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ABSTRACT
Electromigration (EM) in the on-die metal lines has re-emerged as
a significant concern in modern VLSI circuits. The higher levels
of temperature on die and the very large number of metal lines,
coupled with the conservatism inherent in traditional EM check-
ing strategies, have led to a situation where trying to guarantee
EM reliability often leads to unacceptably conservative designs
that may not meet the area or performance specs. Due to unidi-
rectional currents, this problem is most significant in the power
and ground grids. Thus, this work is aimed at reducing the pes-
simism in EM prediction for power/ground grids. There are two
sources for the high pessimism: 1) the use of the traditional series
model for EM checking and 2) pessimistic assumptions about the
chip workload and the corresponding supply currents. To address
this problem, we propose a framework for EM checking that al-
lows users to specify conditions-of-use type constraints that help
capture realistic chip workload and which includes the use of a
novel mesh model for EM prediction in the grid, instead of the
traditional series model.

Keywords
Power grid, Electromigration, Verification, Redundancy, Opti-
mization

1. INTRODUCTION
Power grid verification has become an essential step in modern

integrated circuits (IC) design. To guarantee the robustness of a
chip, test engineers must verify that the power grid can provide
the required voltage levels to the underlying logic, and that it
can continue to do so for a certain number of years before fail-
ing. Electromigration, a long term failure mechanism that affects
metal lines, is becoming a significant problem in VLSI especially
in the power grid. What is worrying is that the existing tools for
power grid EM checking are producing pessimistic results (be-
cause they rely on the series model as we will explained soon),
and hence, the safety margins between the predicted EM stress
and the EM design rules are becoming smaller.

Historically, electromigration checking tools relied on worst-
case current density limits for individual grid lines. Later on, Sta-
tistical Electromigration Budgeting (SEB) was introduced in [1]
in which the series model is employed with other simplifying as-
sumptions leading to a simple expression of the failure rate as
the sum of failure rates of individual components. This model
was applied to the Alpha 21164 microprocessor and became a
standard technique in many industrial CAD tools. SEB was ap-
pealing because it related the reliability of circuit components to
the reliability of the whole system. In addition, SEB is simple
to use and allows some components to have high failure rates as
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long as the sum of all the failure rates is acceptable.
Nonetheless, modern power grids are meshes rather than the

traditional “comb” structure. The mesh structure allows multiple
paths between any two nodes, and accordingly, the power grid
is not necessarily failed if one of its metal lines fails, but it can
tolerate more failures until the voltage drops at its nodes become
unacceptable. This implies some level of redundancy in the grid,
which has traditionally been ignored when the series model was
assumed. As a result, the lifetime predicted by the series system
model is pessimistic and can be improved by taking advantage of
this redundancy. Our data shows that a grid can tolerate over 30
line failures, with 2-3X longer lifetimes.

On the other hand, the rate of EM degradation in power grid
lines depends on the current density, and hence on the patterns
of currents drawn by the underlying circuitry. It is impractical to
assume that the exact current waveforms are available for all the
chip workload scenarios, since this would require the simulation
of the chip for millions of clock cycles at a low enough level of
abstraction that would provide the current waveforms. Moreover,
one might need to verify and check the grid early in the design
flow, before fully designing the underlying circuit. Therefore, one
would like a vectorless approach that can deal with the uncer-
tainty about the underlying circuit currents.

In this work, we present a new EM checking approach that re-
duces the pessimism of SEB and which we extend to a vectorless
framework for verification. Two main methods are discussed to
solve the vectorless case, one is exact and theoretically interest-
ing, and the other is approximate, fairly accurate, and much more
practical.

The remainder of the paper is organized as follows. In section 2
we present a background on electromigration and the power grid
model. Section 3 presents the problem definition. The proposed
approaches are explained in sections 4 and 5, followed by the ex-
perimental results in section 6. Finally, section 7 concludes the
paper.

2. BACKGROUND

2.1 Electromigration
Electromigration is a long term failure mechanism that affects

metal lines and vias under high current densities. The force ex-
erted by the flow of electrons can cause the movement of metal
atoms in the direction of electron flow. This can cause depletion
of enough material so as to create an open circuit in a wire. The
failure time T of a metal line due to electromigration is usually
modeled as a random variable because degradation rates depend
on the microstructure of the wire which varies due to random
manufacturing variations. According to Black [2], T follows a log-
normal (LN) distribution, i.e., its logarithm has a normal (Gaus-
sian) distribution. The mean time-to-failure (MTF) is given by
Black’s equation [2, 3]:

MTF = µ =
wt

A
J−η exp

(

Ea

kTm

)
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where A is an experimental constant that depends on the physical
properties of the metal line (volume resistivity, etc.), w and t are
the width and thickness of the line respectively, J is the effective
current density, η > 0 is the current exponent that depends on
the material of the wire and the failure stage, k is Boltzmann’s
constant, Tm is the temperature in Kelvin, and Ea is the activa-
tion energy for EM. The standard deviation σln of lnT is usually
determined experimentally for a given metal technology. In this
paper, we assume that σln is the same for all the conductors made
of a given material.

For sufficiently short lines, the back-stress developed due to
the accumulation of atoms at the ends of the line could overcome
the build-up of the critical stress required for creation of a void,
and thus the line is no longer susceptible to EM failure [4]. This
effect, called the Blech Effect, is quantified in terms of a critical
value βc, where a line of length L and current density J is said
to be EM -immune if JL < βc, and EM -susceptible if JL ≥ βc.

2.2 Power Grid Model
Because EM is a long-term cumulative failure mechanism, the

changes in the current waveforms on short time-scales are not very
significant for EM degradation. In fact, the standard approach
to check for EM under time-varying currents is to compute a
constant value called the effective-EM current, derived from the
time-varying current waveform. The value obtained represents
the DC current that effectively gives the same lifetime as the
original waveform under the same conditions. Power grid lines
carry mostly-unidirectional currents for which, effective currents
are chosen as the average currents. Accordingly, it is sufficient
to consider a DC model of the grid subject to average current
sources that model the currents drawn by the underlying logic
blocks. This is justified because the power grid is a linear sys-
tem, and hence its average branch currents can be obtained by
subjecting it to average current sources.

