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ABSTRACT
Electromigration (EM) is re-emerging as a significant problem in
modern integrated circuits (IC). Especially in power grids, due
to shrinking wire widths and increasing current densities, there is
little or no margin left between the predicted EM stress and that
allowed by the EM design rules. Statistical Electromigration Bud-
geting (SEB) estimates the reliability of the grid by considering it
entirely as a series system. However, a power grid with its many
parallel paths has much inherent redundancy. In this paper, we
propose a new model to estimate the MTF and reliability of the
power grid under the influence of EM, which accounts for these
redundancies. We refer to this as the mesh model. To implement
the mesh model, we also develop a framework to estimate the
change in statistics of an interconnect as its effective-EM current
varies. The proposed algorithm is quite fast and has an overall
observed empirical complexity of O(n1.4). The results indicate
that the series model, which is currently used in the industry,
gives a pessimistic estimate of power grid MTF and reliability by
a factor of 3-4.

Keywords
Power grid, Electromigration, MTF Estimation, Verification, Re-
dundancy

1. INTRODUCTION
Verifying the power grid is a crucial step in VLSI design, as

the reliability of the underlying logic heavily depends on its power
grid. Not only must an IC perform as desired, it must also survive
and function as intended for several years before failing. With the
complexity of modern designs, reliability is becoming a more seri-
ous concern. Specifically, electromigration (EM) has re-emerged
as a significant problem in modern chip design and there are three
problems that demand attention: 1) existing EM checking tech-
niques for the power grid are overly pessimistic (because of an
underlying series system assumption, as we will explain), leading
to loss of safety margins and multiple design iterations, 2) in-
creased current density in grid metal lines has led to a significant
loss of margins between the predicted EM stress and the allowed
thresholds, and 3) checking modern, large power grids for EM has
become very expensive. To make things worse, it is forecast [18]
that metal line current density and reliability due to EM will get
dramatically worse with continued technology scaling. As a re-
sult, EM signoff has become increasingly difficult and designers
are forced to reconsider traditional approaches, and to look with
suspicion at the large safety margins and pessimism built into
traditional EM checking methods.

Historically, ‘worst case’ current density limits for individual
lines were used to arrive at reliable designs for ICs. However,
this approach severely restricted the design process, which moti-
vated the need for a model to relate the reliability of individual
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components to the reliability of the entire system. In an early
contribution [6] a series model was proposed to determine the re-
liability of an IC, under which a system is deemed to have failed
as soon as any of its components fails. Under the series model,
and with some simplifying assumptions, the failure rate of the
system is the sum of failure rates of individual components. The
series model was applied to the Alpha 21164 microprocessor, un-
der the name Statistical Electromigration Budgeting (SEB) [9]
and became a standard technique in many industrial CAD tools.

However, modern power grids use a mesh structure. With their
many paths for current flow, meshes have much redundancy and
are in fact closer to (but not quite) a parallel system, rather than
a series system, and so have a longer lifetime than a series system.
This issue has largely been ignored in EM checking tools, both in
academia and industry; no industrial tool has this feature today.
While SEB accounts for the fact that EM failures are statistical
it does not, however, recognize the benefits of redundancy and it
treats the overall metal structure as a series structure. A power
grid is not necessarily failed if one of its metal lines fails. Instead,
in our approach, we deem a power grid to have failed only when
enough lines have failed that the voltage on the grid becomes
unacceptable. Our data shows that, in many cases, a grid can
tolerate up to 30 or more line failures before it truly fails! In this
work, we develop a more realistic grid EM checking and budget-
ing method that takes the redundancy of the grid structure into
account. Specifically, a) we develop a new model, referred as the
mesh model, that intelligently factors in the redundancy of the
power grid while estimating its MTF and reliability and b) we
propose a novel framework to estimate the change in statistics
of an interconnect as its effective-EM current varies in steps on
a time-scale comparable to the failure times of interconnects, as
is the case in mesh model. In implementing the mesh model, we
also develop an efficient exact method to update the node voltage
drops as the structure of the grid changes due to failure of inter-
connects. Our preliminary analysis using publicly available grids
from IBM, with up to 700k nodes, and internally generated grids,
with up to 1 million nodes, show an increase in predicted lifetime
of 3-4x compared to the existing series-system based approach.
A lot of margin is therefore “left on the table” and there is room
for high-impact improvements in EM verification.

The remainder of the paper is organized as follows. In section 2,
we present a background on EM and the power grid model. Sec-
tion 3 describes the mesh model and the proposed framework for
computing the statistics of a metal line in the scenario of chang-
ing currents. Implementation details are provided in section 4
followed by the experimental results in section 5. Finally sec-
tion 6 concludes the paper.

2. BACKGROUND

2.1 Electromigration
Electromigration is the mass transport of metal due to mo-

mentum transfer between electrons (driven by an electric field)
and diffusing metal atoms. Failure occurs in metal lines only
when there is a flux divergence with regard to movement of metal
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atoms. The distortions in the lattice, in the form of vacancies and
grain boundaries, allow for diffusion of metal atoms, which leads
to flux divergence and hence failure due to EM.

2.1.1 EM model: Black’s Equation
Under the influence of Electromigration, metal line resistance

increases as a line approaches failure and starts to deform due to
void creation or hillock formation. Empirically, Black’s Equation
has been used to determine the Mean Time to Failure or MTF
of metal line under the influence of electromigration [2]:

MTF =
wt

A
J−n exp

(

Ea

kTm

)

(1)

where A is an empirical constant that depends on a host of phys-
ical properties such as volume resistivity of the metal and the
effective ionic scattering cross section for electrons; w and t are
the width and thickness of the line respectively, J is the effective-
EM current density, n is a current exponent, k is the Boltzmann’s
constant, Tm is the temperature in Kelvin and Ea is the activa-
tion energy for Electromigration. A current density exponent
n = 1 is consistent with void growth limited failure [8] and n = 2
indicates void nucleation limited failure [10].

2.1.2 Blech Effect
If the line is short enough, then the back-stress developed due

to accumulation of atoms at the ends of the line could overcome
the build-up of the critical stress required for creation of a void in
a line, and thus the line is no longer susceptible to EM failure [3].
This effect, called the Blech effect, is quantified in terms of a
critical value of product between current density (J) and length
of a line (L), denoted by βc. For a given current density J , a
line is said to be EM-immune if JL ≤ βc and EM-susceptible if
JL > βc.

