
Early P/G Grid Voltage Integrity Verification∗

Mehmet Avci
Department of ECE
University of Toronto

Toronto, Ontario, Canada
mehmet.avci@utoronto.ca

Farid N. Najm
Department of ECE
University of Toronto

Toronto, Ontario, Canada
f.najm@utoronto.ca

ABSTRACT
As part of power delivery network verification, one should check
if the voltage fluctuations exceed some critical threshold. In this
work, we consider the power and ground grids together and de-
scribe an early verification approach under the framework of cur-
rent constraints where tight lower and upper bounds on worst-
case voltage fluctuations are computed via linear programs. Ex-
perimental results indicate that the proposed technique results in
errors in the range of a few mV .

1. INTRODUCTION
The feature size of modern integrated circuits (ICs) has been
dramatically reduced in order to improve speed, power and cost.
The scaling of CMOS is expected to continue for at least an-
other decade and future nanometer circuits will contain billions
of transistors [1]. As CMOS technology is scaled, the power sup-
ply voltage will continue to decrease [1]. With reduced supply
voltages and more functions integrated into ICs, the impact of
voltage fluctuation is increasing and voltage integrity is becom-
ing a big concern for chip designers.
There are many sources of on-chip voltage fluctuations, such

as IR-drop, Ldi/dt drop, and the resonance between the on-chip
grid and the package. Most available grid verification techniques
use some form of circuit simulation to simulate the grid. Such
an approach requires full knowledge of the current waveforms
drawn by underlying transistor circuitry. These waveforms would
then be used to simulate the grid and to find the voltage fluc-
tuation at each node. However, since the number of possible
circuit behaviours is very large, one needs to simulate the grid
for a large number of vector sequences at each node, which is
prohibitively expensive. Another disadvantage of the simulation
based approach is that it does not allow the designer to perform
early grid verification, when grid modifications can be most eas-
ily done. To overcome these problems, we will adopt the notion
of current constraints [2] to capture the uncertainty about the
circuit details and behaviours. Under these constraints, grid ver-
ification becomes a problem of computing the worst-case voltage
fluctuations subject to current constraints.
In the literature, the ground grid has always been assumed to

be symmetric to the power grid. In [3], the authors claim that
the power and ground grids have the same electrical requirements
and therefore the structures of these grids are often symmetric,
particularly at the initial and intermediate phases of the design.
They show that this symmetry can be exploited in a way to re-
duce the complexity of the power delivery network by an intro-
duction of a virtual ground. The resulting circuit model contains
two independent symmetric grids, and therefore the analysis of
only one circuit is necessary. However, the assumption that the
power and ground grids are symmetric is not reliable, since even
in initial stages of the design, some regions of the power delivery
network are removed to make way for signal routing. This intro-
duces non-symmetry in the grid, which might lead to erroneous
results if symmetry is assumed. We note in particular that the
presence of non-symmetry can cause the voltage on a given node

∗This work was supported in-part by the Semiconductor Research
Corporation (SRC), by Intel Corporation, and by the Natural
Sciences and Engineering Research Council (NSERC) of Canada.

Figure 1: A 5-node grid

0 20 40 60 80 100
time(ps)

0

10

20

30

40

50

60

cu
rr

en
t(

m
A

)

0 20 40 60 80 100
time(ps)

0.9

0.95

1

1.05

1.1

1.15

vo
lta

ge
(V

)

Figure 2: Current configuration resulting in voltage
overshoot for node A

of the grid to fluctuate in both directions, i.e. voltage drop and
overshoot, even for an RC grid (for an RC model of the power
grid, voltage levels can normally only be below vdd, under the as-
sumption that the circuit does not inject current into the power
grid). To see why, consider the simple unsymmetrical 5-node
grid shown in Figure 1. Figure 2 shows the current waveform
assigned to the current source in the circuit and the node voltage
at node A as a result of an HSPICE simulation. The simula-
tion shows an overshoot where the node voltage at node A goes
above vdd. Therefore, there is a necessity to verify the power and
ground grids together (i.e. a P/G grid verification), which is the
focus of this paper.
The remainder of the paper is organized as follows. In section 2,

we present the P/G grid model and formulate the problem under
the notion of current constraints. Section 3 proposes an efficient
solution for the lower and upper bounds on the worst-case voltage
fluctuations of the P/G grid. Implementation details are given in
section 4 followed by experimental results in section 5. Finally,
we conclude the paper in section 6.

2. PROBLEM FORMULATION
2.1 P/G Grid Model
We consider an RC model of the P/G grid where each branch is
represented either by a resistor or capacitor. We define the nodes
that are on the power grid as power grid nodes, and similarly, the
nodes that are on the ground grid as ground grid nodes. Resis-
tors are located between two power grid nodes or between two
ground grid nodes, i.e. no resistor exists between a power and
a ground grid node. In addition, the capacitors are located only
between power and ground grid nodes and, unlike previous work,
we assume that a node can have multiple capacitors.

978-1-4244-8192-7/10/$26.00 ©2010 IEEE 816

Figure 3: Macroblock model

One common simplification in the literature is to model the
current drawn by the underlying transistor circuitry in a logic
block as a single current source. We usually know the current
drawn by a logic block, but that logic block is usually attached
to multiple nodes in the grid. Therefore, modeling the current
drawn by a logic block as a single current source is not valid, and
yields pessimistic voltage fluctuations. In order to capture this
notion, we introduce the model of a macroblock, which groups
multiple current sources into a single block as shown in Figure 3.
The macroblock model in Figure 3 captures the true behaviour

of a logic block, in the sense that it draws current from multiple
nodes. Note that we do not require having the same number
of current sources for power and ground grid nodes. However,
for each macroblock, we have to ensure that the current leaving
power grid nodes must equal the current entering ground grid
nodes. This will be an important equality constraint that defines
the feasibility space of currents.
A simple P/G grid is shown in Figure 4. Notice that the mac-

roblock has multiple connections to the grid, and that some nodes
have multiple capacitors attached.

