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ABSTRACT
Simulation and verification of the on-die power delivery network
(PDN) is one of the key steps in the design of integrated cir-
cuits (ICs). With the very large sizes of modern grids, verifi-
cation of PDNs has become very expensive and a host of tech-
niques for faster simulation and grid model approximation have
been proposed. These include topological node elimination, as in
TICER and full-blown numerical model order reduction (MOR)
as in PRIMA and related methods. However, both of these tradi-
tional approaches suffer from certain drawbacks that make them
expensive and limit their scalability to very large grids. In this
paper, we propose a novel technique for grid reduction that is
a hybrid of both approaches–the method is numerical but also
factors in grid topology. It works by eliminating whole internal
layers of the grid at a time, while aiming to preserve the dy-
namic behavior of the resulting reduced grid. Effectively, instead
of traditional node-by-node topological elimination we provide a
numerical layer-by-layer block-matrix approach that is both fast
and accurate. Experimental results show that this technique is
capable of handling very large power grids and provides a 4.25x
speed-up in transient analysis.
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1. INTRODUCTION
On-die power grid integrity checking is one of the key steps in

the design process of complex ICs. Integrity checking ensures that
the voltage drop at any node in the grid does not exceed a certain
threshold, otherwise, the integrated circuit will not perform as in-
tended. This can be done through simulation and/or verification
of the power grid. However, as the grid size increases (to around
a billion nodes), simulation and verification of such a grid become
computationally expensive and almost impossible to implement
given the existing resources. Given that all the logic circuitry
is connected to the lower metal layers of a power grid, then the
safety (integrity) of the nodes in those layers is what matters to
ensure a reliable performance. To this end, model order reduction
(MOR) has been extensively used in the studies of IC designs for
the past two decades. Researchers have been using MOR tech-
niques to reduce the original large power grid systems to much
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smaller ones, preserving accuracy and timing behavior as much
as possible, such that they can be used in further simulations and
design verification.

Model order reduction tries to capture the essential features
of a system without computing all its details [8]. Several model
order reduction techniques have been used or introduced in the
past years for the purpose of circuit analysis and power grid re-
duction. Those techniques can be mainly divided into three dif-
ferent categories: multigrid reduction methods, moment match-
ing techniques based on Krylov subspaces, and nodal elimination
methods.

Multigrid methods tend to map the problem of a large power
grid to some coarse grid (restriction), and then solve that small
grid. The solution is then mapped back to the original grid (in-
terpolation). This mapping to smaller grids depends on exploit-
ing the strength of wire connections and the dominant neigh-
bors (strongly connected neighbors) [10]. These methods create
significantly smaller grids with relatively sparse system matrices
that are easy to solve. However, some multigrid methods require
keeping track of the power grid geometry for each multigrid level,
which is inefficient for non-uniform grids. Besides, the error in
such techniques is usually hard to predict or control.

Moment matching methods are based on explicit numerical
matching of moments of a system to reduce its order. In other
words, assume that the transfer function of the original system is
given by:

H(s) = M0 +M1s+M2s
2 + . . .

Then, we try to find a reduced model that matches the first q
moments, such that its transfer function is given by:

Hq(s) = M0 +M1s+M2s
2 + · · ·+Mqs

q

PRIMA [4], is a well-known algorithm of moment matching, in
which the moment space is projected onto an orthonormal sub-
space called the Krylov subspace. The drawbacks of these meth-
ods are that they are not realizable for RC and RLC circuits,
and they can produce dense systems. Besides, as the number of
port nodes increases, computing higher order moments becomes
harder and inefficient.

Nodal elimination techniques are used to topologically reduce
the number of nodes in the original circuit and approximate the
newly added elements in the reduced circuit. One of the well-
known nodal elimination methods is the Time Constant Equilib-
rium Reduction Scheme, or TICER [9]. The aim of TICER is
to reduce circuits to smaller realizable networks while preserving
Elmore delays through RC trees. TICER’s key idea is to elimi-
nate a node that has few neighbors and a small time constant,
or what the authors call “quick nodes”. However, the addition of
new elements makes the reduced networks denser compared to the
original ones. This makes TICER good for tree-like structures of
networks observed in circuit timing analysis problems. In other
words, TICER cannot be readily applied to mesh-structured chip
power grids. The authors in [2] used TICER to eliminate nodes
from chip power grids in order to check the safety of those grids.
However, the reduction ratio was not very high, and the work
couldn’t be extended to very large power grids.



Several other works on MOR have been published in the past
five years. In [12], the authors geometrically divide the power grid
into several blocks, and then they reduce each block to a much
smaller one based on Gaussian Elimination. Finally, they sparsify
each resulting dense block using random sampling of edges and
their effective resistances. However, the authors give very little
information on their approach for RC grids, and most of their
results are shown for resistive grids (without capacitances).

In this paper, we propose a novel grid reduction and sparsifica-
tion technique that exploits the fact that the whole logic circuitry
is attached to the bottom metal layer of a power grid. We pro-
pose a numerical layer elimination technique for RC power grids
based on the nodal elimination approach in order to eliminate
whole metal layers from a power grid and keep only the important
ones. This technique factors in the grid topology when specifying
the layers to be eliminated, and when sparsifying the resulting
reduced grid while preserving its dynamic behavior.

This paper is organized as follows. In section 2, we present
a background on the power grid model used and some concepts
and notation used later in the paper. Sections 3 and 4 present
our proposed approach and sparsification technique to eliminate
layers from resistive and RC grids, respectively. In section 5, we
propose an incremental approach to eliminate the metal layers.
The experimental results are shown in section 6. Finally, section 7
concludes this paper.