2.1.3 Lognormal distribution
Under identical conditions of geometry, current and temper-

ature, the rate of EM degradation depends on the specific mi-
crostructure of the metal line. As a result, due to random manu-
facturing variations, the Time-to-Failure (TTF) is a random vari-
able T, typically modeled with a lognormal distribution with the
mean time-to-failure (MTF) as given by (1). The deviation of
lnT, denoted by σln, is dependent on the ratio of width to me-
dian grain size of the metal line for aluminum [4] and on the
product JL2 for copper [12], and this dependence is determined
experimentally. However, the deviation in both cases eventually
levels off to a constant value. Hence, in this paper we assume that
σln is constant for a given material, as is typical in the literature.

2.1.4 Obtaining a TTF sample
Given that the Time-To-Failure of an interconnect in a power

grid has a lognormal distribution, a TTF sample from the distri-
bution can be obtained using:

τ = exp (µln +Ψσln) (2)

where µln = E[lnT] and Ψ is a sample value from standard nor-
mal distribution Φ. We know that for a lognormal distribution:

µln = ln(µT )− 0.5σ2
ln (3)

where µT = E[T] and is empirically determined using (1). From
(3) and (2), we finally get:

τ = exp
(

ln(µT )− 0.5σ2
ln +Ψσln

)

= µT exp
(

Ψσln − 0.5σ2
ln

)

(4)

2.1.5 Effective-EM current
Because EM is a long-term cumulative failure mechanism, the

changes in line current on very short time-scales (such as the
normal operation of a digital chip), are not terribly significant.
Instead, the standard approach is to compute an effective-EM
current, which is a constant current value, derived from the line
current waveform which gives the same lifetime for that line un-
der the influence of electromigration. In traditional EM work,

this effective current is computed based on some assumed peri-
odic current waveform. If the waveform is uni-directional, then
Direct Current EM analysis is used, based on time-averaged cur-
rent density (Javg). For more general cases of bi-polar currents,
transient current EM analysis uses an effective-EM current den-
sity of [11]:

Jtran,EM.eff =
1

T

(∫ T

0
J+(t)dt− ϕ

∫ T

0
|J−(t)|dt

)

(5)

where
∫

J+(t)dt is the integral of one side of the current waveform

and is larger than the opposite side (i.e.
∫

J−(t)dt) and ϕ is the
EM recovery factor, that is determined experimentally.

2.2 Power Grid Model
The power grid nodes are numbered 1, 2 . . .m, with the ground

node being 0. The currents drawn by the underlying logic blocks
are modeled by a set of current sources connected between a sub-
set of the grid nodes and the ground. An interconnect in the
power grid mostly carries uni-directional currents, so that its EM
analysis (using Black’s Equation) depends on the average current
only. Because the power grid is a linear system, the average cur-
rent in an interconnect can be obtained directly from the circuit
current averages by doing a DC analysis. The same DC anal-
ysis also gives us the average node voltage drops. In the next
section, we propose an EM verification framework that depends
on user-provided thresholds on the average voltage drops. In this
framework, it becomes sufficient therefore to perform a DC analy-
sis of the grid driven by the averages of the circuit currents. Using
Modified Nodal Analysis, the equation modeling a DC power grid
can be written as:

G(t)v(t) = i (6)

where G(t) is the m×m conductance matrix (it varies over time,
over large time-scales, as the lines age and deform, hence the time
dependence), v(t) is the corresponding vector of node-voltage
drops and i is the vector of source average currents tied to the
grid (which model the underlying logic circuits).

3. PROPOSED APPROACH
As our first contribution in this paper, we propose a new model

to determine the failure of the grid taking into account the redun-
dancies due to it’s mesh structure. Note that the development of
themesh model in section 3.1, and the material in section 3.2 upto
eq. (13), overlaps with [5]. This small overlap is unavoidable due
to lack of space and to make sure each paper is understandable
on its own.

3.1 New grid failure model: The mesh model
Circuit timing is dependent on the grid voltage drop [1]. Hence,

the safety of a power grid is dictated by the safety of its nodes.
A node is said to be safe when its voltage drop is below a user-
specified threshold. We define a power grid to be safe if all its
nodes are safe, otherwise it is deemed to have failed. Since the
voltage drop of a node is determined from the grid topology itself,
this model automatically captures the redundancies in the grid.

We assume that at t = 0, the grid is connected, so that there
is a resistive path from any node to any other node that does not
go through a vdd supply node or a ground node. A voltage-drop
threshold value for every grid node (or a subset of grid nodes) is
given, and is captured in the vector vth. We assume that i 6= 0
and vth > 0, to avoid the trivial cases. Also, we assume that the
grid is initially safe so that all its voltage drops are below user-
specified thresholds, i.e., if v0 = v(0), then we have v0 < vth.
As we move forward in time, the grid lines start to fail due to
electromigration. We define failure of an interconnect to be an
open circuit. The reader should note that this is a conservative
approach because typical EM models assume a line to have failed
once its resistance has risen above some threshold. Thus, lines
continue to conduct current, albeit with high resistance, after the
time-to-failure (TTF) predicted by typical EM models. By as-
suming infinite resistance after the predicted TTF, our approach
is thus conservative. Hence, every failure corresponds to removal
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1: while (Monte Carlo has not converged)
2: Use a random number generator to generate TTF

samples for all interconnects in the power grid

3: while (grid has not failed)

4: Remove the surviving line with lowest TTF

5: Update all node voltage drops

6: Update statistics of surviving lines

7: end while

8: Update the power grid MTF estimate

9: end while

Figure 1: Pseudo-code for mesh model

of a resistor from the grid, increasing grid sparsity. Thus, ‖G(t)‖
decreases with time, which leads to an increase in ‖v(t)‖:

‖G(t)‖‖v(t)‖ ≥ ‖G(t)v(t)‖ = ‖i‖ =⇒ ‖v(t)‖ ≥ ‖i‖
‖G(t)‖ (7)

In this model, the grid is deemed to fail at the earliest time for
which the condition v(t) ≤ vth is no longer true, which can hap-
pen either due to voltage drop(s) at some node(s) exceeding their
threshold value or due to a singular grid (i.e. as the resistors
are removed, a node becomes completely disconnected from the
other nodes, causing det(G(t)) = 0). A singular grid models the
scenario where all resistors connected to a particular node have
higher than threshold resistance due to EM. As a conservative
approximation we assume this node has failed, causing the grid
to fail. Once a grid has failed, it is assumed that it remains failed
for all future time. This model, used to determine the Time-to-
Failure of the grid, is henceforth referred to as the mesh model.