2.2 The System Equations
Let the P/G grid consist of n + α nodes where nodes 1, 2, . . . , n
have no voltage sources attached, and nodes (n+ 1), . . . , (n+ α)
are connected to voltage sources. Following the approach in [4],
the MNA equation that describes the network can be written as:

G̃ũ(t) + C̃ ˙̃u(t) = ĩ(t) + G̃0vdd(n) (1)

where G̃ and G̃0 are n × n conductance matrices and C̃ is an
n×n capacitance matrix. ũ(t) is an n×1 vector of node voltages
except the nodes that are connected to voltage sources. ĩ(t) is
n × 1 vector of current sources and vdd(n) is an n × 1 vector
whose each entry is equal to the value of the supply voltage. The
node voltages ũ(t) are with respect to some reference (datum)
node that is part of the ground grid.
Let h be the number of nodes in the power grid, and l be the

number of nodes in the ground grid, so that h + l = n. We
can rewrite (1) by partitioning the vector of node voltages with
respect to power and ground grid nodes, and reordering the rows
and columns of G̃, C̃, G̃0 and the entries of ĩ(t) accordingly as
follows:

∙
Gp 0
0 Gg

¸ ∙
up(t)
ug(t)

¸
+

∙
Cp N
NT Cg

¸ ∙
u̇p(t)
u̇g(t)

¸
=

∙−ip(t)
ig(t)

¸
+G0vdd(n)

(2)

Since no resistor exists between power and ground grid nodes, G̃
can be partitioned into two submatrices Gp (h × h matrix) and
Gg (l × l matrix). ip(t) (h × 1 vector) and ig(t) (l × 1 vector)
are non-negative vectors defining the current sources attached to
power and ground grid nodes, respectively. Since capacitors exist
only between power and ground grid nodes, Cp (h × h matrix)
and Cg (l× l matrix) are non-negative diagonal matrices, and N
is an h× l non-positive matrix.
If we set all current sources to 0, ∀t, then up(t) = vdd(h) and

ug(t) = 0, ∀t, where vdd(h) is an h× 1 vector whose each entry is
equal to the value of the supply voltage. For this case, the system
of equations becomes:

Figure 4: The P/G grid model

∙
Gp 0
0 Gg

¸ ∙
vdd(h)
0

¸
= G0vdd(n) (3)

SubstitutingG0vdd(n) from (3) into (2) and rearranging the terms,
we obtain:

∙
Gp 0
0 Gg

¸ ∙
up(t)− vdd(h)

ug(t)

¸
+

∙
Cp N
NT Cg

¸ ∙
u̇p(t)
u̇g(t)

¸
=

∙−ip(t)
ig(t)

¸
(4)

Defining vp(t) = vdd(h) − up(t) to be the vector of voltage drops

at power grid nodes, we can write (4) as two separate equations:

Gpvp(t) +Cpv̇p(t)−Nu̇g(t) = ip(t) (5)

Ggug(t) + Cg u̇g(t)−NT v̇p(t) = ig(t) (6)

In matrix notation, (5) and (6) can be combined to yield:

∙
Gp 0
0 Gg

¸ ∙
vp(t)
ug(t)

¸
+

∙
Cp −N
−NT Cg

¸ ∙
v̇p(t)
u̇g(t)

¸
=

∙
ip(t)
ig(t)

¸
(7)

In this notation, vp(t) is positive when power grid nodes experi-
ence undershoots and ug(t) is positive when ground grid nodes
experience overshoots as shown in Figure 5. Now define:

Ĝ =

∙
Gp 0
0 Gg

¸
, v̂(t) =

∙
vp(t)
ug(t)

¸
Ĉ =

∙
Cp −N
−NT Cg

¸
, î(t) =

∙
ip(t)
ig(t)

¸
So that (7) becomes:

Ĝv̂ + Ĉ ˙̂v(t) = î(t) (8)

Notice that the circuit described by (8) is the original P/G grid,
but with all the voltage sources set to zero and the directions of
current sources attached to the power grid nodes reversed. Fur-
thermore, this equation is useful, because now the current vector

î(t) is a non-negative vector and the matrix Ĉ consists of only
non-negative elements.
Now assume that only m of n nodes of the P/G grid have

current sources attached. Then we can reorder the rows and
columns of the matrices and the entries of the vectors in (8) to
yield:

Gv(t) + Cv̇(t) =

∙
i(t)

0(n−m)

¸
= ī(t) (9)

whereG and C are matrices of size n×n, that are simply reordered
replicas of Ĝ and Ĉ. i(t) is the vector of size m representing the
current loads, and 0(n−m) is the zero-vector of size n−m. Finally,

817

t1 t2

0

Vdd

time

no
de

 v
ol

ta
ge

↑
vp(t)

↓
ug(t)

vp(t1) > 0
ug(t2) > 0

Figure 5: Voltages on the P/G grid

using the backward Euler formula, (9) can be discretized in time
as:

Av(t) = Bv(t−∆t) + ī(t) (10)

where A = (G+ C
∆t
) and B = C

∆t
.

