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ABSTRACT
The power distribution network of an integrated circuit must
be checked throughout the design process to ensure that sup-
ply voltage fluctuations do not exceed certain critical thresh-
olds. One way of doing this is by simulation, which requires
knowledge of the circuit currents that load the grid. These
currents are hard to specify. In many cases, and certainly
during early power grid design, they may be simply unknown
because the circuit itself may not yet be specified. Vector-
less verification refers to the class of techniques, developed
over the last 12 years, for verifying the grid in the absence
of complete information about the circuit currents.

1. INTRODUCTION
We will refer to the power supply and ground distribution
network of an integrated circuit (IC), comprising the on-
die parasitic RC components due to lines and vias, as well
as the package/board parasitic RLC components, as simply
the power grid. A well-designed power grid should guaran-
tee correct circuit functionality at the intended design speed,
by delivering well-regulated voltages at all grid nodes. Over
the last few decades, technology scaling has led to very large
power grids, comprising around a billion nodes for very large
chips, and reduced supply voltages of around 1 Volt which,
coupled with the increase in overall chip power dissipation,
has given us chips that draw over 150 Amperes from the sup-
ply. The increased overall current, to be distributed over the
much larger metal network, with narrower lines, has made
power grid verification indispensable to high-performance
chip design.
There has been much research in the recent past on speed-

ing up circuit simulation of the grid, employing various in-
novations such as reduced order modeling, improved simu-
lation algorithms, often using indirect (iterative) simulation
methods but also multigrid techniques, parallelization, and
even current signature compression [1] (which is a hybrid
between vector-based simulation and vectorless methods).
Review and discussion of this body of work is beyond the
scope of this paper. Instead, we will focus on vectorless ver-
ification techniques.
In vectorless verification, it is assumed that users do not

know the exact circuit currents that load the grid and, dur-
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ing early design, that they do not necessarily know what
exact circuitry will be implemented under the grid. Instead,
we assume that users can specify incomplete information
about the circuit currents in the form of current constraints.
We will review the current constraints framework and a va-
riety of vectorless verification techniques.

2. CURRENT CONSTRAINTS
While users may not know the loading currents exactly, or
may not yet know the underlying circuitry exactly, it is really
never the case that they know nothing about them. There
is always some engineering judgment, and/or expertise from
previous design activities, with this or similar technologies,
that users can bring to bear. It is precisely this that we seek
to capture with the concept of current constraints. These
constraints are an abstraction which aims to capture design
knowledge, and they fall somewhere between knowing every-
thing and knowing nothing about the currents and circuits
that load the grid.

Local constraints:
i2 ≤ IL,2

i3 ≤ IL,3

i5 ≤ IL,5

i7 ≤ IL,7

i9 ≤ IL,9

Global constraints:
i2 + i3 + i5 ≤ IG,1

i5 + i7 ≤ IG,2
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Figure 1: Current constraints

Typically, these constraints are specified as peak current
upper-bound limits, or envelopes, on every current source
that loads the grid. The constraints may be fixed over time
(DC constraints) or they may be transient waveforms them-
selves (transient constraints). DC constraints are not only
easier to work with but are also easier to specify, and so our
discussion will focus on the use of DC constraints.

Constraints on single current sources, such as ik(t) ≤
IL,k, ∀t ≥ 0, are referred to as local constraints (a current
source can represent a single logic gate or cell, but more
typically should represent a larger block). If only local con-
straints are provided, the problem becomes much easier, but
the results would be overly pessimistic because it is never
the case that all chip components simultaneously draw their



maximum currents, hence the need for what we call global
constraints. A global constraint is an upper bound on the
sum of a group of current sources. An example is given in
Fig. 1, showing a grid with local and global constraints.
Local and global constraints can be combined into a sin-

gle matrix inequality, Ui(t) ≤ Ic, where i(t) is a vector of
the current sources that load the grid and U is a matrix of
0s and 1s, whose top part consists of the identity matrix so
that it captures the local constraints, and where Ic is a vec-
tor that contains the (upper-bound) constraint values. We
also assume that all currents sources are positive, with refer-
ence directions away from the grid, into the circuitry below
it. Thus, in general, we will assume that certain local and
global constraints are specified, which may be represented
succinctly as:

0 ≤ Ui(t) ≤ Ic, ∀t (1)

Given such constraints, one can formulate the verification
problem as: under all current waveforms that satisfy the
constraints, check if the grid voltages satisfy the user speci-
fication, i.e., check if the grid is “safe.”