In order to estimate the MTF and reliability of the power
grid using the mesh model, we perform Monte Carlo analysis,
as shown in Fig 1. Ideally, after each interconnect failure, we
can simply find the new voltage drops by solving v(t) = G−1(t)i
using LU factorization. However, this is too expensive. In the
next section, we describe a highly efficient approach to update
the voltage drops as interconnects fail in the power grid.

3.2 Efficiently updating the voltage drops
In order to update the voltage drops efficiently, we observe that

G undergoes a rank -1 update ∆Gk after the kth interconnect fails,
where ∆Gk is the the conductance stamp of the kth interconnect
in the MNA matrix [15]. Any m×m rank -1 matrix can be written
as the outer product of two column vectors of size m. Suppose
gk is the conductance of the kth failed interconnect, connected
between nodes p and q with p > q. Then, ∆Gk = ukh

T
k , such

that
uk = −hk =

√
gk (ep − eq) (8)

where eλ is a column vector of size m containing 1 at the λth

location and zeroes at all other locations, with e0 being a vector
of all zeros. Define U so that after k failures, U , [u1 . . . uk]

and H = −U . Clearly,
∑k

j=1 ∆Gk = UHT . Thus, we can write

the vector of voltage drops vk after k interconnect failures as:

vk =
(

G0 +
∑k

j=1∆Gk

)

−1
i =

(

G0 + UHT
)

−1
i (9)

where G0 is the conductance matrix at t = 0. Now, the Woodbury
formula gives [7]:
(

G0 + UHT
)

−1
= G−1

0 −
[

G−1
0 U(Ik +HTG−1

0 U)−1HTG−1
0

]

(10)
where Ik is k × k identity matrix. Using (10) in (9), we have:

vk = G−1
0 i−

[

G−1
0 U(Ik +HTG−1

0 U)−1HTG−1
0

]

i (11)

We know that G−1
0 i = v0, where v0 is the voltage drop vector at

t = 0. Define Z , G−1
0 U = [G−1

0 u1 . . . G−1
0 uk]. Both v0 and

Z can be efficiently found using one sparse LU factorization of
G0 and k + 1 forward/backward substitutions (using triangular
matrices LG and UG). Hence, we can re-write (11) as:

vk = v0 − Z(Ik +HTZ)−1HT v0 (12)

Let Wk , (Ik +HTZ) and yk , HT v0. Eq. (12) becomes:

vk = v0 − ZW−1
k yk (13)

Even though the matrix Wk is dense, the number of intercon-
nects k required to fail a grid is a very small fraction of the number

of nodes m, hence finding W−1
k yk by LU factorization is compar-

atively cheap. The matrices Z and HTZ need not be calculated
from scratch for each failure, but can be efficiently updated by
appending appropriate vectors at the end. However, for large
grids, the number of interconnect failures required to fail a grid

can become large. Solving a dense linear system W−1
k yk using

LU factorization has O(k3) complexity. In effect, this means that
as k increases, the voltage updates using Woodbury formula slows
down. To overcome this limitation, we propose a further refine-
ment based on Banachiewicz-Schur form so that the complexity
is reduced to O(k2).

We observe that Wk can be written as:

Wk = Ik +HTZ = Ik − UTG−1
0 U

=















1− uT
1 G−1

0 u1 −uT
1 G−1

0 u2 . . . −uT
1 G−1

0 uk

−uT
2 G−1

0 u1 1− uT
2 G−1

0 u2 . . . −uT
2 G−1

0 uk

.

..
.
..

. . .
.
..

−uT
k G−1

0 u1 −uT
k G−1

0 u2 . . . 1− uT
k G−1

0 uk















(14)

SinceG−1
0 is symmetric, then uT

i G−1
0 uj = uT

j G−1
0 ui ∀i, j. Hence,

Wk is symmetric and we can re-write Wk in terms of Wk−1 as:

Wk =

[

Wk−1 bk

bTk dk

]

(15)

such that

bk = [−uT
1 G−1

0 uk . . . − uT
k−1G

−1
0 uk]

T ∈ R
k−1

dk = 1− uT
k G−1

0 uk ∈ R (16)

Hence, using the Banachiewicz-Schur form,we can express W−1
k

in terms of W−1
k−1 (see Appendix):

W−1
k =













W−1
k−1 +

W−1
k−1bkb

T
k W−1

k−1

sk

−W−1
k−1bk

sk

−bTk W−1
k−1

sk

1

sk













(17)

where sk is the Schur complement of Wk−1 in Wk:

sk = dk − bTk W−1
k−1bk (18)

Also, we know that after k interconnect failures, we can update
yk from yk−1 by appending pk , −uT

k v0 at the end:

yk = HT v0 = −[u1 . . . uk]
T v0 = [yTk−1 pk]

T (19)

Then, we can write W−1
k yk as:

W−1
k yk =













W−1
k−1yk−1 +

W−1
k−1bkb

T
k W−1

k−1yk−1

sk
−

W−1
k−1bk

sk
pk

−
bTk W−1

k−1yk−1

sk
+

pk

sk













(20)

But, the previous solution γk−1 , W−1
k−1yk−1 is known, therefore:

γk =











γk−1 +
W−1

k−1bkb
T
k γk−1

sk
−

W−1
k−1bk

sk
pk

− bTk γk−1

sk
+

pk

sk











(21)
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Define ak =
bTk γk−1 − pk

sk
. Now, we can rewrite (21) as:

γk =

[

γk−1 + akW
−1
k−1bk

−ak

]

(22)

Hence, we can use (17) and (22) to directly update W−1
k and γk

from their previous values. Notice that W−1
k is required because,

in the next iteration, W−1
k bk+1 is needed to compute γk+1 using

(22). The implementation requires a single matrix-vector prod-
uct (O(k2)) and O(k2) additions and divisions (see Algorithm
2). Woodbury-Banachiewicz-Schur formulation results in a sig-
nificant speed-up, for example we obtain a speed-up of 10.83X
by using Woodbury-Banachiewicz-Schur formulation over Sparse
LU for updating voltage drops of the grid G4 (∼ 450k nodes) as
its interconnects fail.