2.3 Current Constraints
We adopt the notion of current constraints in order to perform
verification of the P/G grid. This approach [2] does not require
complete information about the currents drawn by the under-
lying circuitry, and may be called a vectorless approach. The
currents are typically hard to specify for at least two reasons.
First, the number of combinations of possible current waveforms
is very large, and simulation of a large set of waveforms is very
time-consuming. Second, the simulation approach does not allow
the designer to verify the grid early in the chip design. For the
simulation, the details of the underlying circuitry must be already
known, but it might not be available or complete early in the de-
sign, when most of the major changes in grid characteristics can
be most easily incorporated.
We use three types of constraints: local constraints, global con-

straints and equality constraints. Local constraints define upper
bounds on individual current sources. They can be expressed
mathematically as:

0 ≤ i(t) ≤ iL (11)

where iL is a vector of size m and stands for the peak value of
currents that the current sources can draw. In this paper, we
restrict our work to the case of DC constraints, i.e. the upper
bound is fixed over time. However, note that it is only the con-
straints that are DC, the currents themselves are transient. An
alternative is to use transient current constraints, which are more
difficult to use in practice, both from the user’s standpoint (sup-
plying transient constraints) and the verification tools that would
deal with them.
Local constraints do not completely capture the behaviour of

the grid, because it is never the case that all chip components
draw their currents simultaneously. Therefore, we need global
constraints, which are upper bounds on the sums of groups of
current sources. They might represent the maximum current that
the group of current sources in each macroblock can draw or the
peak total power dissipation of a group of macroblocks. If we
assume that we have μ global constraints, then they can be ex-
pressed as:

0 ≤ Ui(t) ≤ iG (12)

where U is a μ × n matrix that consists only of 0s and 1s. If
a 1 is present in a row of U , it indicates that the corresponding
current source is included in that global constraint. Similar to the
case of local constraints, iG is a constant time-independent DC
constraint, but the currents themselves are transient waveforms.
As previously mentioned, we need to ensure that the currents

leaving the power grid are equal to currents entering the ground

grid, which we will call an equality constraint. If we assume
that we have γ macroblocks, then the equality constraints can be
expressed as:

Mi(t) = 0 (13)

where M is a γ × n matrix that only consists of 1s, -1s and 0s.
For each macroblock, 1s correspond to current sources that are
attached to the power grid, and -1s correspond to current sources
that are attached to the ground grid.
To simplify the notation, we will use F to denote the feasi-

ble space of currents, so that i(t) ∈ F if and only if it satisfies
(11), (12) and (13) at all time.

2.4 Problem Definition
Our problem is to find, for every node, the worst-case node volt-
age fluctuation over all possible currents in F . To simplify the
notation, let E = A−1 and D = A−1B, so that we can write (10)
as:

v(t) = Dv(t−∆t) + Eī(t) (14)

We first write the matrix E as follows:

E = [e1, e2, . . . , en] (15)

where ei is the ith column of E. Now define:

H = [e1, e2, . . . , em] (16)

where H is n ×m matrix formed by the first m columns of E.
Since we know that the last n−m elements in ī(t) are 0, we can
write (14) as:

v(t) = Dv(t−∆t) +Hi(t) (17)

Now consider the case in which the grid had no stimulus for t ≤ 0,
which leads to v0 = v(0) = 0. Then, writing at time ∆t, 2∆t and
3∆t, we obtain:

v(∆t) = Dv0 +Hi(∆t) = Hi(∆t) (18)

v(2∆t) = Dv(∆t) +Hi(2∆t) = DHi(∆t) +Hi(2∆t) (19)

v(3∆t) = Dv(2∆t) +Hi(3∆t)

= D2Hi(∆t) +DHi(2∆t) +Hi(3∆t)
(20)

Repeating this procedure for any future time p∆t, we have:

v(p∆t) =

p−1X
k=0

DkHi((p− k)∆t) (21)

At every point in time t ∈ [0, p∆t], the input vector i(t) must
be feasible, i.e. we must have i(t) ∈ F . Under these conditions,
we are interested in the worst-case voltage fluctuations attained
(separately) by each component of v(p∆t). In order to capture
this notion, we use the following notation, introduced in [5].
Suppose f(c) : Rn → Rn is a vector function whose compo-

nents are denoted f1(c), . . . , fn(c), and let A ⊂ Rn. Now, define
a vector x ∈ Rn, such that, with i ∈ {1, 2, . . . , n}, xi is the maxi-
mum of fi(c) over all c ∈ A. We will denote this by the following
operator:

x = emax
∀c∈A

(f(c)) (22)

Notice that each component xi,∀i = 1, . . . , n may be found sep-
arately by solving the following maximization problem:

maximize: fi(c)

subject to: c ∈ A (23)

Similarly, define a vector y ∈ Rn, such that yi is the minimum
of fi(c) over all c ∈ A. We will denote this by the following
operator:

y = emin
∀c∈A

(f(c)) (24)

818

and each component yi,∀i = 1, . . . , n may be found separately by
solving the following minimization problem:

minimize: fi(c)

subject to: c ∈ A (25)

Using the emax(·) and emin(·) operators, we can express the
worst-case voltage fluctuation at all nodes at time p∆t by:

v+(p∆t) = emax
∀i(t)∈F

⎛⎝p−1X
k=0

DkHi((p− k)∆t)

⎞⎠ (26)

v−(p∆t) = − emin
∀i(t)∈F

⎛⎝p−1X
k=0

DkHi((p− k)∆t)

⎞⎠ (27)

where the notation ∀i(t) ∈ F means that, for every time point
t ∈ [0, p∆t], the current vector i(t) satisfies all the (local, global
and equality) constraints. v+(t) is a non-negative vector defining
the worst-case voltage drops on power grid nodes and the worst-
case voltage overshoots on ground grid nodes, and similarly, v−(t)
is a non-negative vector defining the worst-case voltage overshoots
on power grid nodes and the worst-case voltage drops on ground
grid nodes. We used a minus sign in front of emin(·) operator
in (27) to avoid confusion about the notion of the lower and upper
bounds in the rest of the paper. Using v+(t) and v−(t), v(t) can
be bounded as:

− v−(t) ≤ v(t) ≤ v+(t) (28)

Although the RC model is dynamic, i.e., its currents and voltages
vary with time, the constraints are DC and do not depend on
time. Hence, F is the same for each time step. With this, the
components of (26) and (27) can be decoupled [5], leading to:

v+(p∆t) =

p−1X
k=0

emax
∀i∈F

h
DkHi

i
(29)

v−(p∆t) = −
p−1X
k=0

emin
∀i∈F

h
DkHi

i
(30)

where i is simply an m × 1 vector of variables that satisfies the
(local, global and equality) constraints, without reference to any
particular point in time. This is an important simplification of the
problem, as it has the advantage that the number of constraints
for each optimization is fixed and does not span all previous time
points. The advantage of using the matrix H instead of E is clear
now, since at each time step one needs to compute multiplication
of an n × n matrix with an n ×m matrix instead of two n × n
matrices. Furthermore, the optimization variables do not include
the redundant variables.

CLAIM 1. emax
∀i∈F

h
DkHi

i
≥ 0 and emin

∀i∈F

h
DkHi

i
≤ 0, ∀k.

Proof. Let x∗ = emax
∀i∈F

h
DkHi

i
and y∗ = emin

∀i∈F

h
DkHi

i
. As-

sume that the claim is not true, i.e. x∗j < 0 and y∗j > 0.

Since i† = 0 is feasible, i.e. i† ∈ F , we can choose i†, so that¡
DkHi†

¢
j
= 0 > x∗j and

¡
DkHi†

¢
j
= 0 < y∗j , which is a contra-

diction. This completes the proof.

Using (29), (30) and claim 1, and taking the difference in two
consecutive time steps, we have:

v+(p∆t)− v+((p− 1)∆t) = emax
∀i∈F

£
Dp−1Hi

¤ ≥ 0 (31)

v−(p∆t)− v−((p− 1)∆t) = − emin
∀i∈F

£
Dp−1Hi

¤ ≥ 0 (32)

meaning that v+(p∆t) and v−(p∆t) are monotone non-decreasing
functions of the time point p, for any integer p ≥ 1.

In practice, we are interested in the steady state solution where
the system becomes independent of the initial condition v(t) =
0, ∀t ≤ 0. Since the RC grid model is a dynamical system with
a limited memory of its past, the steady state solution can be
obtained by evaluating (29) and (30) at points far away from the
initial condition, i.e. as p→∞. Thus, the general solution to the
problem is:

v+(∞) = lim
p→∞

p−1X
k=0

emax
∀i(t)∈F

h
DkHi

i
(33)

v−(∞) = − lim
p→∞

p−1X
k=0

emin
∀i(t)∈F

h
DkHi

i
(34)

3. PROPOSED SOLUTION
Using (33) and (34) is intractable, because they have to be evalu-
ated for a large number of time steps until convergence is achieved
and the emax(·) and emin(·) operators require linear programs
proportional to the number of nodes in the grid, which for mod-
ern designs is in the order of millions. As an alternative, we
propose an efficient solution to compute lower and upper bounds
on the worst-case voltage fluctuations of the P/G grid.

3.1 Vector of Lower Bounds
We will show that, for specific initial conditions, both v+(t) and
v−(t) will be monotone non-decreasing functions of time t. We
have found that the DC verification solution of the grid is a good
initial condition, which satisfies the monotonicity property.

3.1.1 Non-zero initial conditions
We start by investigating the impact of starting the verification
with different (non-zero) initial conditions on the worst-case volt-
age fluctuations. If we have the initial condition v0 at time t = 0,
then the voltage on the grid at any future time p∆t can be ex-
pressed as:

v(p∆t) = Dpv0 +

p−1X
k=0

DkHi((p− k)∆t) (35)

Because the RC grid is a stable linear system and because the
backward difference approximation used in (10) is absolutely sta-
ble [6], it follows that for i(t) = 0,∀t and any bounded initial con-
dition v0, equation (35) converges to 0 as t→∞. For i(t) = 0,∀t,
the voltage on the grid at any time p∆t can be written as:

v(p∆t) = Dpv0 (36)

Writing (36) as p→∞, we get:

v(∞) = lim
p→∞ v(p∆t) = lim

p→∞Dpv0 = 0 (37)

Since (37) is valid for any bounded initial condition, it is clear
that Dp → 0 as p→∞. We will use the following theorem [7] to
conclude that this actually means ρ(D) < 1, where ρ(D) is the
magnitude of the largest eigenvalue of D, also called the spectral
radius of D.

THEOREM 1. Let D be a square matrix. Then, the sequence
Dk, for k = 0, 1, . . . , converges to zero if and only if ρ(D) < 1.

It is easy to see that at steady state, i.e. as p → ∞, choosing a
different initial condition other than v0 = 0 does not have any
impact on v(∞) , because of the fact that Dp converges to zero as
p → ∞. Therefore, (21) and (35) become equivalent as p → ∞.
Using the notation in the previous section and using the fact that
F is the same for each time step, we can express the worst-case
voltage fluctuations at time point p∆t with the initial condition
v0 as:

v+(p∆t) = Dpv0 +

p−1X
k=0

emax
∀i∈F

h
DkHi

i
(38)

v−(p∆t) = Dpv0 −
p−1X
k=0

emin
∀i∈F

h
DkHi

i
(39)

819

3.1.2 A monotone non-decreasing v+(t)
Under the DC model of the P/G grid, (9) becomes:

Gv = ī (40)

Now let L = G−1 and let K to be a n × m matrix, which is
obtained as the first m columns of L, such that:

K = [l1, l2, . . . , lm] (41)

where li defines ith column of L. Using the matrix K, we can
write v = Ki. Now assume that we have the DC solution of the
system as the initial condition, leading to:

v0 = Ki0 (42)

We define the voltage vector v0 to be feasible, if it satisfies (42)
for a current vector i0 ∈ F .