Let the power grid consist of n + q nodes, where nodes 1 . . . n
have no voltage sources attached, and the remaining nodes con-
nect to ideal voltage sources to represent the connections to the
external power supply, and let node 0 represent the ground node.
Define I to be the n × 1 vector of all the average source cur-
rents such that the entry corresponding to a node with no current
source attached, is set to zero. Applying Modified Nodal Analysis
to the grid leads to:

G(t)V (t) = I

where G(t) is the conductance matrix of the grid, and V (t) is

the vector of voltage drops. The time dependence is introduced
because G varies over time as grid lines start to fail due to elec-
tromigration. As long as the grid is connected, the matrix G(t)
is known to be a diagonally-dominant symmetric positive definite
M-matrix, so that G−1(t) exists and G−1(t) ≥ 0 [5].

Because Black’s model depends on the current density through
the metal line, branch currents are needed. Let b be the number
of branches in the grid, and let Ib,l(t) represent the branch cur-
rents where l ∈ {1 . . . b}, and let Ib(t) be the vector of all branch
currents. Keep in mind that the time dependence in G(t), V (t),
nd Ib(t) is solely due to the change in the conductance matrix as
a result of EM degradation.

Relating all the branch currents to the voltage drops across
them we get:

Ib(t) = −R−1MTV (t) = −R−1MTG−1(t)I

where R is a b×b diagonal matrix of the branch resistance values

and M is an n × b incidence matrix whose elements are ±1 or 0
such that the term ±1 occurs in location mkl of the matrix where
node k is connected to the lth branch, else a 0 occurs. The signs
of the non-zero terms depend on the node under consideration.
If the reference direction for the current is away from the node,
then the sign is positive, else it is negative.

2.3 Mean Estimation by Random Sampling
We assess the reliability of the power grid by computing its

MTF (or average worst-case TTF) using aMonte Carlo approach.
Also known as random sampling, Monte Carlo refers to iteratively
selecting specific values from the domain of a distribution, and
computing their arithmetic average as an estimate of the mean.

Consider a continuous random variable x with a certain distri-
bution whose mean is to be estimated by random sampling. We
will first discuss the case where x is normally distributed, and
then extend the discussion to the case where x has an unknown
distribution.

Suppose we are sampling from a normal distribution whose
variance is unknown. If the true mean of the distribution is µ
and its true variance is σ, and if the arithmetic mean of the sam-
ples is x̄w after w iteration, then in order to ensure an upper
bound ǫ on the relative error between x̄w and µ with a confidence
of (1−α)× 100%, the number of samples w needed is given in [6]
by:

w ≥
(

zα/2sw

|x̄w|ǫ/(1− ǫ)

)2

(1)

where sw is the unbiased estimator of σ and zα/2 is the (1−α/2)-
percentile of the random variable [(x̄w − µ)/(σ/

√
w)] having a

standard normal distribution. The usage of sn instead of σ (which
is unknown) in (1), is acceptable when w is large (w ≥ 30 as speci-
fied in [6]) because the random variable [(x̄w−µ)/(sw/

√
w)] has a

t-distribution which approaches the standard normal for large w.
In the general case where the distribution is unknown (not

necessarily normal), the random variable [(x̄w − µ)/(sw/
√
w)]

has been shown to have a distribution that is fairly close to a
t-distribution. As before, this t-distribution approaches the stan-
dard normal for large w. With this, one can compute the same
stopping criterion in (1), which we use throughout the paper as
a stopping criterion for Monte-Carlo whenever needed.

3. PROBLEM DEFINITION
Generally, it is not realistic to expect users to specify the exact

values of the current sources or the power dissipation of each block
in the underlying circuit. These values change depending on the
activity of the blocks, thus producing a large variety of possible
current waveforms that can be drawn from the grid. In addition,
grid design and verification cannot wait till the chip design is
complete, and is typically done early in the design flow where the
details of the different blocks are not fully known. Therefore, a
vectorless approach is needed to capture the uncertainty about
the current waveforms and to assess the reliability of the grid over
all the different operation scenarios in the underlying circuit.

The fact is, modern integrated circuits have complex multi-
modal behavior, where major parts of the chip have different
modes of operation (such as stand-by, low power, high perfor-
mance, etc.). Specifying the block power dissipation requires
knowledge of how often these modes are exercised. For every
circuit block j , let k ∈ {1, . . . , r} enumerate the different modes
of operation and Ijk denote the block average supply current in
that mode. The overall average supply current of that block is
given by Ij =

∑r
k=1 αjkIjk, where 0 ≤ αjk ≤ 1 represent the

probability of being in different modes with the constraint that
∑r

k=1 αjk = 1. We propose that it is reasonable to expect the
user to specify the currents Ijk using the average power dissipa-
tion of each block in every power mode. The mode probabilities
αjk are generally harder to assess, but users are expected to be
able to specify values for some of them, or narrow ranges for oth-
ers. If α denotes the nr × 1 vector of all the mode probabilities
then we can write:

αmin ≤ α ≤ αmax (2)

where αmin and αmax have entries between 0 and 1, and contain
any information the user may have about the modes of operation.

The user can also specify bounds on the average current of
every block, if available. This allows us to infer other constraints
on α in the form:

Iℓ,min ≤ Lα ≤ Iℓ,max (3)
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where L is a n × nr matrix such that I = Lα. The matrix
L contains information about the currents drawn by the circuit
blocks in each power mode.

Since chip components rarely draw their maximum currents
simultaneously, global constraints are also used. For instance,
if a certain limit is specified on the average power dissipation
of the chip, then one may say that the sum of all the current
sources is no more that a certain upper bound. In general, the
same concept can be applied for groups of current sources forming
functional blocks with known upper and lower bounds on their
average power [7]. If m is the total number of global constraints,
then we can write:

Ig,min ≤ SLα ≤ Ig,max (4)

where S is an m×n matrix that only contains 0s and 1s and indi-
cates which current sources are present in each global constraint.