2. BACKGROUND AND NOTATION
2.1 Notation

Throughout the rest of this paper, the following notation will
be used. Let (M)ij denote the (i, j)th entry of any matrix M ,

and let (v)j denote the jth entry of a vector v. We will use the
notation M > 0 (or M ≥ 0), for any matrix M , to denote that
(M)ij > 0 (or (M)ij ≥ 0), ∀i, j.

2.2 Power Grid Model
Consider an RC model of a power grid where each metal branch

is represented by a resistor and where there exists a capacitor from
every node to the ground. Some nodes have ideal current sources
(to ground) to represent the current drawn by the underlying
circuitry, and some have ideal voltage sources to represent the
connections to external power supply. Let the power grid consist
of n + p nodes, where nodes 1, 2, . . . , n have no voltage sources
attached, and the remaining nodes are the nodes where p voltage
sources are attached. Let i(t) be the element-wise non-negative
vector of all current sources connected to the grid. We assume
that ∀k = 1, . . . , n, the entry (i(t))k is well-defined, so that nodes
with no current source attached have (i(t))k = 0. Furthermore,
let N (i) denote the set of all neighboring nodes of a node i, where
a node j is considered a neighboring node of i if and only if it is
directly connected to node i through a metal branch. Besides, let
g(ij) denote a physical conductance between two nodes, i and j,
with g(ij) = 0 if the two nodes are not directly connected, and
g(i) denote the total incident conductance at node i, i.e.:

g(i) =
∑

j∈N (i)

g(ij)

Let c(i) denote a capacitance connected from node i to ground.

Finally, Let u(t) be the vector of all nodal voltages, and v(t) =
Vdd − u(t) be the vector of voltage drops, where Vdd is an n × 1
constant vector each entry of which is equal to the ideal supply
voltage source value. Then the RC model for the power grid can
be written as [3]:

Gv(t) + Cv̇(t) = i(t) (1)

whereG is an n×n conductance matrix, and C is an n×n diagonal
non-singular matrix consisting of all node-to-ground capacitances.

Note that this equation can be obtained directly by writing the
Nodal Analysis (NA) system for a modified network in which all
voltage sources are shorted (set to 0) and all current sources are
reversed. In the rest of this paper, we are going to assume this
modified network topology. Moreover, note that a resistive power

grid is modeled in the same way by neglecting all capacitances,
and the model can be written as:

GV = I (2)

where V and I are n × 1 time-independent vectors representing
the DC node voltage drops and currents, respectively.

The matrixG is known to be symmetric and diagonally-dominant
with positive diagonal entries and non-positive off-diagonal en-
tries, and it is defined as follows, ∀i, j ∈ {1, 2, . . . , n},

(G)ij =

{
g(i) i = j
−g(ij) i 6= j

(3)

Assuming the grid is strongly connected and there is at least
one external voltage source, then G is known to be irreducibly
diagonally dominant. With these properties, G is known to be
a so-called M-matrix, so that G−1 exists and is non-negative
(G−1 ≥ 0).

2.3 Node Elimination
Throughout this paper, we will refer to the topological ap-

proach to eliminate nodes from a resistive power grid by Node
Elimination. This topological approach is based on the well-
known Y − ∆ transformation technique for circuit analysis [6].
Suppose that node i is to be eliminated, then the elimination
process is as follows:

• Remove all conductances connecting node i to its neighbors.

• For each two nodes j, k ∈ N (i), insert a new conductance
between them given by:

g(jk)new
, g(jk)old +

g(ij)g(ik)

g(i)
(4)

• Remove node i.

This elimination of node i does not change the surrounding nodes’
voltages.

3. PROPOSED APPROACH
In [11], the authors use a 2 × 2 block matrix representation

for the NA conductance matrix of their macromodels in order to
perform macromodeling and get the port admittance matrix of
these macromodels using Gaussian Elimination. In this section,
we divide the grid into three regions and generalize the work
done in [11] to a 3× 3 block-matrix Gaussian Elimination. Since
the resulting grid is dense, we propose a topological technique
for power grid sparsification based on the relation between the
effective resistance between two nodes in the grid and spatial
locality.

3.1 Resistive Grids and Layer Elimination
Let us divide a resistive grid into 3 blocks; one representing the

top layers of the grid that should be kept (the topmost layer is
connected to the C4 bumps), another representing the layers that
are desired to be eliminated (middle layers), and finally a block
representing the lower (bottom) layers that are connected to the
current sources.

Let nl be the total number of nodes in the layers desired to
be eliminated (middle layers), nt be the number of nodes in the
top layers of the grid, and let nb be the number of nodes in the
bottom layers of the grid. Finally, note that n = nt + nl + nb,
where n is the total number of nodes in the grid. Consider the
following representation of the resistive grid conductance matrix
of size n× n:

G =

G11 G12 0
GT

12 G22 G23

0 GT
23 G33

 (5)

where G22 is an nl × nl conductance matrix that represents the
middle metal layers, G11 is an nt × nt conductance matrix rep-
resenting the top layers of the grid, and G33 is an nb × nb con-
ductance matrix representing the bottom layers of the grid. G12



and G23 are non-positive, non-square matrices that represent the
vias between the middle layers and each of the top and bottom
layers, respectively, where G12 is of size nt×nl, and G23 is of size
nl × nb. Note that G11, G22 and G33 are all M-matrices (their
inverses are non-negative), since any principal sub-matrix of an
M-matrix is also an M-matrix [5].