CLAIM 2. If v0 is feasible, then v+(p∆t) given in (38) is a
monotone non-decreasing function of the time point p, for any
integer p ≥ 1.
Proof. The claim is true if we can show that v+(p∆t) ≥

v+((p− 1)∆t), for any integer p ≥ 1. Substituting v0 from (42)
into (38), we obtain:

v+(p∆t) = DpKi0 +

p−1X
k=0

emax
∀i∈F

h
DkHi

i
(43)

Substituting DpK from (58) (see Appendix) into (43), we get:

v+(p∆t) = (K −
p−1X
k=0

DkH)i0 +

p−1X
k=0

emax
∀i∈F

h
DkHi

i
(44)

Taking the difference in two consecutive time steps, we have:

v+(p∆t)− v+((p− 1)∆t) = emax
∀i∈F

£
Dp−1Hi

¤ −Dp−1Hi0 (45)

We see in (45) that the emax(·) operator assigns the maximum
value to the first term on the right-hand side over all i ∈ F ,
whereas the second term on the right-hand side has the variables
i0 ∈ F , which may not result in the optimal solution. Therefore,
we conclude that if v0 is feasible, then v+(p∆t) ≥ v+((p−1)∆t),
for any integer p ≥ 1. This completes the proof.

3.1.3 DC initial condition
Using the notation (X)j to define jth row of a matrix X and
incorporating (38), (39) and (42), we can express the worst-case
voltage fluctuation for the jth node at time p∆t as:

v+j (p∆t) = (DpK)j i0 +

p−1X
k=0

max
∀i∈F

(DkH)ji (46)

v−j (p∆t) = (DpK)ji0 −
p−1X
k=0

min
∀i∈F

(DkH)ji (47)

A good choice of i0 for a given node would be the current com-
bination that leads to the worst-case voltage fluctuation for that
node under the DC model of the P/G grid. The worst-case volt-
age fluctuation for the jth node under the DC model is given
by:

v+j = max
∀i∈F

(K)j i (48)

v−j = − min
∀i∈F

(K)j i (49)

Denote the optimal value of i of the maximization problem
in (48) as i+j (m×1 vector) and that of the minimization problem
in (49) as i−j (m×1 vector). SinceG is an M-matrix [5], its inverse

consists of only non-negative elements, which means that K is a
non-negative matrix. Therefore, the result of the minimization
problem in (49) under non-negative current constraints will be 0,

Algorithm 1 Lower Bound Algorithm

Inputs: K,D,H,F and �
Outputs: v+lb(∞) and v−lb(∞)
1: Compute v+ = emax

∀i∈F
[Ki] and save i+j for each node

2: Set p = 0 and stop flag = false

3: while stop flag = false do

4: p = p+ 1

5: for j = 1, . . . , n do

6: Compute v+j (p∆t) using (50) and v−j (p∆t) using (51)

7: end for

8: if v+(p∆t)− v+((p− 1)∆t) < � then

9: if v−(p∆t)− v−((p− 1)∆t) < � then

10: Set stop flag = true

11: Set v+lb(∞) = v+(p∆t) and v−lb(∞) = v−(p∆t)

12: end if

13: end if

14: end while

which leads to i−j = 0. Using i+j and i−j as the initial current at

t = 0 for the jth node, (46) and (47) become:

v+j (p∆t) = (DpK)ji
+
j +

p−1X
k=0

max
∀i∈F

(DkH)ji (50)

v−j (p∆t) = −
p−1X
k=0

min
∀i∈F

(DkH)j i (51)

3.1.4 Lower bound
Algorithm 1 describes the computation of the lower bound vector
in detail, based on (50) and (51). Using claim 2 and claim 1, we

can see that v+j (p∆t) in (50) and v−j (p∆t) in (51) are monotone

non-decreasing functions of the time point p, for any integer p ≥ 1.
Since we stop the main loop of Algorithm 1 for a finite p, when
v+(p∆t)− v+((p− 1)∆t) and v−(p∆t)− v−((p− 1)∆t) are less

than a threshold �, then v+lb(∞) and v−lb(∞) are clearly lower
bounds on v+(∞) and v−(∞), respectively.

3.2 Vector of Upper Bounds
Following an approach similar to [8], we compute an upper bound
on the worst-case voltage fluctuations of the P/G grid. Although
the upper bound in [8] was derived for an RLC model of the power
grid, it can be shown that it is also valid for the P/G grid model
presented in this paper. Due to space considerations, and because
it is mostly an adaptation of [8] to the P/G grid case, we will not
show the background work associated with the derivation of the
upper bound. Instead, we simply describe the computation of
the upper bound on the worst-case voltage fluctuations in Algo-
rithm 2, in which we use the notation |X| to denote the matrix
of the element-wise absolute values of the entries of a matrix X.
Further details can be found in [8].