An interconnect failure in the power grid changes the currents
through all the surviving interconnects and hence affects their
residual lifetime. Since the sparsity of the grid increases due to
the failure of interconnects and the vector of source currents i
is constant, the surviving interconnects (on an average) should
conduct higher currents, which makes them more susceptible to
failure due to EM. Thus, the failure statistics of the surviving
interconnects should be modified to reflect the same. If ignored,
it leads to an optimistic estimate of grid TTF which is undesir-
able. As our second contribution, we develop a novel approach to
estimate the change in failure statistics of an interconnect when
its effective-EM current density changes over time.

3.3 Estimating EM statistics for step currents

3.3.1 Motivation - the Single step case
Consider a thought experiment in which a large set S0 of N

isolated conductors are tested for their failure times. The test-
ing starts at t = 0. Let the current densities through all the
conductors be identical and given by the following step function:

J(t) =

{

J0, 0 ≤ t ≤ t1
J1, t1 < t <∞ (23)

where J0 6= J1 and t1 is large, such that many conductors may
have failed before t1. This current profile is shown in Fig. 2a.
The population S0 is fresh at t = 0, but as time progresses,
it suffers damage due to EM and the conductors start failing.
We are interested in determining the distribution of the RV that
describes the statistics of TTFs of the population.

Unfortunately, the effective-EM current model (5) is not ap-
plicable to this case because it implicitly assumes that the result-
ing effective-EM current density is applied to all the conductors
throughout their lifetime. It is meant to handle current wave-
forms that change on a much smaller time-scale as compared to
the lifetime of the conductors; whereas in our experiment the cur-
rent changes on a time-scale that is comparable to the TTF of
the conductors. Hence, many conductors might have failed exclu-
sively due to J0. This motivates the need for a new approach to
estimate the statistics of the surviving sub-population.

To motivate such an approach, consider another set S1 of N
conductors identical to those in S0. Suppose S1 is subjected to a
current density of J1 for all t ≥ 0, as shown in Fig. 2b. Let F1(t)
be the cumulative distribution function (cdf) of the population
S1 and F0(t) be the cdf of S0. Clearly, F1(t) is known to be a
lognormal. Define t′1 to be such that F1(t′1) = F0(t1) as shown in
Fig. 2c. The difference δ = t1 − t′1 is easy to compute, as we will
demonstrate later. For now, we focus on the key question: ‘what
is the failure distribution of S0 after t1?’ As already pointed
out, traditional EM work is not helpful here. We now provide a
proposal for answering this question.

Considering the two populations a) S0 at time t1, and b) S1

at time t′1, notice that:

1. The two populations started out fresh with the same num-
ber of conductors, and the expected number of surviving
members of the two populations are exactly the same, due
to the fact that F1(t′1) = F0(t1). Therefore, the two popu-
lations have experienced an identical level of deterioration.
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Figure 2: Proposed approach for single-step case,
cdf ≈ no. of failed conductors/N

2. The two populations are subjected to exactly the same cur-
rent stress J1, as they move forward in time, i.e. t1+x and
t′1 + x, with x ≥ 0 for S0 and S1, respectively.

Therefore, we expect that, going forward in time, both popu-
lations will see the same instantaneous failure rate, i.e.:

λ0(t1 + x) = λ1(t
′

1 + x), ∀x ≥ 0

or λ0(t) = λ1(t− δ) for t > t1 (24)

Since λ1(t) is the failure rate of a lognormal distribution, it follows
that the failure rate of the surviving sub-population of S0, i.e.,
λ0(t1 + x), is that of a lognormal. Thus, we propose that the
statistics of the surviving sub-population of S0 be obtained by
shifting the origin of the lognormal that gives rise to λ1(t) by δ
so that the continuity of F0(t) at t = t1 is maintained, as shown
in Fig. 2d. The cdf F0(t) needs to be continuous because the
TTF of a conductor can assume any value in a given time-range.
Hence, for t > t1, the statistics of S0 are described by a section
of a shifted lognormal distribution, the mean of which is identical
to the mean of the lognormal that gave rise to λ1(t). This key
point motivates the first two assumptions to be made in the next
section.

We define two RVs T0 and T1, where T0 describes the TTF
distribution of S0 when it is subjected to J0 for t ≥ 0, and T1 de-
scribes the TTF distribution when S0 is subjected to zero current
density for t ≤ δ and J1 for t > δ. The cdfs FT0

(t) and FT1
(t) of

T0 and T1 are known to be lognormal. Following the arguments
of the previous paragraph, we propose the cdf of S0 to be:

F0(t) =

{

FT0
(t), 0 ≤ t ≤ t1

FT1
(t− δ), t1 < t <∞ (25)

where the time-shift δ ∈ (−∞, t1) is found using the continuity
constraint FT1

(t1 − δ) = FT0
(t1) or:

Φ

[

ln(t1 − δ)− µln,1

σln,1

√
2

]

= Φ

[

ln t1 − µln,0

σln,0

√
2

]

(26)

Φ the is standard normal cdf, µln,k = E[lnTk] and σ2
ln,k =

Var(lnTk). Also, define µT,k = E[Tk]. Since Φ is monotonic, we
equate the terms in the brackets and use (3) in (26) to arrive at:

ln

(

t1 − δ

µT,1

)

=
σln,1

σln,0
ln

(

t1

µT,0

)

+ 0.5σln,1(σln,0 − σln,1) (27)

Since T0 and T1 describe the statistics for the same set S0,
σln,0 = σln,1. Also, we know that

(

µT,1/µT,0

)

= (J0/J1)
n, and

hence the relative time-shift δ between T1 and T0 is:

δ = t1

[

1−
(

J0

J1

)n]

(28)
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We next summarize the assumptions used to arrive at the cdf of
S0 and use them rigorously to obtain the cdf in the general case
of multiple change in currents.