From (2), one can get the DC voltage drops V =

V1V2
V3

 at all

nodes in the grid by solving:

GV = I (6)

where V1 is of size nt × 1, V2 is of size nl × 1, and V3 is of size

nb × 1. I =

 0
0
I3

 is an n× 1 vector representing the DC current

values drawn from each node in the grid to ground. Note that
I3 is of size nb × 1, and the zeros are vectors of sizes nt × 1 and
nl × 1.
Combining (5) and (6), and solving for V2, we get:

V2 = −G−1
22 (GT

12V1 +G23V3) (7)

From (5) and (6), we also have:

G11V1 +G12V2 = 0 (8)

Substituting (7) into (8), we get:

(G11 −G12G
−1
22 G

T
12)V1 −G12G

−1
22 G23V3 = 0 (9)

Following the same procedure, we also get:

−GT
23G
−1
22 G

T
12V1 + (G33 −GT

23G
−1
22 G23)V3 = I3 (10)

Let:

Ĝ11 , G11 −G12G
−1
22 G

T
12

Ĝ13 , −G12G
−1
22 G23 (11)

Ĝ33 , G33 −GT
23G
−1
22 G23

Then, the reduced system matrix can be represented by:

Ĝ =

[
Ĝ11 Ĝ13

ĜT
13 Ĝ33

]
(12)

where Ĝ is of size n̂ × n̂, and n̂ = n − nl = nt + nb. Note that
computing the inverse of G22 is not necessary, as the number of
non-zero columns in GT

12 and G23 is much less than the number of

columns of G22. Hence, computing G−1
22 G

T
12 and G−1

22 G23 directly
is much faster.

Finally, the DC voltage drops at all nodes in the reduced grid
can be obtained by solving:

ĜV̂ = Î (13)

where V̂ =

[
V̂1
V̂3

]
is an n̂ × 1 vector that represents the DC volt-

age drops at all nodes in the reduced grid. V̂1 and V̂3 are of

sizes nt × 1 and nb × 1, respectively. Î =

[
0
I3

]
is also an n̂ × 1

vector representing the DC current values drawn from each node
in the reduced grid to ground. Note that I3 is still the same as
in (6), since the aim of our proposed approach is to keep the lay-
ers that are connected to the underlying logic circuitry, which is
represented by the current sources attached.

3.2 Sparsification
As the size of the grid increases, the number of nodes in the

middle layers increases, and thus; Gaussian Elimination results in
rather dense models that are hard to store in memory, and expen-
sive to use in simulations. To overcome this issue, we use some
heuristic techniques in order to reduce the number of connections
in the reduced model in (12) topologically without creating too
much inaccuracies in both the DC and transient simulations. The
method is based on the the effective resistance between any two
nodes in the original grid.

Several methods for sparsification have been implemented in
our work that are based on random walk or random sampling of
edges. However, none of them favored the speed of simulations
on the reduced grids. Based on the spatial locality, the closeness
to the boundaries and the relation between the top and bottom
layers of the grid, we propose a method that captures the impor-
tant connections in the reduced grid while preserving the elec-
trical properties of the original one as much as possible. Using
the concept of spatial locality, which states that a supply con-
nection to the grid affects the most the current passing through
the nodes closest to it [1], one can say that there is a correlation
between the effective resistance between any two nodes and the
length of the path between those nodes. In other words, as the
nodes become spatially closer to each other, the effective resis-
tance between them becomes smaller. Accordingly, we keep the
connections between nodes in the same layer that lie in a small
neighborhood defined by the user. Empirical results have shown
that nodes that lie within two to three metal lines away from a
specific node have low effective resistance among them, and thus,
we will use such a neighborhood in our experiments. Clearly, the
larger the neighborhood, the denser the final sparsified grid will
be, and more accurate of course. Hence, there is a clear trade-off
between the sparsity of the grid and simulations speed, and the
accuracy of such simulations.

For connections between different metal layers, we tend to keep
them, as those connections tend to have less resistance than the
branch ones, which means less effective resistance.

4. EXTENSION TO RC GRIDS
In this section, we will extend grid reduction to RC power

grids. Our main contribution is to reduce an RC grid numerically
to eliminate multiple layers at once, rather than topologically on
a node by node basis. We introduce a method to approximate the
reduced capacitance matrix such that we have a realizable grid
reduction technique. The approximation is based on the work
done in [9] and [2]. We give a proof to show that eliminating all
the layers at once using our approach and eliminating them on a
node by node basis produce the same reduced system.

Let C be the capacitance matrix defined in section 2. Assume
that it is partitioned as follows:

C =

C1 0 0
0 C2 0
0 0 C3

 (14)

where C1, C2 and C3 are all diagonal matrices representing the
capacitances connected from each node in the top, middle and
bottom layers, respectively, to ground. Note that C1 is of size
nt × nt, C2 is of size nl × nl and C3 is of size nb × nb.