4. IMPLEMENTATION
4.1 Inverse Approximation Method
It is obvious from section 3 that the inverse of the system matrix
A is needed for the computation of the lower and upper bounds,
because D = A−1B. For the lower bound, we need to invert the
conductance matrix G as well as A. We now explain how this can
be efficiently done.
Power distribution networks have a mesh structure, where a

node has a small number of neighbouring nodes. Such a struc-
ture results in a matrix (i.e. A or G), that is sparse, symmetric,
positive definite, and banded. In the literature, it is well known

820

Algorithm 2 Upper Bound Algorithm

Inputs: D,H and F
Outputs: v+ub(∞) and v−ub(∞)
1: Set Q = I, s+ = 0 and s− = 0
2: while kQk1 ≥ 1, kQk∞ ≥ 1 and kQkF ≥ 1 do

3: s+ := s+ + emax
∀i∈F

[QHi]

4: s− := s− − emin
∀i∈F

[QHi]

5: Q := QD

6: end while

7: Set R =
1

2
(|Q|−Q)

8: Set P =

∙
Q+R R
R Q+R

¸
9: Compute v+ub(∞) and v−ub(∞) using:
10: LU-factorize (I − P): (I − P) = L · U
11: Forward solve: Lw =

∙
s+

s−
¸

12: Backward solve: U

∙
v+ub(∞)
v−ub(∞)

¸
= w

that the inverse of a non-singular sparse matrix is dense. Espe-
cially, a matrix that results from a mesh structure has the inverse
that is almost full. However, it is also well known in the lit-
erature that the inverse of a sparse, symmetric positive definite
and banded matrix has entries whose values decay exponentially
as one moves away from the diagonal [9]. This fact is the main
idea of constructing sparse approximate inverse preconditioners
to precondition large sparse linear systems when using an iterative
method such as conjugate gradient method. Sparse approximate
inverse preconditioners try to find a good sparse approximate in-
verseM , such thatMA ≈ I, where I denotes the identity matrix.
There are numerous sparse approximate inverse techniques in

the literature. One of them is SPAI [10], which is based on Frobe-
nius norm minimization. SPAI starts with an arbitrary initial
matrix M and iteratively refines its columns by minimizing the
Frobenius norm kMA− IkF . This technique has been applied to
power delivery network verification in [5]. Another technique is
called AINV [11], which is based on the conjugate Gram-Schmidt
(or A-orthogonalization) process. AINV has the advantage of us-
ing the fact that the matrix whose inverse is to be approximated
is symmetric positive definite, while SPAI is a general sparse ap-
proximate preconditioner for unsymmetric matrices.
In what follows, we will briefly explain the AINV method given

in [11]. Assume that A is an n × n symmetric positive definite
matrix. It is shown in [11] that the factorization of A−1 can be
obtained from a set of conjugate directions z1, z2, . . . , zn for A.
By writing a set of conjugate directions in matrix form, we have:

Z = [z1, z2, . . . , zn] (52)

where Z is the matrix whose ith column is zi. Knowing a set of
conjugate directions for A, we can write:

ZTAZ = D =

⎡⎢⎢⎢⎣
d1 0 · · · 0
0 d2 · · · 0
..
.

..

.
. . .

..

.
0 0 · · · dn

⎤⎥⎥⎥⎦ (53)

where di = zTi Azi. To obtain a factorization of A
−1, we write:

A−1 = ZD−1ZT (54)

Notice in (54) that the inverse of A can be obtained easily if
we know a set of conjugate directions z1, z2, . . . , zn. In [11], a
set of conjugate directions is constructed by means of a conju-
gate Gram-Schmidt (or A-orthogonalization) process applied to
any set of linearly independent vectors v1, v2, . . . , vn. The Gram-
Schmidt process is a method for orthogonalizing a set of vectors

Algorithm 3 AINV Inverse Factorization Algorithm

Inputs: A
Outputs: A−1

1: Let z(0)i = ei for 1 ≤ i ≤ n

2: for i = 1, . . . , n do
3: for j = i, . . . , n do

4: d
(i−1)
j = (A)jz

(i−1)
j

5: end for

6: if i = n go to step 11

7: for j = i+ 1, . . . , n do

8: z
(i)
j = z

(i−1)
j − d

(i−1)
j

d
(i−1)
i

z
(i−1)
i

9: end for

10: end for
11: Let zi = z

(i−1)
i and di = d

(i−1)
i for 1 ≤ i ≤ n

12: Set Z = [z1, z2, . . . , zn]

13: Set D−1 =

⎡⎢⎢⎢⎣
1/d1 0 · · · 0
0 1/d2 · · · 0
..
.

..

.
. . .

..

.
0 0 · · · 1/dn

⎤⎥⎥⎥⎦
14: Set A−1 = ZD−1ZT

in an inner product space of size n. It takes a finite, linearly inde-
pendent set of vectors v1, v2, . . . , vn and generates an orthogonal
set u1, u2, . . . , un that spans the same inner product space n.
For further details on the Gram-Schmidt process, the reader is
referred to [12].
Since the Gram-Schmidt process can be applied to any set of

linearly independent vectors, it is convenient to choose vi = ei,
where ei is the ith unit vector. From the Cholesky factorization
of A, we have:

A = LDLT (55)

where L is unit lower triangular, which leads to Z = L−T . Since
the inverse of a unit lower triangular matrix is a unit lower trian-
gular matrix, it follows that Z is unit upper triangular.
The factorization algorithm is given in Algorithm 3, in which

the ith row of A is denoted by (A)j . For a dense matrix this
algorithm requires roughly twice as much work as Cholesky fac-
torization [11]. Although for a sparse matrix the cost can be
significantly reduced, the method is still expensive because the
resulting matrix Z tends to be dense. However, the sparsity can
be preserved by reducing the amount of fill-in occurring in the
computation of z-vectors. Reducing the amount of fill-in can be
achieved by ignoring all fill-in outside selected positions in Z or
by discarding fill-ins whose magnitude is less than a tolerance δ.
In [13], the authors propose several strategies and special data

structures to implement Algorithm 3 efficiently. We have used
many aspects of their implementation and we have made some
modifications in their data structures to be able to access entries
in a matrix which is in compressed column storage (CCS) format.
Since we do not know the sparsity pattern of the inverse upfront,
we have only used the strategy in which we discarded fill-in oc-
curring in the computation of z-vectors whose magnitude was less
than δ = e−6.
Experimental results [14] show that AINV is more effective and

faster than the other approximate inverse methods. Therefore, we
have adopted it for our implementation.