3.3.2 Assumptions
Consider a population set S that has already been subjected

to some prior current density stress, i.e. it is not fresh. We make
the following mild assumptions about S for some time t 6= 0:

Assumption 1. The statistics of the TTFs for the surviving
population of S are described by a (section of) a shifted lognormal
distribution.

Assumption 2. The mean of the shifted lognormal distribu-
tion (relative to its start time) is given by Black’s equation, with
J being the current density at time t.

Assumption 3. The value of σln for S at time t is the same
as that of the fresh population at t = 0.

We note that assumption 3 can be dropped if the dependence of
σln with regard to the damage accumulated due to EM is empir-
ically known beforehand.

3.3.3 The case of multiple change in currents
Consider a second thought experiment with S0 in which the

current density profile is given as:

J(t) = Jk, tk < t ≤ tk+1, k = 0, 1 . . . n (29)

where Jk−1 6= Jk ∀k > 0, t0 = 0 and tn+1 = ∞. It is inter-
esting to note that (29) is the typical current density profile of
a surviving interconnect in the power grid, where the kth failing
interconnect has τ = tk.

As per Assumption 1, for each time-span tk < t ≤ tk+1, the
statistics are described by a RV Tk which has a lognormal distri-
bution originating at some t = ∆k. Assumption 2 dictates that
the mean µT,k is given by Black’s Eq. with J = Jk. In order to
satisfy the continuity constraint, each RV Tk has a time-shift of
δk with respect to Tk−1, with T0 having a shift of δ0 = 0. This

implies that the distribution for Tk originates at ∆k =
∑k

i=0 δi.
The cdf of S0 can now be written as:

F0(t) = FTk
(t−∆k), tk < t ≤ tk+1, k = 0, 1 . . . n (30)

The time-shift δk between Tk and Tk−1 can be found using
the continuity constraint :

Φ

[

ln(tk −∆k)− µln,k

σln,k

√
2

]

= Φ

[

ln(tk −∆k−1)− µln,k-1

σln,k-1

√
2

]

Using ∆k = ∆k−1 + δk, assumption 3 (σln,0 = . . . = σln,n = σln)
and (3), we have:

ln

(

tk −∆k−1 − δk

µT,k

)

= ln

(

tk −∆k−1

µT,k-1

)

Equating the terms in brackets, we have:

δk = (tk −∆k−1)(1− rk) =

(

tk −
k−1
∑

i=1

δi

)

(1− rk) (31)

where

(

µT,k

µT,k-1

)

=

(

Jk−1

Jk

)n

= rk.

3.3.4 Incorporating Blech Effect
The previous analysis assumes JkL > βc ∀k. However, due to

change in current density, we might have EM-immune and EM-
susceptible time-spans interspersed with each other. Let M and
B be the set of integers k, where k denotes the time-span tk <
t ≤ tk+1, so that M = {k : JkL ≤ βc} and B = {k : Jkl > βc}.
Clearly, M ∩B = ∅ and M ∪B is the entire time period.

We extend the framework developed so far to incorporate the
Blech effect by introducing two modifications. First, assump-
tion 1 is now applicable only for EM-susceptible time-spans, so

that RV Tk, that has a shifted lognormal distribution originat-
ing at t = ∆k, exists for k ∈ B. Since the current densities in
the EM-immune time-spans cannot generate sufficient stress for
a surviving conductor to fail, the corresponding probability of
failure is zero and the associated cdf is a constant function. As
we move forward in time, the conductors start failing again when
k ∈ B is encountered. Thus, the cdf of S0 in this case is found to
be:

F0(t) =











0 k ∈M : k < min(B)

FTb
(tb+1 −∆b), k ∈M, b ∈ B

FTk
(t−∆k), k ∈ B

(32)

where b ∈ B : b < k and |k − b| is minimum.
Second, the distribution for Tk now originates at

∆k = Θ(tk) +
∑k

i=0,i∈Bδi (33)

where Θ(t) =
∑

k∈Q(tk+1 − tk) s.t. Q = {k : k ∈M and tk+1 <

t} and δk is defined as follows: consider a general scenario in which
(p − 1) consecutive EM-immune time-spans are sandwiched be-
tween two EM-susceptible time-spans. To be precise, {k−p, k} ∈
B and {k−p+1, . . . k−1} ∈ M . Then, δk is time-shift of Tk rel-
ative to Tk−p needed to maintain the continuity constraint if the
in-between EM-immune time-spans were removed and is found
to be:

δk = (tk−p+1 −∆k−p)(1− (Jk−p/Jk)
n) (34)

Note that (34) reduces to (31) for p = 1.

3.3.5 Updating a TTF sample
Consider a conductor C of the set S0 subjected to the current

density profile (29). Clearly, the TTF of C changes because the
RV describing the statistics of the population changes for each
time-span. Assume, for the sake of argument, that C survives for
t > tk and 0, k ∈ B. At t0(= 0), C has a TTF given by (using
(4)):

τ0 = µT,0. exp
(

Ψσln − 0.5σ2
ln

)

(35)

where the symbols are as defined before. At t = tk, when the
kth current change occurs, the TTF of C is updated using the
following relation:

τk = ∆k + µT,k exp
(

Ψσln − 0.5σ2
ln

)

(36)

where Ψ is the same sample value from Φ as used in (35). The
offset ∆k is added so that τk is now referred from t = 0. For
k ∈M , τk is defined to be ∞.

Theorem 1. Consider a conductor having the current density
profile of (29). Let {k−p, k} ∈ B and {k−p+1, . . . k−1} ∈ M .
Then, if eq. (34) and (36) are used to find the offset (δk) and
TTF (τk) for the conductor, we always have:

τk = tk + (τk−p − tk−p+1)

(

Jk−p

Jk

)n

so that τk > tk.

The proof of this result is given in the Appendix.