In [2], the authors used the TICER algorithm [9] to account
for the capacitance connected to a node being eliminated using
Node Elimination while approximately preserving the time con-
stant of the circuit. TICER distributes the capacitance among
its neighbors in a weighted ratio of conductances. Analytically,
this translates to:

c′(j) , c(j) +
c(i)g(ij)

g(i)
∀j ∈ N (i) (15)

where i is the node being eliminated, and c′
(j)

is the updated

value of the capacitance connected from node j to ground. This
approximation assumes that the node being eliminated is a so-
called quick node [9], i.e.:

2πfmaxτ(i) << 1
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Figure 1: Quick Node property of a power grid of size 152K nodes
(fmax = 1GHz).

where fmax is the maximum operating frequency of interest, and

τ(i) =
c(i)
g(i)

is referred to as the time constant of node i. Fortu-

nately, as seen in Fig. 1, the maximum 2πfmaxτ(i) on all the
nodes i in metal layers M2 to M8 in modern chip power grids is
very small, less than 0.012. Even if a higher fmax is chosen, such
as 2 or 3 GHz, it is still clear that the quick nodes approximation
is still valid for modern grids. Hence, all the nodes in the layers
being eliminated are considered quick nodes.

In this paper, we generalize (15) to eliminate multiple layers
at once, as follows. Let c1 be an nt × 1 column vector of the
capacitors connected from node to ground at every node in the
top layers, i.e., c1 is a column vector of the diagonal entries of
C1. Likewise, let c2 and c3 be nl × 1 and nb × 1 column vectors
of the diagonal entries of C2 and C3, respectively.
Let:

ĉ1 , c1 −G12G
−1
22 c2 (16a)

ĉ3 , c3 −GT
23G
−1
22 c2 (16b)

and let:

Ĉ ,

[
Ĉ1 0

0 Ĉ3

]
(17)

where Ĉ1 and Ĉ3 are diagonal matrices consisting of the entries

of ĉ1 and ĉ3, respectively. Claim 1 proves that Ĉ is the reduced
capacitance matrix of the grid obtained by applying (15) sequen-
tially, while eliminating the desired nodes.

Claim 1. Applying (16) when eliminating all q nodes of the
middle layers gives the same capacitance values as applying (15)
sequentially q times for the nodes in the middle layers, while
using Node Elimination.

Proof. We will prove that the new capacitances connected to
the top layers are exactly the same in both cases. In other words,
we are will prove that (16a) and (15) are equivalent. The proof for
the bottom layers’ capacitances (16b) follows the same structure,
and is skipped due to lack of space. The proof is by induction
on the number of nodes being eliminated. Throughout the rest
of the proof, the following notation will be used.

Let G be the n×n conductance matrix as defined in (3). Define

G(q) to be a q-partition of G, where a q-partition is a block-
matrix representation of G such that the number of nodes to be
eliminated is q, and the indexing of the nodes is as follows: all
the nodes before the q nodes (top nodes) have indices 1, 2, . . . , ñt,
all the nodes to be eliminated have indices ñt + 1, . . . , ñt + q, and
all nodes after the q nodes (bottom nodes) have indices ñt + q +
1, . . . , n. Analytically,

G(q) =

 G
(q)
11 G

(q)
12 G

(q)
13

G
(q)T

12 G
(q)
22 G

(q)
23

G
(q)T

13 G
(q)T

23 G
(q)
33

 (18)

This means that G
(q)
22 consists of all the q nodes to be eliminated.

The sizes of the partitions are as follows: G
(q)
11 is ñt × ñt, G

(q)
12 is

ñt × q, G(q)
22 is q × q, G(q)

23 is q × ñb, G
(q)
13 is ñt × ñb, and G

(q)
33 is

ñb × ñb, where ñb = n− (ñt + q).
Recall that in (5), G13 = 0. This is due to the fact that in (5),

G22 consists of a whole metal layer (or multiple layers), and in

the structure of chip power grids, each metal layer is connected
to only the layers above and below it directly. This means that
there are no physical connections between the top and bottom
layers, and G13 = 0. Hence, if the q nodes being eliminated

form a whole layer, then G
(q)
13 = 0. In fact, if q = nl, then

ñt = nt, ñb = nb, and the block-matrix representations in (5)
and (18) are equivalent.

Furthermore, let Ĝ(q) be the resulting (ñt + ñb) × (ñt + ñb)

conductance matrix after applying Gaussian Elimination on G
(q)
22 ,

i.e., let Ĝ
(q)
11 , Ĝ

(q)
13 and Ĝ

(q)
33 be such that:

Ĝ
(q)
11 = G

(q)
11 −G

(q)
12 G

(q)−1

22 G
(q)T

12

Ĝ
(q)
13 = G

(q)
13 −G

(q)
12 G

(q)−1

22 G
(q)
23

Ĝ
(q)
33 = G

(q)
33 −G

(q)T

23 G
(q)−1

22 G
(q)
23

(19)

Then:

Ĝ(q) =

[
Ĝ

(q)
11 Ĝ

(q)
13

Ĝ
(q)T

13 Ĝ
(q)
33

]
Note that finding the above expression for Ĝ

(q)
13 follows the same

structure of the Gaussian Elimination mentioned in section 3.1,
and is skipped due to lack of space.

Finally, let us define C(q), a q-partition of C, such that c
(q)
1 , c

(q)
2

and c
(q)
3 are the ñt × 1, q× 1 and ñb × 1 vectors representing the

capacitances from each node to ground in the corresponding par-

titions of the grid. And, let ĉ
(q)
1 and ĉ

(q)
3 be the resulting ñt × 1

and ñb × 1 vectors after the elimination of q nodes using (16),
respectively.

The structure of the proof is as follows:

• Base step: Form a 1-partition of G and C, and prove that
(15) and (16a) are equivalent.

• Inductive step: For any integer q > 1,

1. Form a (q − 1)-partition of G and C, and reduce the
system using (19) and (16) to get G′ and C′. Assume
that (15) and (16a) are equivalent when eliminating
q − 1 nodes.