One last set of constraints should be added to guarantee that
∑r

k=1 αjk = 1 for every block j:

Bα = 1n (5)

where B is an n× nr matrix containing only 1s and 0s such that
the vector Bα contains the sum of mode probabilities per block
in each of its entries, and 1n is a vector of size n containing
all ones. Together, all the constraints presented above define a
feasible space of mode probabilities, denoted by Fα, such that
α ∈ Fα if and only if, α satisfies (2) , (3), (4), and (5).

For example, consider a circuit having three blocks with two
modes of operation each: low power and high performance. As-
sume that the blocks draw respectively 0.1A, 0.2A, and 0.15A on
average in low power mode, and 0.2A, 0.3A, and 0.25A in high
performance mode. Also, let α11, α21, and α31 denote the proba-
bilities of the blocks being in low power mode, and α12, α22, and
α32 the probabilities of being in high performance mode. The
average currents I1, I2, and I3 of the blocks are given as follows:

I1 = 0.1α11 + 0.2α12

I2 = 0.2α21 + 0.3α22

I3 = 0.15α31 + 0.25α32

The following is a possible set of constraints that a user can spec-
ify:

0.2 ≤ α11 ≤ 0.6 0.11 ≤ 0.1α11 + 0.2α12 ≤ 0.18
0.1 ≤ α21 ≤ 0.7 0.21 ≤ 0.2α21 + 0.3α22 ≤ 0.29
0.3 ≤ α31 ≤ 0.9 0.17 ≤ 0.15α31 + 0.25α32 ≤ 0.24
0.2 ≤ α12 ≤ 0.5 α11 + α12 = 1
0.1 ≤ α22 ≤ 0.9 α21 + α22 = 1
0.6 ≤ α32 ≤ 0.9 α31 + α32 = 1

0.35 ≤ 0.1α11 + 0.2α12 + 0.2α21 + 0.3α22 ≤ 0.41
0.40 ≤ 0.2α21 + 0.3α22 + 0.15α31 + 0.25α32 ≤ 0.48

The first column shows the set of constraints on individual α’s.
the second column shows the constraints on individual average
currents (first three), and the constraints on the sums of mode
probabilities (last three). The last two constraints are global con-
straints on I1 + I2, and I2 + I3 respectively.

For every feasible setting of α, the overall block average cur-
rents are different, and the power grid reliability (MTF) is corre-
spondingly different. Our goal is to look for the average worst-
case TTF of the power grid given all the possible feasible combi-
nations of α. This raises two major questions:

1. How to estimate the MTF of the power grid for a given
vector of mode probabilities α ∈ Fα?

2. How to find the average worst-case TTF of the grid, over
all the feasible vectors in Fα?

Answering these questions would lead to a framework that allows
vectorless EM checking while imposing reasonable and minimal
demands on the user.

4. ESTIMATING GRID FAILURE TIME
As mentioned earlier, traditional methods for EM reliability

estimation employ the series system model. A series system is
deemed to fail when any of its components fail, i.e. it is as weak
as its weakest link. Given the mesh structure of modern power
grids, it is overly pessimistic to employ the series system for EM
estimation and checking. In this section, we introduce a new ap-
proach to estimate the mean time-to-failure of the grid in the the-
oretical case where the vector of mode probabilities α is known.

Note that, the development of the approach below, and the
other material in this section (section 4) overlaps with the con-
tent of [8]. This small overlap is unavoidable due to lack of space
and to make sure each paper is understandable on its own.

Generally, for a grid to function as intended, the voltage drop
at each of its nodes should be smaller than a certain threshold be-
cause otherwise, soft errors in the underlying logic may occur [9].
A node is said to be safe when its voltage drop meets the cor-
responding threshold condition. Let Vth be the vector of all the
threshold values which are typically user-specified, and assume
that Vth > 0 to avoid trivial cases.

For a given α, the vector of average current sources can be
found using I = Lα. Assume that, for this particular I, all the
nodes of the initial grid G(0) are safe, i.e. V (0) ≤ Vth. As we
move forward in time, the EM-susceptible lines start to fail in the
order of their failure times due to electromigration. We model
the failure of every line by an open circuit. The grid is deemed
to fail at the earliest time for which the condition V (t) ≤ Vth
is no longer true, meaning when any of the grid nodes becomes
unsafe. This new model is referred to as the mesh model, and
is used to determine the failure time of the grid when the failure
times of its lines are known. Notice that modeling the failure of
a line by an open circuit leads to conservative results, because
typical EM models assume that a line fails when its resistance
rise above a certain threshold, and hence, the line continues to
conduct current after failure but with high resistance. Thus, the
infinite resistance model assumes that the line is more degraded
than it actually is.

In order to estimate the MTF of the power grid using the mesh
model, we perform Monte-Carlo analysis by collecting time-to-
failure samples of the power grid until the convergence condition
of Monte-Carlo is met. Employing the mesh model, we need to
discover the EM-immune lines in the grid, and find the MTF of
the other lines. For that, current densities and hence branch cur-
rents are required. Since the grid is changing over time due to
the failure of its components, the branch currents will also change.
Due to lack of space, this paper will assume that the statistics of
the lines can be determined using the branch currents of the grid
before the failure of any of its components. The case of changing
branch currents is treated in details in [8], and we are working on
an extension of that work to the case of varying workloads.