4. IMPLEMENTATION
The overall flow for obtaining a sample of power grid TTF using

the series and mesh model is given in Algorithm 1. We start by
assigning TTF samples to all the resistors in the power grid using
a Random Number Generator. Considering the grid as a series
system, failure of the first resistor should cause the grid to fail.
Hence τs is assigned the TTF sample of the first resistor in the
sorted list Rlist. In order to find the TTF sample of the grid
using mesh model (τm), we start failing resistors. The voltage
drops are efficiently updated using the Woodbury-Banachiewicz-
Schur formulation (Algorithm 2). We also update the TTFs of
surviving interconnects as outlined in section 3.3 and sort the
surviving resistors as per their updated TTFs to determine the
next resistor to fail. We keep failing resistors until either node
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Algorithm 1 TTF SAMPLE GRID

Input: LG, UG,Rlist, v0, vth, βc

Output: τm, τs (Sample TTF using mesh and series model)
1: Use Random Number Generator to assign TTF samples to all

resistors in the list Rlist based on current desities at t = 0
2: Sort Rlist in ascending order of TTF samples
3: τs ←Rlist[1].ttf
4: for k = 1→ SIZE(Rlist) do
5: grid failed ← 0
6: Find ∆Gk, the conductance stamp of Rlist[k]
7: {vk, grid singular} ←WB(v0,∆Gk, LG, UG, Z,H,Winv , y, γ, k)
8: if grid singular = 1 then
9: τm ←Rlist[k].ttf

10: break the outer for loop
11: end if
12: for q = 1→ SIZE(vk) do
13: if vk[q] ≥ vth[q] then
14: τm ← Rlist[k].ttf
15: grid failed ← 1
16: break the inner for loop
17: end if
18: end for
19: if grid failed = 1 then
20: break the outer for loop
21: end if
22: for q = k + 1→ SIZE(Rlist) do
23: Update the TTF of Rlist[q] as outlined in section 3.3.
24: end for
25: Sort Rlist from k + 1→ SIZE(Rlist) in ascending order of

TTF samples
26: end for

voltage drop(s) exceeds vth or the grid becomes singular, after
which the grid is deemed to have failed. τm is assigned the TTF
sample of the last resistor, that caused the grid to fail.

We estimate the MTF (µ) of a grid by random sampling. In
other words, Algorithm 1 is run w times to generate w grid TTF
samples. The arithmetic mean of these samples is the estimate of
µ. Suppose we were sampling from a normal distribution, whose
variance is unknown. Then, in order to ensure an upper bound ǫ
on relative error between arithmetic mean x̄w and the true mean
µ with a confidence of (1− α)× 100%, the number of samples w
needed is given by [13]:

w ≥
(

zα/2sw

|x̄w|ǫ/(1 + ǫ)

)2

(37)

where s2w is the unbiased estimator of variance and zα/2 is the

(1 − α/2)-percentile of Φ. The central limit theorem states that
for large w, all distributions approach the normal. In practice,
for w as large as 25 or 30 (conservatively we use w ≥ 50), the t-
distribution given by [x̄w−µ]/

(

sw
√
w
)

is fairly close to a normal.
Hence, we use (37) to estimate the mean for both series model
(µs) and mesh model (µm), with α = 0.05 and ǫ = 0.05.

We also use Monte Carlo random sampling to estimate the
probability of survival of a given grid upto a period of Y years.
Again, we generate w grid TTF samples using Algorithm 1. For
each sample, we have a success if the grid survives upto Y years,
else we have a failure. By the law of large numbers, the fraction
P = no. of successes/w, will converge to the true survival proba-
bility as w →∞. The stopping criteria (i.e. number of samples w
required) is defined such that we have (1−α)× 100% confidence
that the error in probability estimation is less than E [14]:

w =MAX

[

(

zα/2/(2E)
)2

,
(

(
√
63 + zα/2)/(2

√
E)
)2

,

((

zα/2

√
2E + 0.1 +

√

(E + 0.1)z2
α/2

+ 3E
)

/(2E)
)2
]

(38)

By choosing α = 0.05 and E = 0.05, we get w = 489 for
all grids. Reliability of a Power Grid is essentially it’s Survival
Probability at different points in time. Hence, if the statistics of

Algorithm 2 WB (Woodbury-Banachiewicz-Schur Voltage
Update)

Input: v0,∆G,LG, UG, Z,H,Winv , y, γ, k
Output: vk, grid singular
1: Find u and h s.t. ∆G = uhT as shown in (8)
2: z ← BF SUBSTITUTION(LG, UG, u)
3: Append z as the kth column of Z
4: Append h as the kth column of H
5: p← −uT v0
6: Update y by appending p as the kth element as given in (19)
7: if k = 1 then
8: Winv ← 1/

(

1− uT z
)

9: γ ←Winvy
10: else
11: Find b and d as given in equation (16)
12: Wb ←Winvb
13: s← d− bTWb

14: if s = 0 then
15: grid singular ← 1
16: return
17: end if

18: a← bT γ − p

s
19: γ ← γ + a.Wb

20: Append −a as the kth element of γ as shown in (22)
21: Update Winv as given in (17)
22: end if
23: vk ← v0 − Z.γ
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Figure 3: Estimated statistics for IBMPG5 (∼ 250k
nodes)

TTFs of the power grid following the mesh and series model is
described by the RVs Xm and Xs, then their Probability Distri-
bution Function and Reliability can be obtained by calculating
the survival probabilities for different values of Y.

5. EXPERIMENTAL RESULTS
A C++ implementation was written to test the proposed ap-

proach. Two types of test grids were used. The first type were
generated per user specifications, including grid dimensions, metal
layers, pitch and width per layer. The supply voltages and cur-
rent sources were randomly placed on the grid. The technology
specifications were consistent with 1.1 V 65nm CMOS technol-
ogy. These grids are henceforth referred to as internal grids.
The second type of grids are part of IBM power grid benchmarks
[16]. These grids are dual grids, but the proposed approach was
tested only for vdd part of the grids and are referred to as external
grids. The Voltage drop threshold was defined to be 10% of vdd
for all nodes in a grid. For concreteness in results, we assume the
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Table 1: Comparison of Power Grid MTF as estimated using the series model and mesh model
Power Grid max(v0) series model mesh model Gain Net CPU

Name Nodesa volts %vdd µs TTF µm TTF Avg Time/iter Ratio Time
(yrs) Samplesb (yrs) Samplesb failsc -ation (µm/µs)

IBMPG2 61,677 0.125 6.97 10.81 165 35.67 53 19.32 5.80 sec. 3.30 5.18 min.
IBMPG3 410,011 0.122 6.78 10.37 98 46.84 73 50.29 2.56 min. 4.52 3.12 hr.
IBMPG4 474,524 0.132 7.35 9.58 160 36.27 82 40.55 2.60 min. 3.79 3.55 hr.
IBMPG5 248,838 0.086 4.80 10.69 169 33.34 102 17 23.46 sec. 3.12 39.97 min.
IBMPG6 403,915 0.103 5.73 11.20 195 44.28 79 30.89 1.58 min. 3.95 2.08 hr.