2. Eliminate 1 more node using node elimination and
(15) from G′ and C′ to get C′′ and its partitions c′′1
and c′′3 .

3. Form a q-partition of G and C using the (q−1) nodes
and the additional node used in steps 1 and 2. Apply

(16a) to get ĉ
(q)
1 .

4. Prove that c′′1 = ĉ
(q)
1 .

Base Step: Let node k = ñt+1 be the node we need to eliminate,
and let G(1) and C(1) be the 1-partitions made on G and C to

eliminate node k. Then, G
(1)
22 = g(k), c

(1)
2 = c(k), and:

(G
(1)
12 )jk =

{
−g(jk) if j is a neighbor of k
0 otherwise

Applying (16a), we get:

ĉ
(1)
1 = c

(1)
1 −G(1)

12 G
(1)−1

22 c
(1)
2 = c

(1)
1 −

c(k)

g(k)
G

(1)
12

which translates to:

(ĉ
(1)
1 )j =

{
(c

(1)
1 )j +

c(k)g(jk)

g(k)
if j is a neighbor of k

(c
(1)
1 )j otherwise

(20)

On the other hand, applying (15) to get the new capacitances at
all top nodes, we get:

(ĉ
(1)
1 )j =

{
(c

(1)
1 )j +

c(k)g(jk)

g(k)
if j is a neighbor of k

(c
(1)
1 )j otherwise

(21)



Figure 2: Illustration of G(q) and c(q)

We can see that (20) and (21) are the same. This concludes the
base step.

Inductive Step: Assume that the claim is true for eliminating
q − 1 nodes, i.e., assume that:

ĉ
(q−1)
1 = c

(q−1)
1 −G(q−1)

12 G
(q−1)
22 c

(q−1)
2

ĉ
(q−1)
3 = c

(q−1)
3 −G(q−1)T

23 G
(q−1)
22 c

(q−1)
2

(22)

are equivalent to applying (15) q − 1 times sequentially while
eliminating q − 1 nodes using node elimination.

Let the additional node to be eliminated be the first node in the
bottom nodes, which has index k = ñt + q. Note that eliminating
the nodes in any order does not affect the final reduced system
(Claim 2 in the appendix gives a proof of this property). Forming
the q-partition of G with this additional node, we get:

c
(q)
1 = c

(q−1)
1 = c1 (23a)

c
(q)
2 =

[
c
(q−1)
2 c(k)

]T
(23b)

c
(q−1)
3 =

[
c(k) c

(q)
3

]T
G

(q)
11 = G

(q−1)
11

G
(q)
12 =

[
G

(q−1)
12 γk

]
(23c)

G
(q−1)
13 =

[
γk G

(q)
13

]
G

(q)
22 =

[
G

(q−1)
22 µk
µTk g(k)

]
(23d)

G
(q−1)
33 =

[
g(k) αT

k

αk G
(q)
33

]
where γk is an ñt×1 vector representing the connections between
the top nodes and node k, µk is a (q− 1)× 1 vector representing
the connections between the block of the first (q− 1) nodes being
eliminated and node k, and αk is an ñb × 1 vector representing
the connections between the bottom nodes and node k. Note

that: G
(q−1)
23 =

[
µk X

]
, while G

(q)
23 =

[
X
αT
k

]
, where X is a

(q− 1)× ñb non-positive matrix. Fig. 2 illustrates how G(q) and

c(q) are composed in terms of G(q−1) and c(q−1), respectively.
In what follows, we will give some results that will be helpful

in the rest of the proof. From [7], the inverse of any non-singular

2×2 block-matrix A =

[
B E
F C

]
, where B is non-singular, can be

written as:

A−1 =

[
B−1 +B−1ES−1FB−1 −B−1ES−1

−S−1FB−1 S−1

]
(24)

where S = C − FB−1E is the well-known Schur complement of
C in A.

Let ϕk = G
(q−1)−1

22 µk. Then, using (23d) and (24), we can
write:

G
(q)−1

22 =

[
P λ
λT r

]
(25)

where

P = G
(q−1)−1

22 + rϕkϕ
T
k

λ = −rϕk

r = (g(k) − µTk ϕk)−1

(26)

where r is a scalar, λ is a (q−1)×1 vector, and P is a (q−1)×(q−1)
matrix.
Let:

ĝ
(q−1)
(k)

, r−1

= g(k) − µTk ϕk (27)

= g(k) − µTkG
(q−1)−1

22 µk

Moreover, let:

γ̂k , γk −G
(q−1)
12 ϕk

= γk −G
(q−1)
12 G

(q−1)−1

22 µk

ĉ
(q−1)
(k)

, c(k) − ϕT
k c

(q−1)
2

= c(k) − µTkG
(q−1)−1

22 c
(q−1)
2

(28)

Note that ĝ
(q−1)
(k)

is the total incident conductance at node k

after eliminating the first q − 1 nodes. This can be seen by eval-

uating Ĝ
(q−1)
33 using (19):

Ĝ
(q−1)
33 = G

(q−1)
33 −G(q−1)T

23 G
(q−1)−1

22 G
(q−1)
23

Since g(k) =
(
G

(q−1)
33

)
11

, and µk is the column of G
(q−1)
23 that

corresponds to the connections to node k, then

ĝ
(q−1)
(k)

=
(
Ĝ

(q−1)
33

)
11

(29)

Similarly, we can show that ĉ
(q−1)
(k)

is the capacitance connected

to node k after eliminating the first q − 1 nodes by evaluating

ĉ
(q−1)
3 using (22):

ĉ
(q−1)
3 = c

(q−1)
3 −G(q−1)T

23 G
(q−1)−1

22 c
(q−1)
2

Since c(k) =
(
c
(q−1)
3

)
1
, and µk is the column of G

(q−1)
23 that

corresponds to the connections to node k, then

ĉ
(q−1)
(k)

=
(
ĉ
(q−1)
3

)
1

(30)

Using the same reasoning, one can prove that γ̂k is an ñt × 1
vector representing the connections between the top nodes and
node k after eliminating the first q − 1 nodes.