If G0 is the conductance matrix of the original grid, i.e. G0 =
G(0), then the vector of initial voltage drops can be written as

V0 = V (0) = G
−1
0 I. This allows writing:

Ib(0) = Ib = −R−1MTG
−1
0 I

4.1 Sampling from a Lognormal
At t = 0, the current density of a line l with width wl, thickness

tl, length Ll, and branch current Ib,l, can be written as:

Jl =
|Ib,l|
wltl

(6)

To know if line l is EM-susceptible, JlLl should be computed and
compared to βc. If JlLl < βc, then the line is EM-immune and
should be discarded from the analysis. Otherwise, its MTF µl
should be computed using Black’s equation which can be rewrit-
ten as follows:

µl =
(wltl)

η+1

A
|Ib,l|−η exp

(

Ea

kTm

)

(7)

For the purpose of Monte Carlo analysis, a time-to-failure (TTF)
sample τl should be assigned to every EM-susceptible line in ev-
ery Monte Carlo iteration. This can be done by sampling a real
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number ψl from the standard normal distribution N (0, 1), and
then applying the following transformation [10]:

τl = µl exp
(

ψlσln − 0.5σ2
ln

)

(8)

If bTl is the row of −R−1MTG
−1
0 that corresponds to line l,

then Ib,l = bTl I and hence, given a sample ψl from the standard
normal distribution, we can find a sample TTF τl for every line
l, using (8) and (7):

τl = |cTl I|−η (9)

where cl ,
[

(wltl)
η+1

A
exp

(

Ea
kTm

)

exp
(

ψlσln − 0.5σ2
ln

)

]− 1
η
bl

4.2 Updating Voltage Drops
Checking if the grid is failing at a particular point in time

requires checking the condition V (t) ≤ Vth. This means that V (t)
should be recomputed every time a line in the grid fails. One way
of doing that is by updatingG and then resolving V (t) = G−1(t)I
using LU factorization after the failure of every line. However,
this turns out to be computationally expensive. In fact, since we
are modeling the failure of every line by an open circuit, we can
write the change in G corresponding to the kth line failure as a
rank-1 matrix ∆Gk. If the kth failing line has a conductance gk
and is connected between nodes x and y (with x, y ∈ {0, 1, . . . , n}
and x > y), then ∆Gk = −ukuTk with:

uk =
√
gk(ex − ey)

where eλ is a column vector of appropriate size containing 1 at
the λth location and zeros at all other locations, with e0 being a
vector of all zeros.

Define U = [u1 . . . uk]. Clearly,
∑k

j=1 ∆Gk = −UUT . This

means that we can write the vector of voltage drops Vk after the
failure of k lines as:

Vk =
(

G0 +
∑k

j=1∆Gk

)−1
I =

(

G0 −UUT
)−1

I (10)

The Woodbury formula [11] gives:

(

G0 −UUT
)−1

= G
−1
0 +G

−1
0 U(Ik −UTG

−1
0 U)−1UTG

−1
0

(11)
where Ik is the k × k identity matrix. Using (10) and (11), we
have:

Vk = G
−1
0 I +

[

G
−1
0 U(Ik −UTG

−1
0 U)−1UTG

−1
0

]

I

Define Z = G
−1
0 U = [G−1

0 u1 . . . G
−1
0 uq ]. Using one LU

factorization of G0, and k + 1 forward/backward substitutions,

G
−1
0 I = V0 and Z can be efficiently found. Therefore,

Vk = V0 + ZW−1UTV0

where
W = Ik −UTZ

Since k is generally small, W is also small, which means that find-
ing W−1UTV0 can be efficiently done by LU factorization. Also,
the matrices Z and UTZ need not be calculated from scratch for
each failure, but can be updated by appending the appropriate
vectors.

4.3 Singular Case
Since we are modeling the failure of a line by an open circuit,

it is possible for G(t) to become singular as one of the nodes
might become isolated. In this case the condition V (t) ≤ Vth
is automatically violated because an isolated node represents a
high impedance with an unknown voltage level. Therefore, the
grid is deemed to fail at the earliest time for which the condition
V (t) ≤ Vth is no longer true or when the conductance matrix of
the grid becomes singular. It is known that G is singular if and
only if, W is singular, and hence we detect the singularity of G
by checking if W is invertible, which is easy since W is generally
small. With this, we solve the case where the vector of mode
probabilities α is known.

5. OPTIMIZATION
When α is unknown, the problem becomes to find the average

worst-case TTF of the grid over all the feasible vectors α. For
that, we start by transforming the feasible space Fα to the cur-
rent domain, which helps reduce the number of variables from
nr to n, as well as the number of constraints. It is easy to see
that replacing Lα by I in (3) and (4) results in the first set of
constraints defining the feasible space of currents:

Iℓ,min ≤ I ≤ Iℓ,max (12)

Ig,min ≤ SI ≤ Ig,max (13)

On the other hand, given the constraints on the individual α’s for
every current source, we can find lower and upper bounds for all
the sources, as follows. Recall that every current source Ij can
be written as Ij =

∑r
k=1 αjkIjk, and let αj denote the vector of

all the mode probabilities corresponding to Ij , then due to (2) we
can write:

αj,min ≤ αj ≤ αj,max

where αj,min and αj,max contain the upper and lower bounds on
the entries of αj as specified in (2). Due to (5), we can write:
∑r

k=1 αjk = 1, and hence, we can find bounds Ij,min and Ij,max

on Ij by solving the following two linear programs (LP):

Min/Max
∑r

k=1 αjkIjk
subject to αj,min ≤ α ≤ αj,max

∑r
k=1 αjk = 1

The LPs above should be solved for every current source in the
power grid. If any of the LPs turns out to be infeasible, then the
user specifications are not consistent. Notice that because r is
small, then the LPs are very easy to solve. Ultimately if all the
LPs turn out to be feasible, we get lower and upper bounds on
every current source. However, (12) also provides similar bounds,
hence, all the bounds should be combined to obtain:

Imin ≤ I ≤ Imax (14)

Overall, we obtain a new feasible space of currents, that we call
F , such that I ∈ F if and only if, I satisfies (14) and (13). Note
that I ∈ F if and only if α ∈ Fα.