2.1 Feasible Space
A current waveform vector i(t) is said to be feasible if it
satisfies the current constraints 0 ≤ Ui(t) ≤ Ic at every
time point. We will use the symbol F to represent the set
of all current vectors i that satisfy the constraints:

F = {i : 0 ≤ Ui ≤ Ic} (2)

We refer to this as the feasible space of currents. At the risk
of some abuse of notation, we will also write i ∈ F to signify
that the transient current waveform vector i(t) satisfies the
current constraints 0 ≤ Ui(t) ≤ Ic at all points in time:

{i ∈ F} ⇐⇒ {0 ≤ Ui(t) ≤ Ic, ∀t} (3)

2.2 Element-wise Operations
It will be helpful to use the following short-hand notation.
Let f(i) : Rm → R

n be a vector function whose components
will be denoted f1(i), f2(i), . . . , fn(i), where i ∈ F . Define

the vector f (max) ∈ R
n such that, for every k, f

(max)
k is the

maximum of fk(i), over all i ∈ F . We will denote this vector
by the following emax(·) operator:

f (max) = emax
i∈F

(f(i)) (4)

where the “emax(·)” notation is used to denote the fact that
this is an element-wise maximization operator. Computa-
tionally, this may be found by the application of n successive
optimization steps, as in the following:

for(k = 1, 2, . . . , n) :

Maximize: fk(i) (5)

Subject to: i ∈ F
Likewise, we define the operator emin(·) to represent element-
wise minimization:

f (min) = emin
i∈F

(f(i)) (6)

Finally, we will use eopt(·) to denote an application of both
the emax(·) and emin(·) operators to produce a vector of
size 2n that contains the results of both:

f (opt) = eopt
i∈F

(f(i)) =

[
f (max)

f (min)

]
=

[
emaxi∈F (f(i))
emini∈F (f(i))

]
(7)

2.3 Verification by Optimization
We assume that the user has provided voltage thresholds
around the nominal supply voltage value that must not be
exceeded, for both voltage drops (under-shoots) and voltage
over-shoots (for the inductive case). Therefore, we are in-
terested in the worst-case voltage fluctuations achievable at
all grid nodes, over all possible transient current waveforms
that satisfy the current constraints.

One way to check node voltage safety is to formulate the
problem as a voltage maximization or minimization, thereby
looking for worst-case voltage fluctuations, which would then
be compared against the threshold. The constraints effec-
tively specify a search space of currents for the optimization.
If v(t) is the voltage drop vector at time t, then we are in-
terested in the element-wise worst-case vector:

emax
i∈F

(v(t)) (8)

Because the constraints are DC, it is clear that the result
of the above application of the emax(·) operator is time-
independent. The optimization needs to be performed at
only one time point, and so we define the time-independent
vector v∗:

v∗ = emax
i∈F

(v(t)) (9)

If v∗ is less than a user-specified threshold, then the grid is
safe, otherwise not.

2.4 Constraint Specification
How would one obtain/specify these constraints in practice?
To be sure, if a logic block is available and small enough
to simulate, then one can generate the constraints by an
“off-line” process of simulation, which can be viewed as a
characterization process. If a block is not yet available or is
too large to simulate, then one would need to rely on design
expertise with that block (how big it may be, what its power
needs were in a previous technology and how scaling would
affect those needs, etc.). As a last-resort/fall-back option,
if one has some judgment about the power density of the
target technology (Watts/μm2) and some knowledge about
the target area for this block, then one can multiply the two
to get a rough estimate of the current constraint for it.

Another possibility is that the constraints can be used
to implement a “spec-based” design flow, as follows. A chip-
level designer would simply specify the constraints, based on
previous design expertise, and the grid is verified under these
constraints. The constraints now become design guidelines
to be obeyed in subsequent design activity. If all design
groups follow these guidelines, the final design would have
a grid which is safe by construction. If there is a need to
grant a larger current budget to some group, the chip-level
designer would recheck the grid with a new set of constraints
and, if necessary, make grid redesign decisions to ensure the
increased budget does not make the grid unsafe.

3. POWER GRID MODEL
The power grid is a large full-chip structure of connected
metal lines, across multiple metal layers, interconnected by
vias, and connected by C4 bumps to wiring in the pack-
age and on the board, typically terminating at a board-level
voltage regulation module (VRM). Excluding the nonlinear
(MOSFET) elements of the VRM, this structure is typically
modelled as a linear circuit composed of a large number



of lumped linear (RLC) elements. It should be mentioned
that modern grids include MOSFETs in the on-die portion
for purpose of power gating, but such considerations are out-
side the scope of this study and we will focus on fully passive
grid structures. Inductance in the on-die portion of the grid
is typically ignored [2], and mutual inductance is also often
ignored, but inductance is significant in the package/board
portion of the grid and may not be ignored.
At its on-die terminals the grid is loaded by the circuit