IBMPGNEW1 315,951 0.168 9.36 12.94 172 59.96 92 60.80 2.80 min. 4.64 4.29 hr.
IBMPGNEW2 717,754 0.139 7.72 10.12 164 39.64 75 41.97 3.74 min. 3.92 4.68 hr.

G1 50,444 0.040 3.64 10.94 171 34.46 105 19.24 1.92 sec. 3.15 3.46 min.
G2 113,304 0.050 4.56 10.98 131 35.07 101 27.28 15 sec. 3.19 25.32 min.
G3 200,828 0.055 4.98 9.09 140 29.35 91 43.75 45.50 sec. 3.23 1.15 hr.
G4 449,182 0.050 4.58 10.85 127 44.57 68 85.16 3.42 min. 4.11 3.88 hr.
G5 1,006,625 0.057 5.18 12.45 101 46.90 97 85.56 8.34 min. 3.77 13.48 hr.

aNumber of nodes in vdd rails after merging the short paths as equivalent node
bNumber of grid TTF samples required to estimate the MTF with 95% confidence and max 5% relative error

cAverage number of interconnect failures before the grid fails in each Monte Carlo pass for mesh model

Table 2: Survival Probability Estimation
Power max(v0) Y Ps Pm CPU
Grid volts %vdd (yrs) P(τs ≥ Y) P(τm ≥ Y) Time

IBMPG2 0.125 6.97 11.61 0.413 1.000 4.86 min
IBMPG3 0.122 6.77 12.50 0.256 1.000 64.73 min
IBMPG4 0.132 7.35 12.10 0.178 1.000 1.61 hr.
IBMPG5 0.086 4.80 12.80 0.260 0.996 28.95 min
IBMPG6 0.103 5.73 14.00 0.200 1.000 1.15hr.

IBMPGNEW1 0.168 9.36 18.50 0.088 1.000 1.30 hr.
IBMPGNEW2 0.139 7.72 15.00 0.049 1.000 3.02 hr.

following configuration: the interconnect material is Aluminum
(Al), with activation energy Ea = 0.9eV , βc = 3000A/cm and
a current exponent n = 1. A nominal interconnect temperature
of 373K was used in simulations. The standard deviation of the
lognormal σln was assumed to be 0.81 for all interconnects in the
grid, consistent with typical data in the literature. We used a 2.6
GHz Linux machine with 24 GB of RAM.

Table 1 compares the power grid MTF as estimated using the
series model and mesh model, using a gain ratio (µm/µs). The
gain ratio is dependent on ∆v = |vth − v0|; as this difference in-
creases, the gain ratio also increases. If the difference ∆v is small,
then the mesh model degenerates to series model. Given a rea-
sonable difference between vth and v0 , the gain ratio is 3-4 for all
the grids. Table 2 compares the survival probability of external
grids based on user-specified values for Y. It is seen that by taking
redundancies into account, the mesh model consistently predicts
a higher survival probability as compared to series. For a given
grid, the time required to estimate the survival probability using
mesh model increases with increase in Y, but it also enables us
to estimate the reliability of the grid ∀t ≤ Y. For a complete
overview, Fig. 3 plots the probability distribution function (pdf)
and reliability of IBMPG5 grid as estimated using the series and
mesh model. Clearly, the series model gives a pessimistic es-
timate of power grid TTF statistics. Also, using goodness-of-fit
methods, it was found that the RV Xm has a normal distribution,
thus justifying our use of (37) to estimate MTF.

Each Monte Carlo iteration gives us a grid TTF sample. Since
Monte Carlo estimation approach is highly parallelizable (i.e. the
samples can be obtained concurrently), we determine the scalabil-
ity of the proposed solution by plotting the time taken per itera-
tion (as given in column Time/iteration of Table 1) vs. number of
nodes. As shown in figure 4, the run-time is found to be roughly
O(m1.4), where m is the size of grid in number of nodes.

Finally, other than ∆v, there are many parameters which can
potentially affect the gain ratio. From (1) and (35), we observe
that Black’s constant A, Activation energy Ea and Temperature
of metal Tm only scale the TTFs of all interconnects linearly,
hence a change in values of A, Ea or Tm will not alter the se-
quence of failure of interconnects. As such, the gain ratio will be
unchanged. However, due to non-linear dependence, the sequence
may change with change in standard deviation of the lognormal
(σln), current exponent (n) and resistivity of interconnects (ρ).
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Figure 4: Scalability of proposed solution

Figure 5 shows the effect of varying these parameters and βc on
the gain ratio of grid G1. In each case, mesh model predicts a
more reliable grid than the series model and thus supports our
claim that a lot of EM-margin is left ‘on the table’.

6. CONCLUSIONS
We proposed and implemented 1) the mesh model to estimate

the MTF and reliability of power grid, supplemented by a fast
and exact approach to update the voltage drops using Wood-
bury formula and Banachiewicz-Schur form and 2) a framework
to predict the failure statistics of a metal line as it’s effective-
EM current density varies. The mesh model accounts for the
redundancies in the grid based on the new failure criteria of node
voltage drop threshold, and thus obtains a more realistic estimate
of grid’s MTF and reliability. The results prove that the current
practice of ignoring the redundancy in the grid gives a pessimistic
estimate of grid TTF statistics by a factor of 3-4.

7. REFERENCES
[1] R. Ahmadi and F. N. Najm. Timing analysis in presence of

power supply and ground voltage variations. In
IEEE/ACM International Conference on Computer-Aided
Design, pages 176–183, San Jose, CA, Nov 2003.