Back to the example of section 3, the resulting reduced set of
constraints in the current domain would be:

0.14 ≤ I1 ≤ 0.17
0.22 ≤ I2 ≤ 0.25
0.21 ≤ I3 ≤ 0.24

0.35 ≤ I1 + I2 ≤ 0.41
0.40 ≤ I2 + I3 ≤ 0.48

Over all the feasible vectors I ∈ F , we would like to find the
average worst-case TTF of the grid, which we do by performing
a Monte Carlo analysis as before. In every iteration, we choose
a sample from the standard normal distribution for every line in
the grid, and we find the smallest grid TTF that can be obtained
using the mesh model given any I ∈ F , and the set of samples
chosen for the lines. Recall that these samples are used to sample
failure times for the lines using equation (9) which in this case
yields an expression for every TTF since I is not fixed.

Define Ψ to be the vector containing the samples ψl, l ∈
{1, . . . , b}, and let T (Ψ, I) be a function defined on F such that
for every vector I ∈ F , T (Ψ, I) is the grid failure time corre-
sponding to the set of samples in Ψ and subject to the vector of
source currents I. If Ψi represents the vector containing the sam-
ples chosen at Monte Carlo iteration i, then the goal is to solve
the following set of optimization problems:

While (Monte-Carlo has not converged) :
Minimize: T (Ψi, I)
subject to: I ∈ F

(15)

In the following, we discuss how to solve every minimization prob-
lem in the loop above given a fixed vector Ψ. We first explain the
local optimization given a staring point in the feasible space, and
then show both the exact and the approximate global optimiza-
tions.
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5.1 Local Optimization
Let I(1) be a given point in F and T (I(1)) be the correspond-

ing grid time-to-failure. As we will be explained later, we need
several initial points in F to solve every iteration in (15), and
every initial point will lead to a subset of F in which a local op-
timization will be performed. Therefore, a superscript is used to
index the initial points that will be chosen and the corresponding
subsets.

In order to compute T (I(1)), we need to compute the JL prod-
uct of every line, filter out all the lines that turn out to be
EM-immune, and sort the other lines according to their time-

to-failure. Let l
(1)
1 , l

(1)
2 . . . , l

(1)
ζ be the resulting sorted list of EM-

susceptible lines, and τ
(1)
1 , τ

(1)
2 . . . , τ

(1)
ζ the corresponding list of

TTFs such that:

τ
(1)
1 ≤ τ (1)2 ≤ . . . ≤ τ (1)ζ (16)

Also, let l
(1)
ζ+1, l

(1)
ζ+2 . . . , l

(1)
b be the list of all the other lines, i.e.

the EM-immune ones.
Assume that, according to the order in (16), the grid fails for

the first time after the failure of the first p EM-susceptible lines.

In other words, the grid is safe if l
(1)
1 , l

(1)
2 , . . . , l

(1)
p−1 fail, but fails

when l
(1)
p fails. This implies that T (I(1)) = τp(I(1)) as explained

in section 4. Throughout the rest of the paper, we assume that
p < ζ, because otherwise, the grid becomes immortal indefinitely
which is unrealistic. For convenience, we omit the superscript no-

tation in this section and refer to l
(1)
1 , . . . , l

(1)
b by l1, . . . , lb, and

to τ
(1)
1 , . . . , τ

(1)
ζ by τ1, . . . , τζ .

5.1.1 General Case
Define Gp to be the conductance matrix of the grid after the

failure of l1, . . . , lp, and Gp−1 the conductance matrix after the
failure of l1, . . . , lp−1 only. In this section, we assume that the
failure occurs due to the violation of the voltage drop condition.
The case of singularity is discussed later.

For I ∈ F , assume that τi(I) can be written using (9) as:

τi(I) = |cTi I|−η

Let ξi = ±1 denote the sign of cTi I
(1) for i ∈ {1, . . . , p}, i.e.

ξi =
cTi I(1)

|cT
i
I(1)|

, which implies ξic
T
i I

(1) ≥ 0.

Definition 1. We define S(1) to be the subset of F corresponding
to I(1) such that for every I ∈ S(1):

1. Lines l1, . . . , lp are EM-susceptible while lines lζ+1, . . . , lb
are EM-immune.

2. The branch currents of l1, . . . , lp have the same direction

they have for I = I(1)

3. Line lp fails right after the set of lines {l1, . . . , lp−1} and
before all the other lines.

4. Line lp is the first line to cause the failure of the grid.

It is easy to check that the point I(1) belongs to S(1) as all of
the four conditions are clearly satisfied.

Claim 1. For every I ∈ S(1), T (I) = τp(I)

Proof. For any I ∈ S(1), lp fails right after the failure of the lines
in the set the set {l1, . . . , lp−1} and is the first to cause the failure
of the grid. Therefore, T (I) = τp(I).

Claim 1 shows how to write T (I) as a closed form expression

inside S(1) which is a non-empty subset because I(1) ∈ S(1). To
minimize T in F , we start by performing a local optimization in
a subset of F where T can be explicitly defined, namely S(1). In
other words, we are interested in solving the following optimiza-
tion problem:

Minimize τp(I)

subject to I ∈ S(1) (17)

To solve (17), we introduce a new function νp on S(1) defined by

νp(I) = (τp(I))
− 1

η . Since ∀I ∈ S(1), ξpcTp I ≥ 0, we can write

νp(I) = (τp(I))
− 1

η =
[

∣

∣cTp I
∣

∣

−η
]− 1

η
=
∣

∣cTp I
∣

∣ = ξpcTp I, meaning,

νp(I) is a linear function of I.

Lemma 1. A point Iopt is a solution for (17) if, and only if,

νp(Iopt) is a maximum for νp(I) on S(1).

Proof. Since η > 0 and τp(I) is a positive function for I ∈ S(1)
(meaning ν(I) is a positive function in S(1) as well), then:

Iopt is a solution for (17)

⇔ τp(I) ≥ τp(Iopt), ∀I ∈ S(1)

⇔ (νp(I))
−η ≥ (νp(Iopt))

−η , ∀I ∈ S(1)

⇔
[

(νp(I))
−η
]− 1

η ≤
[

(νp(Iopt))
−η
]− 1

η , ∀I ∈ S(1)

⇔ νp(I) ≤ νp(Iopt), ∀I ∈ S(1)

which proves the lemma.