blocks, where nonlinearities are again encountered due to
the circuit MOSFETs. It is practically impossible to jointly
simulate or analyze both the full nonlinear circuit and the
large grid all at once, and the common practice is to decou-
ple the two. Typically, this means that the circuit blocks are
represented by some suitable model, whereby the blocks act
as current sources with some nonlinear parasitic network,
for purpose of grid simulation or verification. In fact, this
nonlinearity is often ignored and the blocks are represented
by current sources with linear parasitics. These parasitics
are relevant when one considers the impact that grid voltage
fluctuation has on the circuit current demands. However, for
vectorless verification, because of the larger impact that un-
certainty of the currents has on the grid response, this effect
is often ignored, and the circuit currents are assumed ideal
- and this is what will be assumed for this paper. In any
case, it is trivial to extend existing techniques by includ-
ing some current source non-idealities by addition of linear
source resistance.
Strictly speaking, the grid is partitioned into two distinct

components, the ground network and the power network, so
that there is no true “ground” reference node for the grid.
It is possible to develop vectorless verification techniques
that take this into account [3]. However, in most cases,
and because of the near-symmetry of the two portions of
the grid, a “virtual ground node” is assumed to represent
the half-way point between the two. As a result, almost all
published power grid verification methods assume the exis-
tence of a global ground node as reference, so that the meth-
ods are applicable separately to either the ground network
or the supply network. In this framework, all capacitance
is from node-to-ground, and coupling capacitance between
nodes (within the same network) is ignored.
Early grid verification work, in both academia and indus-

try, was focused on study of the grid under DC conditions,
so that a strictly resistive (R) grid was considered, and was
then extended to dynamic analysis, including the RC case
where all inductance is ignored, and the RLC case. DC
verification is useful to quickly discover gross grid design er-
rors. The RC case is suitable when mainly debugging the
on-die grid, and RLC verification is suitable when mostly
concerned with the effect of off-die parasitics. In the follow-
ing, we will describe the RC case problem formulation, then
restrict that to the DC case, then describe the RLC case.

3.1 The RC Case
Consider an RC grid with a capacitor from every node to
ground. Some nodes have ideal current sources, to ground,
representing the currents drawn by the logic circuits tied to
the grid at these nodes. Some other nodes are connected to
ideal voltage sources representing the external voltage sup-
ply, Vdd. Excluding the ground node, let the power grid
consist of n+ p nodes, where nodes 1, 2, . . . , n are the nodes
not connected to a voltage source, while the remaining nodes

(n+ 1), (n+ 2), . . . , (n+ p) are the nodes where the p volt-
age sources are connected. Let i(t) ≥ 0 be the vector of all
the m current sources connected to the grid, whose positive
(reference) direction of current is from node-to-ground, as-
sumed to be connected at nodes 1, 2, . . . ,m ≤ n. Let H be
an n×m matrix of 0 and 1 entries that identifies which node
is connected to which current source, and let is(t) = Hi(t).
Fig. 1 shows a representative grid structure.

Let u(t) be the vector of node voltages, relative to ground.
By superposition, u(t) may be found in three steps: 1) open-
circuit all the current sources and find the response, which
would obviously be u(1)(t) = Vdd in this case, 2) short-circuit

all the voltage sources and find the response u(2)(t), in this

case u(2)(t) ≤ 0, and 3) find u(t) = u(1)(t) + u(2)(t). To

find u(2)(t), KCL at every node easily provides, via Nodal
Analysis [4], that:

Gu(2)(t) + Cu̇(2)(t) = −is(t) (10)

where C ≥ 0 is an n × n diagonal non-singular matrix
consisting of all node-to-ground capacitances and G is the
n×n conductance matrix, which is symmetric and diagonally
dominant with positive diagonal entries and non-positive off-
diagonal entries. Assuming the grid is connected and has
at least one voltage source, then G is known to be irre-
ducibly diagonally dominant. With this, it can be shown
that G is a so-called M-matrix, so that G−1 exists and is
non-negative, G−1 ≥ 0, and all the eigenvalues of G are real
and positive. We are mainly interested in the voltage drop
v(t) = Vdd − u(t) = −u(2)(t) ≥ 0, rather than u(t), so that:

Gv(t) + Cv̇(t) = is(t) (11)

Note therefore that v(t) may be found directly from analysis
of the circuit in the case when the voltage sources are short-
circuited and the current source directions are reversed.

3.2 The DC Case
With all currents fixed over time, only grid resistance is
relevant and the voltage drop may be obtained by setting to
zero the time-derivative in (11), so that:

Gv = is (12)

And the worst-case voltage drop is:

v∗ = emax
is∈F

(G−1is) (13)

3.3 The RLC Case
With the introduction of inductance, Nodal Analysis is not
enough and we need Modified Nodal Analysis [4] (MNA).
The voltage sources are first eliminated outright, as was done
for theRC case, by using superposition. So, the voltage drop
is v(t) = Vdd − u(t) = −u(2)(t), where u(2)(t) is the vector
of node voltages when the voltage sources are shorted out.
In this special case, MNA provides the required system of
equations as the combination of KCL at all the nodes and
the branch equations at all the inductors:

Gu(2)(t) + Cu̇(2)(t) +Mil(t) = −is(t) (14)

MTu(2)(t)− Li̇l(t) = 0 (15)

where L is an l × l non-singular diagonal matrix consisting
of the inductance values of the l inductors in the circuit
(mutual inductance is ignored), and M is an n× l incidence
matrix consisting of ±1 or 0 elements only, according to:



Table 1: DC Grid Verification, with δ = 5mV.

