. We will refer considered in the analysisgX for L, MCF, and V). In
this type of analysis asnbiased analysisOn the other hand, our robustness analysis, thig-norm was used to compute
if additional or partial information is available, whethieris ~ all normed distances from the nominal point to the boundary
from historical data or from process experience, then onélco hyperplanes, as is typical in design centering.
make use of this information so as twas the robustness We ran both exact and approximate PSTA on different
metric computation. For example, if parameters have differ microprocessor blocks and have determined parameterized
Spreads, then one can use a Sca“ng (diagona|) matrix te scrival times at every node and parameterized slacks at the
the norm itself and compute the distance-based metric in ti@uts of all registers in the blocks. Our robustness aiglys
new scaled norm. Also, if it is observed that certain paranset was then applied on the parameterized slacks to quantify the
exhibit somecovariance that is, if certain parameters are’obustness, as described in Section Ill. Recall that we have
likely to vary in the same (or opposite) direction, then ongormalized the variation range of every parametef-to, 1],
can rotate the norm by a nondiagonal scaling matrix. It &d have considereti parameters. Therefore, if a slack fails
shown in [10] that, given any (diagonal or nondiagonal)isgal somewhere in the parameter space, then its robustnessst
matrix W, the scaled norm is given byX||;,, = ||[W~1X||, fall betweenryi, =0 andrua.. (based only-norm), where:
and its scaled dual norm is given B |3, = ||W? X||. Both
unbiased and biased analyses are depicted in Fig. 7, where (b
we have scaled the unbiaséd-norm by reducing the range
of X5, and (c) have rotated the norm B§°, emphasizing the

of all failed slacks for one microprocessor bloaikt 1. It

IV. RESULTS provides a ranking of all failed slacks according to where

In this section, we present the simulation results that weire the range[0, 3.74] their robustness falls. Looking at the
obtained on atsnm commercial microprocessor design. Twglot, it makes sense to start by fixing the slacks that have the
parameterized static timing analysis flows were implengntemallest values of robustness, since those are the ones that
in C++ on top of an STA timing engine. The first is an exacare most prone to failure. In general, it is useful to have a
PSTA flow that parameterizes timing quantities in the form abbustness threshol®,.,.;;, such that all slacks with robustness
piecewise planar surfaces (collection of hyperplaneshddfi less thanR.,.;; would be considered critical and thus fixed.
by the max or min operations described in (7) and (8). Théote thatR.,.;; does not have to be large since one is interested
exact PSTA implementation is based on the pruning techgique detecting the slacks that are failing forsanall deviation
of [5], [6]. The second flow is an implementation of the aparound the nominal point, at least for microprocessors.
proximate PSTA technique of [4], which parameterizes every Fig. 9 shows a plot of nominal slack vs robustness for
timing quantity as a single hyperplane. For both flows, weifferent nodes. Slack values were normalized, afdhodes
have considered global variations in four different par@me with very similar nominal slacks were picked (as shown). We
types, namely supply voltagé/{;), Miller Coupling Factor have also assumed, for purpose of illustration, that if aksla
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D (#1)2~3.74 (24)
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Fig. 10.  Ranking nodes according to their robustness - ER&IA vs
goes belowd0% of its nominal value (due to variations), thenf\pproximate PSTA
this woyld be cpnsidered a timing failure: In other words, V. CONCLUSION
we're simply using90% of nominal slack instead of as
the threshold for failed slack. Based on this slack thresho ) o .
we have computed the robustness of the different slacks d_used to quantify the vulnerability of designs to paramete

plotted nominal slack vs robustness. As shown on the pléfﬁ”?‘“o.”s- Our robustness metric prowdeg a novgl way 0
robustness values fall if0.05, 0.6], which is a large spread easily interpret the results of parameterized static tmin

given that the nominal slacks are almost the same. In fagﬂalyss byi) determining if _and when_ nodes can fz_a_|_i)
if one had no access to robustness information, all the ranking those nodes according to their robustness, ignd

slacks wouldseemto be equally robust looking only at theirﬁxmg the ones that are least robust. Using distance as the

nominal slack. However, after factoring in our quantifiabl%netric for robustness, we find the smallest normed distance

robustness metric, one can easily determine which nodes 5?{” the nominal point in the parameter space to any timing

the most susceptible to variations. In a sense, the cirtheits V'0/ation, which can be computed efficiently using closearfo
are closer to the edge of the clifhan the ones with larger SXPressions.

In this paper, we presented a new robustness metric that can
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