Lemma 1 implies that in order to solve (17), we can solve in-
stead the following maximization problem to get Iopt:

Maximize ξpcTp I

subject to I ∈ S(1) (18)

The solution to (17) would simply be (ξpcTp Iopt)
−η .

For i ∈ {1, . . . , b}, let bi denotes the row of −R−1MTG
−1
0 that

corresponds to line li, and let wi, ti, and Li denote the width,
thickness, and length of li respectively.

Theorem 1. I ∈ S(1) if, and only if, the following constraints
are satisfied:

Li
witi

ξib
T
i I ≥ βc for i ∈ {1, . . . , p} (19)

Li
witi
|bTi I| < βc for i ∈ {ζ + 1, . . . , b} (20)

ξpc
T
p I − ξicTi I ≤ 0 for i ∈ {1, . . . , p− 1} (21)

|cTi I| − ξpcTp I ≤ 0 for i ∈ {p+ 1, . . . , ζ} (22)

G
−1
p−1I ≤ Vth (23)

G−1
p I 6≤ Vth (24)

The proof theorem 1 can be found in the appendix.
The inequalities in (19), (21), (22), and (23) can be combined

in matrix form as H1I ≤ h1, and the inequalities in (20) can be
combined as H2I < h2, such that the number of rows in H1 is
γ1 = n+ 2ζ − 1, and the number of rows in H2 is γ2 = 2(b− ζ).
The details are skipped due to lack of space. Ultimately, S(1) can
be redefined as follows:

H1I ≤ h1
H2I < h2

G
−1
p I 6≤ Vth

All the inequalities presented above are linear and define a convex

polytope (or the interior of a convex polytope) except G
−1
p I 6≤

Vth which consists of a disjunction of constraints where at least
one entry of G−1

p I has to be greater than its corresponding entry
in Vth. We deal with that using a theorem that will be presented
shortly.

Throughout the rest of the paper, we will be using the 1-norm
and the infinity norm defined as follows: given a vector x ∈ R

n

with entries xi, i ∈ {1, . . . , n}:

‖x‖1 ,
∑n

i=1|xi| ‖x‖∞ , maxi=1...n |xi|

For any strictly positive number δ define d = ‖Vth‖∞(1 + δ).
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Algorithm 1 EXACT GLOBAL MINIMIZATION

Input: Ψ
Output: Global Minimum of T (Ψ, I)
1: Find I(1) in F using an LP
2: Set solved← false and i← 2
3: while (solved = false) do

4: Find T (Ψ, I(i−1))

5: Build the constraints defining S(i−1) as outline in sec-
tion 5.1

6: Solve maxI∈S(i−1) T (I) using an ILP

7: Solve a feasibility problem in F − ∪i−1
j=1S(j) to get I(i) as

outlined in section 5.2
8: if (I(i) cannot be found) then

9: solved← true
10: end if

11: i← i+ 1
12: end while

13: Return the smallest local minimum found

Theorem 2. G
−1
p I 6≤ Vth if, and only if, ∃y ∈ {0, 1}n with

‖y‖1 ≤ n− 1 such that G−1
p I > Vth − dy.

Proof. If G−1
p I 6≤ Vth, then there exists a non-empty set of in-

dices K ⊆ {1, . . . , n} such that eTk G
−1
p I > eTk Vth for every k ∈ K.

If we let y = [y1 . . . yn]T with yk = 0 for k ∈ K, and yk = 1

otherwise, then clearly ‖y‖1 ≤ n − 1, and G
−1
p I > Vth − dy be-

cause d > ‖Vth‖∞ and the entries of the vector G−1
p I are always

positive.
On the other hand, if there exists y ∈ {0, 1}n with ‖y‖1 ≤

n − 1, and G
−1
p I > Vth − dy, then ∃k such that yk = 0, and

eTk G
−1
p I > eTk Vth. Therefore, G−1

p I 6≤ Vth.

The theorem above allows replacing the last constraint in the-
orem 1 by

G
−1
p I > Vth − dy
‖y‖1 ≤ n− 1

y ∈ {0, 1}n
(25)

This shows that (18) is an integer linear program (ILP) because
it has a linear objective function, linear constraints, and some
integer variables, namely the entries of y. Solving (18) would
solve (17) as explained before, and would minimize T inside

S(1) ⊂ F .

5.1.2 Singular Case
If at I(1) the grid fails by singularity, then the same analysis

as above can be done. The only difference is that the constraint

G
−1
p I 6≤ Vth cannot be added, and is in fact redundant because

Gp is known to be singular in this case, and there is no need to

add that as one of the constraints defining S(1). Notice that in
this case, (18) becomes a linear program.

In the following, we show how to globally minimize T in F by
performing a set of local optimizations as above until F is fully
explored.

5.2 Exact Global Optimization
Similarly to S(1), every local optimization requires a starting

point in F . In order to create S(2), we need a point I(2) ∈ F
at which we compute the TTF of the grid and then follow a
similar procedure to the one explained in the previous section.
Note that finding I(1) can be done by solving a linear feasibility
problem in the set F . However, we cannot do the same for I(2)

because if we choose I(2) in F without other restrictions and it
turns out that it belongs to S(1), then S(2) becomes identical to
S(1), which adds redundancy to our approach and accordingly,
the global optimization may or may not terminate. In short, I(2)

should be chosen in the set F − S(1). Using the constraints in
theorem 1, we can infer the set of conditions required for I(2) to

Algorithm 2APPROXIMATE GLOBAL MINIMIZATION

Input: Ψ
Output: Global Minimum of T (Ψ, I)
1: Find a starting point I0 in F using an LP
2: Compute T (Ψ, I0)
3: Set k ← 0 and choose and initial temperature T0
4: while (Tk+1 ≥ Tǫ) do

5: Sample a new point I′k+1 in F as explained in section 5.3.1

6: Find T (Ψ, I′k+1)

7: Find Ik+1 based on the acceptance function as in (28)
8: Find Tk+1 using (29)
9: Set k ← k + 1
10: end while