Going back to the main part of the proof, we have from (16a):

ĉ
(q)
1 = c

(q)
1 −G(q)

12 G
(q)−1

22 c
(q)
2 (31)

Plugging (23a)-(23d) and (25)-(28) into (31), we get:

ĉ
(q)
1 = c1 −

[
G

(q−1)
12 γk

] [ P λ
λT r

] [
c
(q−1)
2
c(k)

]
= c1 −G(q−1)

12 (Pc
(q−1)
2 + c(k)λ)− γk(λT c

(q−1)
2 + rc(k))

= c1 −G(q−1)
12

((
G

(q−1)−1

22 + rϕkϕ
T
k

)
c
(q−1)
2 − c(k)rϕk

)
− γk(−rϕT

k c
(q−1)
2 + rc(k))

= c1 −G(q−1)
12

(
G

(q−1)−1

22 c
(q−1)
2 +

ϕkϕ
T
k c

(q−1)
2

ĝ
(q−1)
(k)

−
c(k)ϕk

ĝ
(q−1)
(k)

)
−
−ϕT

k c
(q−1)
2 +c(k)

ĝ
(q−1)
(k)

γk

= c1 −G(q−1)
12 G

(q−1)−1

22 c
(q−1)
2 +G

(q−1)
12 ϕk

c(k)−ϕT
k c

(q−1)
2

ĝ
(q−1)
(k)

−
c(k)−ϕT

k c
(q−1)
2

ĝ
(q−1)
(k)

γk

= ĉ
(q−1)
1 −

c(k)−ϕT
k c

(q−1)
2

ĝ
(q−1)
(k)

(γk −G
(q−1)
12 ϕk)

= ĉ
(q−1)
1 −

ĉ
(q−1)
(k)

ĝ
(q−1)
(k)

γ̂k

(32)



Algorithm 1 Incremental_Elimination

Inputs: G,C, h, l, δ

Outputs: Ĝ, Ĉ
1: for k = h− 1 down to l + 1 do
2: layer nodes := get nodes of layer k
3: Form partitions of G and C using (5) and (14) based on

layer nodes

4: Compute Ĝ based on (11) using G

5: Compute Ĉ based on (17) using C

6: C := Ĉ
7: Use SPER to sparsify Ĝ, and put the result in G
8: end for
9: Ĝ := G

10: Ĉ := C
11: return Ĝ, Ĉ

which translates to:

(ĉ
(q)
1 )j =


(ĉ

(q−1)
1 )j +

ĉ
(q−1)
(k)

|(γ̂k)j |

ĝ
(q−1)
(k)

if j is a neighbor of k

(ĉ
(q−1)
1 )j otherwise

(33)

On the other hand, let G′ = Ĝ(q−1) and C′ = Ĉ(q−1), applying
node elimination then (15) to eliminate the same node k, and get
the new capacitances at all nodes in the top nodes c′′1 , we get:

(c′′1 )j =

 (c′1)j +
c′
(k)
g′
(kj)

g′
(k)

if j is a neighbor of k

(c′1)j otherwise

(34)

Using the fact that G′ = Ĝ(q−1) and C′ = Ĉ(q−1), we can see

from (29) that g′
(k)

= ĝ
(q−1)
(k)

. Similarly, from (30), we can see

that c′
(k)

= ĉ
(q−1)
(k)

. It can also be shown using a similar reasoning

that g′
(kj)

= |(γ̂k)j | ,∀j. Hence, we can see that c′′1 = ĉ
(q)
1 , and

this completes the proof.

5. INCREMENTAL ELIMINATION
Looking at the reduced conductance matrix in (11) and the

approximate reduced capacitance matrix in (16), we can see that

they involve computing G−1
22 , which represents all the nodes in

the layers to be eliminated. As the size of the grid and number
of layers increase, the number of nodes to be eliminated becomes
larger. Clearly, computing the inverse will take more CPU time,
and the result may not fit in memory anymore. To this end, we
propose an incremental layer-by-layer approach to the elimination
process. The idea is to eliminate one layer at a time and sparsify
the reduced grid along the way until we eliminate all the desired
layers. This should reduce the time needed for elimination and the
memory needed in the process. Note that the quick node property
has been checked after each elimination process, and it holds.
In section 6, we will compare both approaches, the direct and
incremental ones. We will see that the incremental approach takes
much less time, and it allows us to use very large sizes of grids
that we couldn’t test with the direct approach. Algorithm 1
summarizes our incremental elimination approach to eliminate k
layers. The algorithm takes as input the original grid conductance
matrix G, the original grid capacitance matrix C, the index of the
lowest top layer h and the index of the topmost bottom layer l
such that ∀k ∈ {l + 1, . . . , h − 1}, layer k is eliminated. It also
requires δ, the sparsification lower threshold on conductances to

keep. The output of the algorithm is Ĝ and Ĉ which are the
reduced grid conductance and capacitance matrices, respectively.
SPER is the sparsification method described in section 3.2.