Grid Size CPU
(# nodes) Time

8K 1.1 hr
25K 4.8 hrs
41K 8.3 hrs
50K 10.8 hrs
73K 17.4 hrs
113K 1.14 days

• If node j is connected to inductor k and the reference
direction for current in k is away from j, thenmjk = 1.

• If node j is connected to inductor k and the reference
direction for current in k is towards j, then mjk = −1.

• Otherwise, mjk = 0.

Therefore, the voltage drop is the solution of the system:

Gv(t) + Cv̇(t)−Mil(t) = is(t) (16)

MT v(t) + Li̇l(t) = 0 (17)

4. VERIFYING DC GRIDS
Given (2), (5), (12), and (13), it is clear that v∗ in the DC
case may be found using a sequence of linear programs (LP),
as first proposed in [5]:

for(k = 1, 2, . . . , n) :

Maximize: vk (18)

Subject to: 0 ≤ UGv ≤ Ic

Each LP is quite large in size, with n variables and as many
constraints as there are current constraints, both local (m)
and global, but the fact that G is highly sparse helps address
some of this concern. In addition, it turns out that it is
computationally more effective to run the optimization in
the current space, rather than voltage space, as follows:

for(k = 1, 2, . . . , n) :

Maximize: vk = G−1is
∣∣
k

(19)

Subject to: 0 ≤ Uis ≤ Ic

where the notation G−1is|k denotes the kth entry of the vec-
tor G−1is. This may be counter-intuitive because computa-
tion of a large matrix inverse is usually prohibitive. How-
ever, given the convenient properties of G, it turns out that
using a sparse approximate inverse (SPAI) approach (such
as will be explained below in reference to RC grids) is quite
effective, especially that only one row of G−1 is required at
a time. The key advantage is that the simplified structure
of the constraints 0 ≤ Uis ≤ Ic is such that the LPs remain
small in size and execute much faster. In spite of this, one
obvious concern with this formulation is the fact that n such
LPs have to be solved, one for each power grid node that
needs to be verified.
Representative performance data is given in Table 1, show-

ing that it is possible to verify a grid with 100k nodes in
a day. This is obviously not good enough to verify large
billion-node grids, but there is a number of considerations
that address this concern. Firstly, and especially early in
the design flow, one is often dealing with a coarse descrip-
tion of the power grid, in which the number of nodes is not

necessarily in the hundreds of millions and, anyway, it may
be that one may not need to verify every node, but only cer-
tain critical nodes. Secondly, because each LP is decoupled
from all the rest, one easy way to speed things up is to take
advantage of parallelism, which is especially relevant today,
with the proliferation of multi-core CPUs. Basically, every
run of the for-loop above is a separate computational process
and they may all be run in parallel. Thirdly, additional re-
search results on macromodeling [6, 7], node elimination [8],
and node dominance [9] go a long way to reduce the com-
putational workload.

5. TIME-DISCRETIZATION - RC GRIDS
One approach to solve the problem in the dynamic case (11)
starts out by discretizing time and using a finite-difference
approximation of the derivative, essentially a backward Eu-
ler numerical scheme v̇(t) ≈ [v(t)−v(t−Δt)]/Δt. Assuming
that Δt is small enough to achieve good accuracy, we have:

Av(t) = Bv(t−Δt) + is(t) (20)

where B = C/Δt and A = G + B. This recurrence rela-
tion captures the evolution of the system over time, and the
voltage drop at any time t is given by:

v(t) = A−1Bv(t−Δt) +A−1is(t) (21)

with the key observation that, like G, the matrix A is an
M-matrix, so that A−1 ≥ 0 exists and A−1B ≥ 0.