11: Solve a local minimization at the best point found using a
convex relaxation of the ILP and return the result (procedure
of section 5.1).

be in outside S(1) (in the general case) as follows:

H1I 6≤ h1
or H2I 6< h2
or G

−1
p I ≤ Vth

(26)

For any strictly positive number δ, define

d = (1 + δ)max
(

‖h1 −H1I‖∞, ‖h2 −H2I‖∞, ‖G−1
p I − Vth‖∞

)

Theorem 3. (26) is true if and only if, there exists x1 ∈ {0, 1}γ1 ,
x2 ∈ {0, 1}γ2 , and x3 ∈ {0, 1} with

‖x1‖1 + ‖x2‖1 + x3 ≤ γ1 + γ2

such that:
H1I > h1 − dx1
H2I ≥ h2 − dx2

G
−1
p I ≤ Vth + dx31n

(27)

The proof is skipped due to lack of space, and is in fact very
similar to that of theorem 2.

In the singular case, the last set of constraints in (27) as well
as the binary variable z are not needed. Theorem 3 implies that
finding I(2) requires solving a feasibility problem in the space
defined by (27), which can be done using an ILP. The same ap-
proach should be used to find the ith starting point corresponding
to subset S(j): I(i) should be chosen as to satisfy the constraints
I ∈ F and I 6∈ S(j), j ∈ {1, . . . , i − 1}. This can also be done

using an ILP similarly to I(2). When such point cannot be found,

i.e. when F−∪i−1
j=1S(j) becomes empty, we infer that the feasible

space F is fully explored and the algorithm terminates while re-
turning the best local minimum found. The result is one sample
TTF for the grid which should be added to the other samples
found in other Monte Carlo iterations. Algorithm 1 shows how
to compute exact global minimum of the grid TTF given a set of
normal samples Ψ using the proposed approach.

5.3 Simulated Annealing with ILP Relaxation
We now present an approximate solution to the global opti-

mization problem based on Simulated Annealing (SA) [12]. SA
employs a neighborhood search that occasionally allows uphill
moves in order to avoid being stuck at a local minimum. It ran-
domly generates a candidate point at every iteration and decides
whether to move to it through a random mechanism based on a
parameter called temperature. We propose using both SA and the
local optimizer developed before to obtain a good approximation
of minI∈F T (I).

As our acceptance function, we use the Metropolis function:

A(Ik, I′k+1, Tk) = min

{

1, exp

(

−
T (I′k+1)− T (Ik)

Tk

)}

(28)
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Table 1: Speed and Accuracy Comparisons

Power Grid Exact Solution Simulated Annealing

Error
Name Nodes

Avg Min CPU Avg Min CPU
TTF (yrs) Time TTF (yrs) Time

G1 141 7.50 3.21 min 7.39 2.12 min -1.47%
G2 177 9.11 5.94 min 9.54 2.13 min 4.72%
G3 237 10.38 25.10 min 9.91 2.44 min -4.53%
G4 392 8.01 49.24 min 7.93 2.69 min -1.00%
G5 586 9.79 4.42 hrs 10.05 2.58 min 2.66%
G6 2,213 - - 9.20 2.19 min -
G7 8,413 - - 11.79 19.34 min -
G9 18,678 - - 8.40 49.93 min -
G10 32,554 - - 7.17 1.40 hrs -
G11 50,444 - - 9.22 2.54 hrs -
G12 72,692 - - 6.40 4.83 hrs -
G14 131,294 - - 7.07 13.17 hrs -
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Figure 1: CPU Time of the Exact Approach versus

the Number of Grid Nodes

where Ik is the current point, I′k+1 is the candidate point, and

tk is the current temperature. Notice that, if T (I′k+1) ≤ T (Ik),
then the acceptance function returns 1, and hence the new current
point is Ik+1 = I′k+1 (accepted with a probability equal to 1).

Otherwise, I′k+1 is accepted with a probability that depends on

Tk and the difference between T (Ik) and T (I′k+1); in this case,

accepting I′k+1 is referred to as hill climbing. For our cooling

schedule, we use

Tk = K(T0, k) = a⌊ k
M ⌋T0 (29)

where k is the SA iteration index, T0 is the starting temperature,
a is a constant between 0.8 and 0.99, and M is an integer. No-
tice that this allows the temperature to decrease by the factor a
after each group of M iterations. Convergence occurs when the
temperature becomes less than some small positive number Tǫ.

5.3.1 Sampling Random Points
Sampling a starting point I0 in F can be done using a linear

program. Finding the next candidate point I′k+1 can be done by

generating a random direction θ in space such that ‖θ‖2 = 1, and
then computing the set Λ defined as follows:

Λ = Λ(Ik, θ) = {λ ∈ R : Ik + λθ ∈ F}
Because F is a convex polytope, it can be shown that, if Ik ∈ F ,
then the set Λ can be written as

Λ = {λ ∈ R : λmin ≤ λ ≤ λmax}
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Figure 2: CPU Time of Simulated Annealing Ap-

proach versus the Number of Grid Nodes

where λmin ≤ 0 and λmax ≥ 0. To choose a new random point,
it is enough to uniformly sample a value for λ from the set Λ, and
compute the new point accordingly I′k+1 = Ik + λθ.

5.3.2 Convex Relaxation of the ILP
Once SA terminates, we run the local optimization procedure

explained in section 5.1 with the best point found by SA as a
starting point and while solving an LP relaxation of (17). This
can be done by allowing the entries of the vector y in (25) to be in
the range [0, 1] instead of the set {0, 1}. The result is an estimate
sample for the minimum grid TTF. As before, enough samples
should be collected until Monte Carlo converges. Algorithm 2
shows how to compute the global minimum of the grid TTF given
a set of normal samples Ψ using SA and the local minimizer.