546



1.6 1.8 2 2.2 2.4 2.6 2.8
1

2

3

4

5

6

7

8

(a) Gain ratio vs. resistivity (ρ) of interconnects

ρ (x10
−8

 Ohm−m)

G
a
in

 r
a
ti

o

1 1.2 1.4 1.6 1.8 2
1

2

3

4

5

6

7

8

(c) Gain ratio vs. current−exponent (n) 

n

G
a
in

 R
a
ti

o

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1

2

3

4

5

6

7

8

(b) Gain ratio vs. std dev of lognormal (σ
ln

)

σ
ln

G
a
in

 r
a
ti

o

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

8

(d) Gain ratio vs. Critical Blech product (β
c
)

 β
c
 (x10

5
 A/m)

G
a
in

 r
a
ti

o

Interconnect
material: Al

Interconnect
material: Cu

Nucleation Dominated EM failure

Growth Dominated EM failure

No interconnect is EM−immune

Actual β
c
 for Al

Figure 5: Estimated gain ratio of G1 under different
parameter values; the square markers represent the
parameters used for Table 1

[2] J. R. Black. Electromigration- a brief survey and some
recent results. IEEE Transactions on Electronic devices,
16(4):338–347, 1969.

[3] I. A. Blech. Electromigration in thin aluminum on titanium
nitride. Journal of Applied Physics, 47(4):1203–1208, 1976.

[4] J. Cho and C. V. Thompson. Grain size dependence of
electromigration induced failures in narrow interconnects.
Journal of Applied Physics, (54):2577–2579, 1989.

[5] M. Fawaz, S. Chatterjee, and F. N. Najm. A vectorless
framework for power grid electromigration checking. In
IEEE/ACM International Conference on Computer-Aided
Design, Nov 2013.

[6] D. F. Frost and K. F. Poole. A method for predicting
VLSI-device reliability using series models for failure
mechanisms. IEEE Transactions on Reliability, R-36(2):234
–242, june 1987.

[7] N. J. Higham. Functions of Matrices: theory and
computation. SIAM, 1st edition, 2008.

[8] R. Kirchheim and U. Kaeber. Atomistic and computer
modeling of metallization failure of integrated circuits by
electromigration. Journal of Applied Physics,
70(1):172–181, 1991.

[9] J. Kitchin. Statistical electromigration budgeting for
reliable design and verification in a 300-mhz
microprocessor. In VLSI Circuits, 1995. Digest of Technical
Papers., 1995 Symposium on, pages 115 –116, jun 1995.

[10] M. A. Korhonen, P. Borgesen, D. D. Brown, and C.-Y. Li.
Microstructure based statistical model of electromigration
damage in confined line metallizations in the presence of
thermally induced stresses. Journal of Applied Physics,
74(8):4995–5004, 1993.

[11] K. Lee. Electromigration recovery and short lead effect
under bipolar- and unipolar-pulse current. In IEEE
International Reliability Physics Symposium (IRPS), pages
6B.3.1 –6B.3.4, april 2012.

[12] M. Lin, M. Lin, and T. Wang. Effects of length scaling on
electromigration in dual-damascene copper interconnects.
Microelectronics Reliability, 48(4):569 – 577, 2008.

[13] J. E. Miller, I. R. Freund and R. Johnson. Probability and
Statistics for Engineers. Prentice-Hall, Inc., 6th edition,
2010.

[14] F. N. Najm. Statistical estimation of the signal probability
in VLSI circuits. Technical Report UILU-ENG-93-2211,
University of Illinois at Urbana-Champaign, Coordinated
Science Laboratory, April 1993.

[15] F. N. Najm. Circuit Simulation, chapter 2. John Wiley and
Sons, 1st edition, 2010.

[16] S. R. Nassif. Power grid analysis benchmarks. In Asia and
South Pacific Design Automation Conference, pages
376–381, 2008.

[17] Y. Tian and Y. Takane. Schur complements and
banachiewicz-schur forms. Electronic Journal of Linear

Algebra, 13:405–418, Dec 2005.

[18] J. Warnock. Circuit design challenges at the 14nm
technology node. In ACM/IEEE 48th Design Automation
Conference (DAC-2011), pages 464–467, San Diego, CA,
June 5-9 2011.

APPENDIX

A. THE BANACHIEWICZ-SCHUR FORM
Let M ∈ R

k×k be 2× 2 block matrix:

M =

[

A b
cT d

]

(39)

where A ∈ R
(k−1)×(k−1), b ∈ R

k−1, c ∈ R
k−1, and d is a scalar.

The Schur-complement of A in M is given by [17]:

s = d− cTA−1b (40)

If both M and A in (39) are non-singular, then s is non-singular
too, i.e. s 6= 0. This allows writing M as:

M =

[

Ik−1 0

cTA−1 I1

]

[

A 0

0 s

]

[

Ik−1 A−1b

0 I1

]

(41)

where Iλ is the identity matrix of order λ. The inverse of M can
now be written as [17]:

M−1 =

[

Ik−1 −A−1b

0 I1

][

A−1 0

0 1/s

][

Ik−1 0

−cTA−1 I1

]

(42)
which can be re-written as:

M−1 =









A−1 +
A−1bcTA−1

s
−A−1bT

s

− cTA−1

s

1

s









(43)

Equation (43) is known as the Banachiewicz-Schur form. It ex-
presses M−1 in terms of A−1.

B. PROOF OF THEOREM 1
Let Υ = exp

(

Ψσln − 0.5σ2
ln

)

. By Assumption 3, σln is con-
stant. Thus, Υ will be the same throughout the life-time of the
conductor.

The conductor was EM-susceptible for tk−p < t ≤ tk−p+1,
became EM-immune for all time span(s) following t = tk−p+1 un-
til t = tk, when it becomes EM-susceptible again. Clearly, τk−p >
tk−p+1, or the conductor should have failed before tk−p+1. From
theory, the RVs Tk−p+1, . . .Tk−1 are undefined. From (33), the
time of origin of Tk can be written as:

∆k = ∆k−p +Θ(tk)−Θ(tk−p) + δk

= ∆k−p + (tk − tk−p+1) + (tk−p+1 −∆k−p)(1− rk)

= tk − rktk−p+1 + rk∆k−p (i)

where rk =

(

Jk−p

Jk

)n

=

(

µT,k

µT,k-p

)

. The new TTF at t = tk can

now be written as:

τk = ∆k + µT,kΥ

= tk − rktk−p+1 + rk∆k−p + rkµT,k-pΥ (from (i))

= tk + (∆k−p + µT,k-pΥ− tk−p+1)rk

= tk + (τk−p − tk−p+1)rk (using (36))

547
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