5.1 Exact Solution
Applying the recursion (21) at (t−Δt):

v(t−Δt) = A−1Bv(t− 2Δt) +A−1is(t−Δt) (22)

and substituting back for v(t−Δt) in (21) gives:

v(t) =
(
A−1B

)2
v(t−2Δt)+

(
A−1B

)
A−1is(t−Δt)+A−1is(t)

(23)
and in general, with p ≥ 1, we can write:

v(t) =
(
A−1B

)p
v(t− pΔt) +

p−1∑
q=0

(
A−1B

)q
A−1is(t− qΔt)

(24)
Assuming that the values of the source currents is(·) at any
two time points are independent variables, we can write:

v∗ = emax
is∈F

[v(t)] = emax
is∈F

[(
A−1B

)p
v(t− pΔt)

]

+

p−1∑
q=0

emax
is∈F

[(
A−1B

)q
A−1is(t− qΔt)

]
(25)

because v(t − pΔt) depends only on values of is(τ) for τ ≤
(t − pΔt). The assumption of independence of is(·) across
time is clearly conservative because it allows for maximum
freedom of the optimization variables. Recall that the spec-
tral radius of a matrix X, denoted ρ(X), is the magnitude
of the largest eigenvalue of X. From [10], we know that
ρ(A−1B) < 1. We also know from the spectral mapping the-
orem [11] that, if X is a square matrix and k is an integer,
then the set of eigenvalues of Xk consists of all the eigenval-
ues ofX, each raised to the power k, so that ρ((A−1B)p) < 1
as well, which guarantees that limp→∞(A−1B)p = 0. If we
then let p→ ∞ in (25), and because v(t− pΔt) is bounded



(the grid being a stable system with bounded inputs), then:

v∗ =
∞∑
q=0

emax
is∈F

[(
A−1B

)q
A−1is

]
(26)

where we use the single variable vector is to denote the cur-
rent vector at any chosen time-point, again due to the inde-
pendence of the currents across time. This (26) is the exact
solution in the RC case. It is an infinite sum whose every
term requires the solution of a linear program. Clearly, it is
prohibitively expensive to use this for computation. Instead,
in the following, we give practical ways to estimate v∗.

5.2 Upper-Bound
Given that the values of the source currents is(·) at any two
time points are independent variables, as assumed above, we
can use (21) to write:

v∗ = emax
is∈F

[v(t)] = emax
is∈F

[(
A−1B

)
v(t−Δt)

]
+emax

is∈F
(
A−1is

)
which, because A−1B ≥ 0, leads to:

v∗ ≤ (
A−1B

)
emax
is∈F

[v(t−Δt)] + emax
is∈F

(
A−1is

)
(27)

However, because v∗ is time-independent, then we can write
emax
is∈F

[v(t−Δt)] = emax
is∈F

[v(t)] = v∗, so that:

(
I −A−1B

)
v∗ ≤ emax

is∈F
(
A−1is

)
(28)

Because B = A − G, then I − A−1B = I − A−1(A − G) =
A−1G, and I +G−1B = I +G−1(A−G) = G−1A, so that:(

I −A−1B
)−1

= I +G−1B ≥ 0 (29)

which is non-negative because both G−1 ≥ 0 and B ≥ 0. So,
we can multiply the left-hand-side of (28) by (I −A−1B)−1

and the right-hand-side by I +G−1B, to get:

v∗ ≤ (
I +G−1B

)
emax
is∈F

(
A−1is

)
(30)

This is a very useful upper-bound, which was first derived
in [10] based on a power-series argument arising from (26).
Its accuracy was investigated [10] and found to be quite
good (recent tests show a maximum error of 4mV on a 5K
node grid). Computationally, it requires a sequence of n
LPs to evaluate the single emax(·) term, exactly like a DC
verification (19), followed by the solution of a linear algebraic
system based on LU -factorization of G. It reduces the cost
of verification under transient currents to about the same
as that of verification under DC currents. It provides a
sufficient condition for grid safety: if the right-hand-side
of (30) is less than a user-specified threshold, then the grid
is safe.
It remains to deal with the fact that we need to have the

explicit inverse A−1 to evaluate (30). Normally, this is pro-
hibitive. However, because the system matrix A is sparse,
symmetric, positive-definite, and a banded M-matrix (for
a reference on M-matrices, consult [12]), then A−1 is non-
negative, A−1 ≥ 0, and its entries have values that decay ex-
ponentially as one moves away from the diagonal [13]. With
this, one can use the Sparse Approximate Inverse (SPAI)
technique [14] to construct a very good approximation to
A−1 that neglects the vast majority of negligible off-diagonal
entries, on a row (or column) at a time basis, and subject
to a user-specified error tolerance. SPAI was adapted to

Table 2: RC Grid Verification, with δ = 5mV.

Grid Size CPU
(# nodes) Time

8K 2.36 mins
21K 13 mins
40K 28 mins
50K 39 mins
73K 1.23 hrs
113K 2.67 hrs
364K 24.6 hrs
1M 9.27 days

power grid verification in [15], to ensure that the result-
ing matrix inverse guarantees an upper bound on v∗. With
an error tolerance of δ = 5mV, some representative perfor-
mance data is given in Table 2. Basically, a million-node
grid takes just under 10 days. Note that this data is much
better than in the DC case. The reason is that the matrix
A = G + C/Δt is even more diagonally dominant than G
and so its inverse is more sparse and, overall, the individual
LPs turn out to be smaller and less expensive. Finally, SPAI
is just as parallelizable as the computation of the emax(·)
operator, and the only task that is not completely paralleliz-
able is the LU -factorization of G, required for (30), which
must be performed only once.