6. EXPERIMENTAL RESULTS
Algorithms 1 and 2 have been implemented in C++. The al-

gorithms use the Mosek optimization package [13] to solve the
required LPs and ILPs. An approximate sparse inverse of G0

is found using SPAI [14], and all the other required inverses are
found using the Woodbury formula, i.e. (11). We carried out
several experiments using 14 different power grids generated as
per user specifications, including grid dimensions, metal layers,
pitch and width per layer. Supply voltages and current sources
were randomly placed on the grid which is assumed to have Alu-
minum interconnects. The parameters of the grids are consistent
with 1.1V 65nm CMOS technology. As for the EM model em-
ployed, and because Aluminum is assumed, we use an activation
energy of 0.9eV , a current exponent η = 1, a nominal tempera-
ture Tm = 373K, a critical Blech product βc = 3000A/cm. The
lognormal standard deviation we use is σln = 0.3 as in [3]. All the
experiments were carried out on a 2.6GHz Linux machine with
24GB of RAM. To assess the quality of our results, we computed
the average worst-case grid TTF using both the exact and the SA
approaches together with the required CPU time for every grid.
Table 1 shows the speed and accuracy of the simulated anneal-
ing approach where the last column shows the percentage error
between the mean found using each method. We can see that
the error is always less than ±5% while the run time is much less
for the SA approach. The exact approach requires solving several
ILPs and for that reason the required CPU time is relatively large
even for very small grids as shown in figure 1. On the other hand,
the SA approach seems fairly accurate and very scalable since the
run time is slightly super-linear as shown in figure 2. In fact, the
observed empirical complexity of the implemented algorithm is
found to be around O(n1.4).

To show the importance of our approach, we computed the se-
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ries system TTF at the optimal points obtained, and we observed
that the mesh model TTF is 2-3X larger than that of the series
system. In addition, we computed the average best-case TTF
using Simulated Annealing, and we noticed that there is a large
separation between the average minimum and average maximum
TTF for I ∈ F . For instance, the separation was found to be
6.55 years for G10, 8.33 years for G11, 4.45 years for G12, and
3.8 years for G12. The large separation means that the MTF of
the grid is highly sensitive to the change in currents, i.e. it is not
enough to compute the MTF of the grid at an arbitrary feasible
point; computing the minimum is necessary.

One might argue that the grids above are small when compared
to full-chip grids containing millions of nodes. However, our ap-
proach is important for at least three reasons: 1) it is an approach
that checks for EM safety using a less pessimistic model in a truly
vectorless approach, 2) our method can be applied to the top-level
main feeder network of the grid that is not very large, and that
should be tested early in the design flow, and 3) almost 30% of

the run time in the case of SA is taken by SPAI to compute G
−1
0

which, together with the other parts of the algorithm, can be eas-
ily parallelized due the inherent independence in both SPAI and
Monte Carlo iterations.

7. CONCLUSION
We described an early vectorless approach for power grid elec-

tromigration checking under a constraint-based framework to cap-
ture workload uncertainty. We presented an exact, theoretically
interesting approach, and another approximate, fairly accurate,
and practical approach based on Simulated Annealing. The exact
approach requires solving several ILPs and turns out to be very
expensive, while the SA based approach requires few LPs and one
linear system solve. For small grids, the error incurred by the SA
approach was relatively very small, and never exceeding ±5%.
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APPENDIX

A. PROOF OF THEOREM 1
Using definition 1, we know that for every I ∈ S(1), lines

l1, . . . , lp have the same direction they have for I = I(1), there-
fore:

ξib
T
i I ≥ 0 and ξic

T
i I ≥ 0 for j ∈ {1, . . . , p} (30)

Also, lines l1, . . . , lp are EM-susceptible, meaning their JL prod-
ucts are greater than βc. Using (6), this can be written as:

|bTi I|
witi

Li ≥ βc, i = 1, . . . , p (31)

Similarly, lines lζ+1, . . . , lb are EM-immune, meaning we can write:

|bTi I|
witi

Li < βc, i = ζ + 1, . . . , b

which is identical to (20).
Moreover, lp fails after lines {l1, . . . , lp−1}, and before all the
other lines. This is equivalent to:

max
j∈{1,...,p−1}

τj(I) ≤ τp(I) ≤ min
k∈{p+1,...,ζ}

τk(I)

which is also equivalent to:

max
j∈{1,...,p−1}

|cTj I|−η ≤ |cTp I|−η ≤ min
k∈{p+1,...,ζ}

|cTk I|−η (32)

The grid is safe after the failure of the lines in the set {l1, . . . , lp−1}.
This is equivalent to (23) because Gp−1 is defined to be the con-
ductance matrix of the grid after the failure of those lines.
The grid fails after the failure of the lines in the set {l1, . . . , lp}.
This is equivalent to (24) because Gp is defined to be the con-
ductance matrix of the grid after the failure of those lines.
It remains to show that:

(30), (31), and (32)⇔ (19), (21), and (22)

We do this using a two way proof. Assume (30), (31), and (32)
are true, then (31) implies (19) because |bTi I| = ξib

T
i I for i ∈

{1, . . . , p}. Also, (32) implies:

max
j∈{1,...,p−1}

(

ξjc
T
j I
)−η

≤
(

ξpc
T
p I
)−η

≤ min
k∈{p+1,...,ζ}

|cTk I|−η

(33)

By taking the
(

− 1
η

)th
power of all the terms of (33), we can

write

max
k∈{p+1,...,ζ}

|cTk I| ≤ ξpcTp I ≤ min
j∈{1,...,p−1}

ξjc
T
j I (34)

which implies (21) and (22). This is true because − 1
η
< 0 and

hence, taking the
(

− 1
η

)th
power reverses all the inequalities in

which case, the min operator becomes a max, and vice versa.
One the other hand, assume (19), (21), and (22) are true,

then (34) is true. Since

max
k∈{p+1,...,ζ}

|cTk I| ≥ 0

then
0 ≤ ξpcTp I ≤ min

j∈{1,...,p−1}
ξjc

T
j I

and hence, (30) is true. In addition, we can take the (−η)th power
of all the terms in (34) to get (33) because −η < 0. Now, we can
easily get (32) from (33) because (30) is true. Finally, (31) is also
true because of (30) and (19). �
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