4.2 Network Simplex Method
We will show that the linear programs in our formulation can
be efficiently solved with the help of a network simplex method.
Using the notation given in the previous sections, we have the
following linear program for each node:

821

Table 1: Runtime and accuracy of the proposed technique

Grid Lower Bound Algorithm Upper Bound Algorithm
nodes runtime time steps runtime time steps maximum absolute error
102 4.13 sec. 5 8.48 sec. 4 1.75mV
437 39.33 sec. 4 57.49 sec. 3 2.52mV
1052 1.98 min. 4 2.43 min. 5 2.67mV
4285 14.66 min. 5 16.73 min. 4 2.59mV
18,472 1.57 h. 6 2.14 h. 3 2.65mV
31,974 3.74 h. 7 4.73 h. 4 1.45mV
76,753 9.45 h. 6 10.68 h. 4 2.72mV
192,974 18.55 h. 3 23.16 h. 3 1.39mV

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

lower bound on worst-case voltage fluctuation(V)

0

0.5

1

1.5

2

2.5

3

3.5

ab
so

lu
te

 e
rr

or
(m

V
)

Figure 6: Absolute error comparison for all nodes
of a 4285-node grid

maximize / minimize: f(i)

subject to: 0 ≤ Ui ≤ iG

Mi = 0

0 ≤ i ≤ iL

(56)

where f(i) : Rn → R is the linear objective function of i. To
simplify the notation, we augment the matrices U and M into
the matrix T , and we augment the vectors iG and the zero-vector
of size γ into the vector a:

T =

∙
U
M

¸
, a =

∙
iG
0

¸
where T is a matrix of size (μ+ γ)× n, and a is a vector of size
(μ + γ) × 1. With this notation the linear program (56) can be
rewritten as:

maximize / minimize: f(i)

subject to: 0 ≤ Ti ≤ a

0 ≤ i ≤ iL

(57)

The constraint matrix T consists of entries which are 1s, -1s or
0s. It resembles the node-arc incidence matrix (NAIM) of a net-
work, in the sense that NAIM also has entries which are 1s, -1s
or 0s. This is the key observation that allows us to formulate
the optimization problem (57) as a network flow problem. In our
optimization problem, the equality constraints define flow con-
servation constraints of the network flow problem, whereas local
constraints define capacity constraints on the flow along the edges
in the network. Furthermore, global constraints define side con-
straints on the sum of the flows along the edges. For a more de-
tailed discussion of network flow problems, the reader is referred
to [15].

0.02 0.04 0.06 0.08 0.1 0.12 0.14

lower bound on worst-case voltage fluctuation(V)

20

40

60

80

re
la

tiv
e

er
ro

r(
%

)

3 mV absolute error

Figure 7: Accuracy of the proposed technique

Network flow problems can be efficiently solved with the help
of the network simplex method. Empirical results have shown
that the method is significantly faster than the standard simplex
method, when applied to the same network problem [16]. Fur-
thermore, it is shown in [17] that significant computational speed
up can be achieved if closely related instances of network flow
problems are solved sequentially. This observation is quite ben-
eficial for our problem in the sense that the feasibility space of
currents remains the same at each instance of the optimization
problem. Thus, we have the same optimization problem for each
node except different objective functions.

5. EXPERIMENTAL RESULTS
To test our method, we have implemented Algorithms 1, 2, and
3 in C++. We have set � = e−5 to stop the main loop of Al-
gorithm 1. To solve the required linear programs, Algorithms 1
and 2 use the network simplex method of the Mosek optimiza-
tion package [18]. We have used the hot-start option of the Mosek
network simplex solver for fast objective function switching. Sev-
eral experiments were conducted on a set of test grids, which
were generated from user specifications, which include grid di-
mensions, metal layers (M1-M9), pitch and width per layer, and
C4 and current source distribution. Minimum spacing, and sheet
and via resistances were specified according to a 65 nm technol-
ogy. A global constraint is specified for each macroblock, and
additional global constraints were specified covering the entirety
of the grid area. The computations were carried on a 64-bit Linux
machine with 8 GB memory.
Table 1 shows the speed and the accuracy of our proposed

solution technique for the computation of the vectors of lower
and upper bounds on the worst-case voltage fluctuations. The
results are compared with each other and the maximum abso-
lute difference between the upper and the lower bound vector
is reported in column 6, where the absolute error is defined as
(vub(∞)− vlb(∞)). The results show that our solution technique
resulted in a maximum absolute error of 2.72mV across all nodes

822

of all test grids. The number of time steps shown in column 3
and 5 reports the number of time steps for which the lower and
upper bound algorithms converge. The runtime for each one of
two methods is also shown in the table.
Figure 6 shows a scatter plot with the lower bound on the

worst-case voltage fluctuation on one axis and the absolute error
on the other axis, for a 4285-node grid. The figure shows that
the absolute error between the upper and the lower bound is
very small, meaning that the proposed method is very accurate.
For the same grid, Figure 7 shows a scatter plot with the lower
bound on the worst-case voltage fluctuation on one axis and the
relative error on the other axis, where the relative error is defined
as (vub(∞) − vlb(∞))/vlb(∞). The figure also shows the curve
corresponding to 3mV absolute error where a point on the curve
represents a node that has 3mV difference between its upper and
lower bound. Note that the relative error can be high, but only
for small values of voltage fluctuations, and the absolute error
does not exceed 3mV .
Looking at the runtime results given in Table 1, we notice that

the computation of the lower and upper bound vectors of a 18,472-
node grid takes around 4 hours. Such a grid is of course small
compared to full-chip grids containing millions of nodes. How-
ever, the proposed method is applicable for early grid verification,
where the size of the grids is normally not as large. The power
of our approach is that it finds tight upper and lower bounds
on the worst-case voltage fluctuations under all feasible current
combinations. It is a unique approach that offers this type of
guarantee.