5.3 Extended Upper-Bound
The above upper bound can also be extended and general-
ized for better accuracy if need be, so that multiple (but
obviously not infinite), applications of emax(·) can be done.
From (25), with p ≥ 1, and because (A−1B)p ≥ 0, then:

emax
is∈F

(v(t)) ≤ (
A−1B

)p
emax
is∈F

(v(t− pΔt))

+

p−1∑
q=0

emax
is∈F

[(
A−1B

)q
A−1is(t− qΔt)

]
(31)

By time-invariance of v∗, this leads to:

[
I − (

A−1B
)p]

v∗ ≤
p−1∑
q=0

emax
is∈F

[(
A−1B

)q
A−1is

]
(32)

Recall that ρ((A−1B)p) < 1. Recall also from [12] that,
if X is a non-negative matrix, then ρ(X) < 1 if and only
if (I − X) is non-singular and (I − X)−1 is non-negative.
Clearly, (A−1B)p is non-negative because A−1B ≥ 0. Then[
I − (A−1B)p

]
is non-singular and its inverse is non-negative,

so that we can multiply both sides of the above inequality
by that inverse, which yields the generalized upper-bound:

v∗ ≤
[
I − (

A−1B
)p]−1

p−1∑
q=0

emax
is∈F

[(
A−1B

)q
A−1is

]
(33)

5.4 Current Slope Constraints
In the preceding, we have assumed that the currents at any
two time-points are independent variables. However, this
means that the current source waveform slopes can be quite
large, especially for small Δt. To avoid this unrealistic sit-
uation without sacrificing computational efficiency, one can
use the expedient of current filters, which we propose for
the case of RC grids as follows. First, rewrite the RC grid
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vs,k(t)

Rest of the gridik(t)= gkvs,k(t)

is,k(t)

gk

Figure 2: Controlled source filter.

system (11), recalling that is(t) = Hi(t), as:

Gv(t) + Cv̇(t) = Hi(t) (34)

Next, we assume that every current source ik(t) is in fact
derived from another independent current source is,k(t) by
means of the simple relationship:

ik(t) = gkvs,k(t) (35)

where vs,k(t) is the voltage at the terminal of is,k(t) that
is connected to ground through the parallel combination of
a resistor with conductance gk and a capacitor ck, while
the other terminal of is,k(t) is connected directly to ground,
as in Fig. 2. Assuming the positive (reference) direction of
current is,k(t) is as shown in Fig. 2, then:

gkvs,k(t) + ckv̇s,k(t) = is,k(t) (36)

With this, the source is,k(t) can take values that are inde-
pendent variables at any two-time points, while the sources
ik(t) applied to the grid are slope-constrained by the sin-
gle time-constant arising from the parallel combination of
gk and ck. The matrix equation for all these filtered sources
becomes:

Gsvs(t) + Csv̇s(t) = is(t) (37)

where Gs and Cs are non-singular diagonal matrices with
positive diagonals. Making use of i(t) = Gsvs(t), arising
from (35), and combining (34) and (37) leads to:[

G −HGs

0 Gs

] [
v(t)
vs(t)

]
+

[
C 0
0 Cs

] [
v̇(t)
v̇s(t)

]
=

[
0

is(t)

]
(38)

or:

G̃ṽ(t) + C̃ ˙̃v(t) = ĩs(t) (39)

Note that the larger capacitance matrix C̃ remains diago-
nal, non-negative, and non-singular with a positive diagonal.
Note also that G̃ is non-singular because its inverse is:

G̃−1 =

[
G−1 G−1H
0 G−1

s

]
(40)

which, crucially for our work, is non-negative.
Using a backward Euler finite difference approximation,

˙̃v ≈ (ṽ(t) − ṽ(t − Δt))/Δt, a discrete-time version of the
system equation (39) can be written, as before, as:(

G̃+
C̃

Δt

)
ṽ(t) =

C̃

Δt
˙̃v(t−Δt) + ĩs(t) (41)

or, simply:

Ãṽ(t) = B̃ṽ(t−Δt) + ĩs(t) (42)

where B̃ = C̃/Δt is a non-singular diagonal matrix, with

a positive diagonal, and Ã = (G̃ + B̃) can be shown to be
non-singular with a non-negative inverse, as follows. Note:

Ã =

[
G+ C

Δt
−HGs

0 Gs +
Cs
Δt

]
(43)