Table 1: Comparison between Direct and Incremental Elimination.
Grid Size: 150K nodes

Measure Direct Elimination Incremental Elimination

Sparsity 0.279% 0.1833%

ET (min) 11.11 0.7

SPT (sec) 11.09 33.974

Speed-up in DC solve 1.57x 1.71x

Average Error (mV) 1.907 1.943

Maximum Error (mV) 15.44 16.17

Table 2: Numerical Elimination v.s. Topological Elimination

Original Numerical Elimination Topological Elimination

Grid Reduced
ET + SPT

Reduction Reduced
RT

Reduction

Size Size Ratio(%) Size Ratio (%)

152K 33K 1.27m 78.3 44.7K 3.4m 70.6

342K 74K 6.54m 78.4 100.4K 16.3m 70.6

609K 133K 25.2m 78.2 179K 50.7m 70.6

6. EXPERIMENTAL RESULTS
In this section, we will present some results from tests run

on the proposed Layer Elimination method with sparsification.
First, we will compare the direct and incremental approaches for
layer elimination by comparing their DC responses and elimina-
tion time. Next, we will test the reduced RC grid by comparing
its transient voltage drops to those computed on the original grid.

A C++ implementation was written to perform the above tests.
Our test grids were generated based on user specifications such as
the grid dimensions, number of layers, layers’ geometrical specifi-
cations and current source distributions. The generated grids are
consistent with a 45nm technology. All tests were run on a Linux
machine with 3.4 GHz Intel core i7-4770 processor with 8 cores
and 32GB of RAM. In all tests, the number of metal layers in the
grids was set to 8. The number of layers eliminated was 6, keeping
only layers M8 that is attached to the C4 bumps (top layer) and
M1 that is attached to the current sources (bottom layer). The
model assumes that there is a current source attached to each
non-boundary node in M1.

Whenever we compare two things by looking at the error, we
mean the error at the nodes of layer M1 (that are attached to
current sources) in the reduced grid relative to the exact values
of those in the original grid. The comparison may be based on
the DC voltage drops or the transient voltage drops in an RC
grid.

6.1 Direct vs. Incremental Elimination
In this section, we present a comparison between the direct and

the incremental elimination processes discussed in sections 3.1
and 5, respectively. Table 1 presents such a comparison on a grid
of size 150K nodes. The size of the reduced system is 33K nodes.
For each approach, the table shows the sparsity of the reduced
resistive systems (the sparsity of the original system is 0.00261%),
the elimination time (ET), the sparsification time (SPT) using
SPER, the speed-up in the DC solve of the systems compared to
the original system, and the average error of the DC voltage drops
at layer M1. The sparsity of any n×m matrix A is calculated as
follows:

Sparsity(A) =
nnz(A)

nm
× 100%

where nnz(A) is the number of non-zeros in the matrix A. We
can see that the elimination time of the direct approach is around
15 times that of the incremental approach. This is due to the fact
that in the direct approach, the size of the matrix being inverted
is much larger than those being inverted in the gradual process.
However, the sparsification process in the incremental elimination
is 3 times slower than the direct one. This is because in the
incremental approach, SPER is called as many times as there are
layers being eliminated, and in each time, it goes over all the
connections in the reduced system. The error in the incremental
process is insignificantly larger, however, the speed-up in the DC
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Figure 3: (a): Voltage Drop Waveforms at one node in the grid
(b): Histogram of the error over all nodes

solve is better. Finally, It is worth mentioning that the direct
simulation stopped working on grids of size beyond 300K nodes
due to lack of memory, while with the incremental simulation, we
were able to go up to sizes of the order of 3M nodes.

Table 2 compares the reduction time and ratio of our incre-
mental numerical approach with the topological one implemented
in [2], which is based on TICER [9]. A lower threshold of 10−5

was used on the new conductances to be added to the reduced
grids in both cases. The table presents, along with the size of the
original grid, the reduction time (ET + SPT ) in our incremental
approach and RT in the topological one. In addition, the table
presents the reduction ratio in both approaches, which is the ratio
of the size of the reduced grid to that of the original one. From
the table, we can see that our incremental approach is almost 2.2
times faster than the topological one. Besides, the reduction ratio
in our technique is higher, which is better as we aim to eliminate
complete layers and keep only the important nodes. Note that
the topological approach broke down after a grid size of 609K
due to lack of memory, while our approach handled much larger
grid sizes.

6.2 Transient Simulations
To find the transient voltage drops on all the nodes in an RC

power grid, we created a simple simulation engine for the ODE
in (1) based on a standard backward-Euler discretization. All
current waveforms were generated randomly. When comparing
the voltage drops on the original and reduced grids, we computed
the worst-case voltage drop error at each node over the whole
simulation time, and then took the average and maximum error
over all the nodes.

Fig. 3a shows the voltage drop waveform before and after re-
duction at one node in a grid of size 152K. The node lies in the
center of layer M1, and it is representative because most nodes
have low worst-case error associated with them, as can be seen
from the histogram of the worst-case errors on all M1 nodes in
Fig. 3b. We can see that our capacitance approximation is good,
since the rate of convergence to steady state is almost the same.
In other words, the time constant of both grids is almost the same.