6. CONCLUSION
Voltage fluctuations of the power delivery network is a key con-
cern for modern chip design. In this paper, we presented an early
grid verification technique that takes both power and ground grids
into account. Our proposed solution approach formulates both
upper and lower bounds on the worst-case voltage fluctuations of
the P/G grid under the framework of current constraints. Exper-
imental results show that the proposed method has errors in the
range of a few mV .

7. REFERENCES
[1] Semiconductor Industry Association. International technol-

ogy roadmap for semiconductors, 2009.
[2] D. Kouroussis and F. N. Najm. A static pattern-independent

technique for power grid voltage integrity verification.
In ACM/IEEE Design Automation Conference (DAC’03),
pages 99—104, Anaheim, CA, June 2-6 2003.

[3] M. Popovich, A. V. Mezhiba, and E. G. Friedman. Power
distribution networks with on-chip decoupling capacitors.
Springer, New York, USA, 2008.

[4] J. N. Kozhaya, S. R. Nassif, and F. N. Najm. A multigrid-
like technique for power grid analysis. IEEE Transactions on
Computer-Aided Design, 21(10):1148—1160, October 2002.

[5] N. H. Abdul Ghani and F. N. Najm. Fast vectorless power
grid verification using an approximate inverse technique.
In ACM/IEEE Design Automation Conference (DAC’09),
pages 184—189, San Francisco, CA, July 26-31 2009.

[6] J. D. Lambert. Numerical methods for ordinary differential
systems: the initial value problem. Jon Wiley & Sons Ltd.,
Chichester, UK, 1991.

[7] Y. Saad. Iterative methods for sparse linear systems. SIAM,
Philadelphia, PA, 2003.

[8] N. H. Abdul Ghani and F. N. Najm. Fast vectorless power
grid verification under an RLC model. Submitted to. IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems.

[9] S. Demko, W. F. Moss, and P. W. Smith. Decay rates for
inverses of band matrices. Mathematics of Computation,
43(168):491—499, October 1984.

[10] M. J. Grote and T. Huckle. Parallel preconditioning with
sparse approximate inverses. SIAM Journal on Scientific
Computing, 18(3):838—853, May 1997.

[11] M. Benzi, C. D. Meyer, and M. Tuma. A sparse approximate
inverse preconditioner for the conjugate gradient method.
SIAM Journal on Scientific Computing, 17(5):1135—1149,
September 1996.

[12] G. H. Golub and C. F. Van Loan. Matrix computations (3rd
ed.). Johns Hopkins University Press, Baltimore, MD, 1996.

[13] J. Zhang. A sparse approximate inverse preconditioner for
parallel preconditioning of general sparse matrices. Applied
Mathematics and Computation, 130(11):63—85, July 2002.

[14] M. Benzi and M. Tuma. A comparative study of sparse ap-
proximate inverse preconditioners. Applied Numerical Math-
ematics, 30(2-3):305—340, June 1999.

[15] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network flows:
theory, algorithms and applications. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1993.

[16] G. Sierksma. Linear and integer programming: theory and
practice. Marcel Dekker, New York, NY, 2001.

[17] A. Frangioni and A. Manca. A computational study of cost
reoptimization for min-cost flow problems. INFORMS Jour-
nal on Computing, 18(1):61—70, 2003.

[18] Mosek: http://www.mosek.com.
[19] S. Lang. Algebra. Addison-Wesley, Menlo Park, CA, 1993.

APPENDIX
In the context of section 3.1, we will prove the following claim.

CLAIM 3. For any integer p ≥ 1,

DpK = K −
p−1X
k=0

DkH (58)

Proof. Define the matrix W as:

W = (I −Dp)−1
p−1X
k=0

DkH (59)

Denoting the set of all eigenvalues of D by σ(D), we can write:

max
∀λ∈σ(D)

|λ| < 1 (60)

From the spectral mapping theorem [19], we know that if k is an
integer, we have the following relationship:

σ(Dk) = {λk : λ ∈ σ(D)} (61)

Thus, ρ(Dp) < 1. The series
P∞

q=0X
q for a square matrix X

is known to converge [7] if and only if ρ(X) < 1, under which
condition the series limit is (I −X)−1. Substituting (I −Dp)−1
from (59) by

P∞
q=0(D

p)q, we obtain:

W =
∞X
q=0

(Dp)q
p−1X
k=0

DkH (62)

Expanding the multiplication of the matrix series in (62) and
using the fact that the series

P∞
k=0D

k converges to (I −D)−1,
we have:

W =
∞X
k=0

DkH =

Ã ∞X
k=0

Dk

!
H = (I −D)−1H (63)

Since D = A−1B and B = A−G, we haveD = A−1(A−G) = I−
A−1G, leading to I−D = A−1G. Since K and H are the matrices
obtained as the first m columns of G−1 and A−1, respectively,
we can write (63) as:

W = G−1AH = K (64)

meaning that:

K = (I −Dp)−1
p−1X
k=0

DkH (65)

Left multiplying both sides of (65) with (I −Dp), we obtain:

(I −Dp)K =

p−1X
k=0

DkH (66)

leading to (58), which completes the proof.

823

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