Considering the two block matrices on the diagonal, notice
first that G + C/Δt is our original A matrix (from (20))
which is an M-matrix, and so has a non-negative inverse.
Notice also that Gs + Cs/Δt is a diagonal matrix with a
positive diagonal, so that it is non-singular and its inverse
is also diagonal with a positive diagonal. Therefore, the
following matrix is well-defined:[(

G+ C
Δt

)−1 (
G+ C

Δt

)−1
HGs

(
Gs +

Cs
Δt

)−1

0
(
Gs +

Cs
Δt

)−1

]
(44)

and is non-negative, and it is trivial to verify that this matrix
is in fact Ã−1. Therefore, Ã−1B̃ ≥ 0, which is of interest
because of the relation:

ṽ(t) = Ã−1B̃ṽ(t−Δt) + Ã−1 ĩs(t) (45)

Recall again from [12] that, for a non-negative matrix X,
ρ(X) < 1 if and only if (I − X) is non-singular and its

inverse is non-negative. For our work, let X = Ã−1B̃, then
X = Ã−1(Ã − G̃) = I − Ã−1G̃, so that I − X = Ã−1G̃,

whose inverse G̃−1Ã = G̃−1(G̃+ B̃) = I + G̃−1B̃ exists and

is non-negative. Therefore, ρ(Ã−1B̃) < 1.

With Ã−1B̃ ≥ 0 and ρ(Ã−1B̃) < 1, we now have the
same key properties that enabled the derivation of the ex-
act solution and the upper bounds in the previous sections.
Thus, the same algorithms given above for RC grids can be
applied here, thereby incorporating source waveform slope
constraints. Empirical data shows that this has some, but
not a great impact on the results, probably due to the fact
that grid parasitics impose their own “filter effect”, so that
slope constraints probably affect only a small fraction of
the grid nodes, mainly those that are close to the current
sources.

6. TIME-DISCRETIZATION - RLC GRIDS
As in the RC case, backward Euler discretization can be
applied to the RLC dynamic equations (16), (17), leading
to: (

G+
C

Δt

)
v(t)−Mil(t) =

C

Δt
v(t−Δt) + is(t) (46)

MT v(t) +
L

Δt
il(t) =

L

Δt
il(t−Δt) (47)

Multiplying (47) by L−1Δt to get an expression for il(t) and
substituting that in (46), similar to what was done for the
case of trapezoidal integration in [16], gives:

Dv(t) =
C

Δt
v(t−Δt) + is(t) +Mil(t−Δt) (48)

where:

D
�
= G+

C

Δt
+M

(
L

Δt

)−1

MT (49)

The next step is to find a way to remove the il(t − Δt)
term from (48). The details are given in [17] and require
a mild assumption about the circuit topology (every induc-
tance must be in series with a resistor), from which it follows



that il(t−Δt) = Ĝv(t−Δt), where Ĝ is a simple variation on
G that is very easily constructed based on circuit topology.
This is important because it leads to the following single
recurrence equation that governs the system dynamics:

Dv(t) = Ev(t−Δt) + is(t) (50)

where E = MĜ + C/Δt, and it can be proven that the
system matrix D is sparse, symmetric positive-definite, and
a banded M-matrix. It follows that D−1 ≥ 0 exists and
its entries decay exponentially as we move away from the
diagonal [13].

6.1 Exact Solution
In the RLC case, because of the possibility of getting over-
shoots, we are interested in both the maximum voltage drop
emax[v(t)] and the minimum voltage drop emin[v(t)], which
gives the over-shoot. We combine these in the single 2n× 1
vector v(opt) using the eopt(·) operator (7):

v(opt) = eopt(v(t)) =

[
emaxis∈F (v(t))
eminis∈F (v(t))

]
(51)

Starting with (50) and proceeding as in the RC case, skip-
ping the details, one can find a similar expression for the ex-
act solution, based on the argument [17] that ρ(D−1E) ≤ 1
(due to the fact that backward Euler is absolutely stable and
the grid is a stable system), so that:

v(opt) =

∞∑
q=0

eopt
is∈F

[(
D−1E

)q
D−1is

]
(52)

Here too, this is too expensive to compute and more practi-
cal estimates have been found, as follows.

6.2 Upper and Lower Bounds
Unlike in the RC case where A−1B was non-negative, we do
not in this case have a guarantee that D−1E is non-negative.
This necessitates a more complex approach [17], whose end
result is as follows. We can produce an upper-bound on the
maximum voltage drop, call this vub:

emax
is∈F

(v(t)) ≤ vub (53)

and a lower-bound on the minimum voltage drop, vlb:

emin
is∈F

(v(t)) ≥ vlb (54)

and so the desired bounding solution in lieu of v(opt) is:[
vub
vlb

]
(55)

Let J = (D−1E)r where r ≥ 1 is an integer, and let T = |J |
consist of the element-wise absolute values of J . We can
prove that there exists a value of r for which ρ(T ) < 1 and
we have devised a simple test by which this condition can be
checked for a given r. The first phase is to increment r from
1, and identify the first r for which ρ(T ) < 1. This becomes
the fixed value of r for the rest of the algorithm. We then
show that the desired bounds are given by:[

vub
vlb

]
=

{
I − 1

2

[
J + T J − T
J − T J + T

]}−1

×
r−1∑
q=0

eopt
is∈F

[(
D−1E

)q
D−1is

]
(56)

Table 3: RLC Grid Verification, with δ = 5mV.