Table 3 shows the transient simulation results for different
grid sizes. The length of the simulation was taken to be 120ns.
For each grid, the table presents the transient simulation time
(TT) before and after reduction, the elimination and sparsifica-
tion times (ET and SPT), the speed-up gained after reduction,
and the average and maximum worst-case errors on the voltage
drops. The speed-up is computed as follows:

Speedup =
TToriginal

TTreduced

As can be seen in the table, the speed-up gain is around 4.25x.
This speed-up is obtained due to our topological sparsification
procedure, which keeps only the important connections in the
reduced grid. Accordingly, the time taken in one linear solve of
the reduced grid is around 4.25 times smaller that of the original
grid, and hence, the 4.25x speed-up. Fig. 5 shows that as the
simulation time increases, the effect of the reduction overhead
diminishes and becomes negligible.

As mentioned before, there is a clear trade-off between the
simulation speed-up and the accuracy of the simulations. To see
this trade-off, Fig. 4 shows the relative worst-case error rate at
the M1 nodes versus the actual voltage drop for two cases. In

Voltage Drop (mV)
0 10 20 30 40 50 60

E
rr
o
r
R
a
te

(%
)

-200

-150

-100

-50

0

50

100

150

200

(a)

Change in voltage drop
-5 mV
5 mV

Voltage Drop (mV)
0 10 20 30 40 50 60

E
rr
o
r
R
a
te

(%
)

-100

-80

-60

-40

-20

0

20

40

60

80

100

(b)

Change in voltage drop
-5 mV
5 mV

Figure 4: (a): Error rate with layer M2 eliminated
(b): Error rate while keeping layer M2
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the first case (a), we eliminate 6 out of 8 layers, while in the
second case (b), we eliminate only 5 layers by keeping layer M2.
From the figures, we can see how keeping layer M2 affects the
errors by restricting them below the 5mV hyperbolas. In fact,
the average worst-case error while keeping layer M2 is 1.2mV .
However, it is worth mentioning that the speed-up in the first
case simulations is 4.2x, while in the second one, it is only 2.34x.
Moreover, the elimination ratio in the first case is around 80%,
while in the second, it is only 46%. This gives an idea on how
there is a trade-off with more layers being eliminated.

7. CONCLUSION
Model order reduction (MOR) is one of the common techniques

to study the behavior of modern on-die power grids. Traditional
methods suffer from many drawbacks that limit their scalability
to very large grids. We propose a novel numerical layer-by-layer
grid reduction technique that is fast and accurate. We prove
using empirical tests that it is scalable to modern grids. Results
show that we are able to achieve a 4.25x speed-up in the transient
analysis and a 2.4mV average worst-case error at the bottom layer
of the grid.
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APPENDIX
In this appendix, we prove a result that is used in the proof of
Claim 1.

Claim 2. Eliminating q nodes in any order using (11) and
(16) from an RC power grid produces the same reduced RC grid.

Proof. Let G22 be an nl×nl conductance matrix that repre-
sents the connections between the nl nodes to be eliminated in a
specific order. Changing the order of the nodes to be eliminated is
achieved by permuting the order of the rows and columns of G22,
using PG22PT , where P is a permutation matrix. A permutation
matrix P is a matrix obtained by permuting the rows or columns
of an identity matrix according to some permutation. Moreover,
P−1 = PT , because permutation matrices are unitary [7].

Let P be any nl × nl arbitrary permutation matrix, and let Q
be another permutation matrix of size n× n given by:

Q =

Int 0 0
0 P 0
0 0 Inb

 (35)

where n = nt + nl + nb, and Int and Inb are identity matrices
of sizes nt × nt and nb × nb, respectively. Let G′ be a reordered
version of G in (5) given by:

G′ = QGQT

=

Int 0 0
0 P 0
0 0 Inb

G11 G12 0
GT

12 G22 G23

0 GT
23 G33

Int 0 0
0 PT 0
0 0 Inb


=

 G11 G12PT 0
PGT

12 PG22PT PG23

0 GT
23P

T G33


(36)

From (36), we have:

G′11 = G11

G′12 = G12PT

G′22 = PG22PT

G′23 = PG23

G′33 = G33

(37)

To find the reduced grid of G′ after elimination, we apply (11)
on the partitions in (37). Hence, we get:

Ĝ′11 = G′11 −G′12G
′−1
22 G′T12

= G11 −G12PTPG−1
22 P

TPGT
12

= G11 −G12G
−1
22 G

T
12

= Ĝ11

Ĝ′13 = −G′12G
′−1
22 G′23

= −G12PTPG−1
22 P

TPG23

= −G12G
−1
22 G23

= Ĝ13

Ĝ′33 = G′33 −G′T23G
′−1
22 G23

= G33 −GT
23P

TPG−1
22 P

TPG23

= G33 −GT
23G
−1
22 G23

= Ĝ33

(38)

where G′−1
22 = (PG22PT )−1 = PG−1

22 P
T , since P is unitary.

Form (38), we can see that Ĝ = Ĝ′.
Similarly, reordering the matrix C using Q gives the following

reordered versions of the vectors c1, c2 and c3:

c′1 = c1
c′2 = Pc2
c′3 = c3

(39)

Using (37) and (39) in (16), we get:

ĉ′1 = c′1 −G′12G
′−1
22 c′2

= c1 −G12PTPG1
22P

TPc2
= ĉ1

ĉ′3 = c′3 −G′T23G
′−1
22 c′2

= c3 −GT
23P

TPG1
22P

TPc2
= ĉ3

(40)

From (40), we can see that Ĉ′ = Ĉ, and this completes the proof.