Grid Size r CPU
(# nodes) Time

9K 3 41 mins
14K 1 1.26 hrs
20K 3 3 hrs
43K 4 4.17 hrs
76K 4 9.8 hrs
119K 7 22.32 hrs
170K 5 1.5 days

In our experience, the values of r are very small, in the range
1-7 or so. SPAI is again used to speed up the eopt(·) op-
erations and the overall runtime is demonstrated by some
representative data in Table 3. The quality of the bounds
is quite good, in the range of 1-9mV for grids where a com-
parison to the exact solution is possible [17].

7. CONTINUOUS TIME - WAVELETS
A drastically different approach has been provided in [18],
where time is not discretized but, instead, current source
waveforms are expressed as an expansion on a set of basis
functions, and this is applicable to both RC and RLC grids.
A finite set of wavelets ψm,n(t) is used as the basis, where
m = 1, 2, . . . ,M , where M = �log2(2fmax/fmin) enumer-
ates the spectrum of frequencies in the basis, up to a maxi-
mum that is determined by the signal frequency bandwidth
of interest to the user [fmin, fmax], and n = 1, 2, . . . up to a
maximum that depends on the impulse response duration of
the grid. With this, the current waveform of the jth current
source is expressed as:

ij(t) = idc,j +

M∑
m=1

nm,j∑
n=0

Tm,n,jψm,n(t) (57)

where idc,j and Tm,n,j are coefficients that are determined
as a result of the power grid verification. Once the grid has
been verified, we would not only know the worst-case under-
shoot and over-shoot but also the combination of current
stimulus waveforms at the current sources that is responsible
for the worst-case. This provision of diagnostic information,
about the current combination that causes the worst case,
is a special and key feature of this approach.

Let hm,n,j,z(t) be the voltage drop waveform at node z,
due to a single wavelet stimulus ψm,n(t) applied at source
ij(t), with all other current sources turned off (open-circuit).
Let kj,z be the dc gain from current source j to node z.
Then, by superposition, the voltage response at node z when
only current source ij(t) is active is given by:

vj,z(t) = kj,zidc,j +
M∑

m=1

nm,j∑
n=0

hm,0,j,z ((nm,j − n)2mu)Tm,n,j

(58)
where u is the time unit. If the grid is driven by q current
sources then the complete voltage response at node z is:

vz(t) =

q∑
j=1

kj,zidc,j

+

q∑
j=1

M∑
m=1

nm,j∑
n=0

hm,0,j,z ((nm,j − n)2mu)Tm,n,j (59)



which is a linear combination of known time functions with
a number of unknown coefficients. Current constraints (in-
cluding frequency domain constraints in this case) applied
to the currents (57) translate to a set of linear constraints
on the coefficients. The node voltages (59) are then maxi-
mized or minimized subject to these constraints, resulting in
a linear program implementation for power grid verification.
In spite of the ominous mention of impulse response and

dc gain, the method is quite efficient to set up because it
is based on the Haar wavelet family. The main source of
computational difficulty is actually the size of the wavelets
basis and so the number of coefficients. Overall, the method
can be used to verify a 36K node grid in about 11 hours.
Given the diagnostic ability of the approach, it is certainly
applicable to a high-level power grid model in which, for
example, the resonance with the package is to be studied.

8. ADDITIONAL FEATURES
There have been many variations on the above techniques.
Verification where both the power and ground grids were
considered jointly is given in [3]. Macromodeling of parts
of the grid that do not need to be verified, in the inter-
est of an incremental or hierarchical grid verification have
been studied in [6], [8], and more recently in [7]. The very
powerful technique of node dominance has been given in [9],
whereby many nodes are identified that do not need to be
verified because their safety is implied by the safety of other
nodes. Dual LP based techniques have been proposed in [19],
whereby the constraints remain linear but the objective func-
tion for verification becomes nonlinear but convex, allowing
one to benefit from powerful modern convex optimization
methods. An interesting technique is given in [20] for fast
matrix inversion whereby the values of some columns of the
matrix are inferred from other columns. An extension of
the verification problem to the case of transient constraints
has been given in [21]. Finally, in [22] and recently in [23]
(corrected in [24]), a restriction of the problem to hierarchi-
cal constraints is considered, whereby global constraints are
required to be wholly contained in other global constraints.
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