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Abstract—Electromigration (EM) is a key reliability concern
in chip power/ ground (p/g) grids, which has been exacerbated
by the high current levels and narrow metal lines in modern
grids. EM checking is expensive due to the large sizes of
modern p/g grids and is also inherently difficult due to the com-
plex nature of the EM phenomenon. Traditional EM checking,
based on empirical models, cannot capture the complexity of
EM and better models are needed for accurate prediction.
Thus, recent physics-based EM models have been proposed,
which remain computationally expensive because they require
solution of a system of partial differential equations (PDEs).
In this paper, we propose a fast and scalable methodology
for power grid EM verification, building on previous physics-
based models. We first convert the PDE system to a succession
of homogeneous linear time invariant (LTI) systems. Because
these systems are found to be stiff, we numerically integrate
them using optimized variable-step backward differentiation
formulas (BDFs). Our method, for a number of IBM power
grids and internal benchmarks, achieves an average speed-up
of over 20x as compared to previously published work and has
a runtime of only about 8 minutes for a 4 million node grid.

Index Terms—Power Grids, Electromigration, Reliability,

Backward Differentiation Formulas.

I. INTRODUCTION

Electromigration (EM) is a serious issue in modern p/g grids.
It is becoming harder to sign off on chip designs using state-of-
the-art EM checking tools, due to the very small margins between
the allowed failure rates (spec) and the failure rates at which the
chips actually operate in the field [1]. This loss of safety margin
can be traced back to the simplicity and pessimism inherent in
the EM models used in existing tools, such as Black’s model for
line failure and a series model for power and ground (p/g) grid
failure. This simplicity and pessimism is often rationalized on the
grounds of necessity (the actual physical system is too complex
to be analyzed) and conservatism (the analyzed system is worse
than the actual one), and these tools got the job done for the past
30 years. However, over the last decade, technology scaling has
exacerbated EM [2]. As such, existing EM tools do not provide any
“breathing room” for designers, who are forced to overuse metal
resources to design p/g grids, which leads to a sub-optimal design.

Our work is focused on EM in the p/g grid, because the pres-
ence of mostly uni-directional currents in the grid make it more
susceptible to EM, and because the sheer size of modern grids
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makes them very difficult to verify. In existing EM tools, a grid
is deemed to have failed as soon as the first failure happens. This
has been called a series model of grid failure. However, modern
power grids are more like a mesh, with a lot of redundancy, and
as such can withstand multiple line failures before they actually
fail. Thus, a mesh model for grid failure has been proposed [3],
in which a grid is said to have failed when the voltage drop at any
node exceeds some threshold value that would lead to timing errors
in the underlying logic. We will build on the mesh model.

Other previous works have focused on improvements to the EM
model itself. In Black’s model, a multi-branch metal structure is
decomposed into separate branches to asses EM degradation. This
is highly inaccurate because it ignores the material flow between
connected branches. Luckily, in modern grids one does not have
to treat the whole p/g grid as a fully connected structure when
it comes to material (metal) flow. This is because, in modern
grids, the metal lines and vias within a metal layer are formed
simultaneously using dual damascene process, and are surrounded
by a barrier metal liner. This barrier metal prevents the flow of
metal atoms from one metal layer to another, so that one can restrict
the consideration of metal flow to within individual layers. Further-
more, each metal layer of the grid mostly consists of alternating
parallel stripes of power and ground lines. As such, these multi-
branch segments on every layer are mostly trees, i.e. they contain
no loops, and are typically referred to as interconnect trees. For
accurate EM checking, one must consider the EM degradation of a
tree as a whole, rather than focusing on its separate branches.

Physics-based EM models do exactly that, and thus provide
more accurate EM assessment. In recent years, many works have
proposed p/g EM verification using physics-based EM models.
Huang et. al. [4] proposed compact EM models based on Korho-
nen’s model [5] for p/g EM checking, and Li et al. [6] used the
simplified EM model proposed by Riege et al. [7] to improve p/g
grid resilience to EM. Chatterjee et. al. [8] proposed the Extended
Korhonen’s model (EKM) and used it for their p/g EM verifi-
cation engine. However, these approaches had some drawbacks.
For example, [4] and [6] used simplified EM models that do not
provide accurate EM checking, and were slow for some test grids.
While [8] used a better EM model, it was not scalable to very
large grids because EKM requires solution of a system of partial
differential equations (PDEs).

In this paper, building on the work of [8], we propose a very fast
and scalable approach for power grid electromigration assessment,
using EKM for electromigration checking and the mesh model
for determining power grid failure. We begin by converting the
PDE system resulting from EKM into a succession of Linear
Time Invariant (LTI) system(s) of ordinary differential equations
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(ODEs) with constant inputs. These LTI systems are found to
be stiff, so we numerically solve them using variable-coefficient
Backward Differentiation Formulas (BDFs). To improve the per-
formance, we implement a number of optimizations in our BDF
solver. Specifically, we convert the LTI systems with constant
inputs to homogeneous LTI systems to reduce the computational
work per step, eliminate the Newton iteration step usually associ-
ated with BDFs, and use customized error control for maximum
performance. Our overall power grid EM checking approach also
includes a couple of significant improvements over the work in [8]:
we use 1) preconditioned conjugate gradient method for updating
voltage drops, and 2) a multi-process architecture to parallelize
the code. Our method, for a number of IBM power grids and
internal benchmarks, achieves an average speed-up of ∼23x over
previously published work. With a runtime of only about 8.2
minutes for a 4.1 million node grid and maximum runtime of 15
minutes among all benchmarks, our approach is extremely fast and
should scale well for large integrated circuits.

II. BACKGROUND

A. Electromigration basics

Electromigration is the mass transport of metal atoms due to
momentum transfer between electrons (driven by an electric field)
and the atoms in a metal line. Time to Failure (TTF) due to EM
is a random variable because EM is highly dependent on the
specific microstructure of a given line, which varies due to random
manufacturing variations. The process of EM degradation can be
divided into two phases: void nucleation and void growth.

Under conditions of high current density, metal atoms are
pushed in the direction of the electron flow, which is opposite to the
direction of the applied electric field. The number of atoms moving
through a cross-section of a metal line per second per unit area is
known as the atomic flux. If the in-flow of atoms is not equal to
the out-flow, atomic flux divergence or AFD is said to occur. AFD
generates points of high tensile and compressive stresses within a
metal segment. The amount of compressive stress needed to cause
a pile-up of metal atoms (a hillock) leading to a short circuit is very
high in modern metal systems, hence failure due to a short circuit
is not usually observed. However, the build up of tensile stress
eventually leads to formation of a void when the stress reaches
a pre-determined critical threshold. This phase of EM degradation,
when stress is increasing over time but no voids have yet nucleated,
is called the void nucleation phase. In this phase, the resistance of a
line remains roughly the same as that of a fresh (undamaged) line.

Once a void nucleates, the void growth phase begins. In some
cases, depending on the size and the location of the void, nucleation
by itself might lead to an early failure by disconnecting a via above
and causing an open circuit [9]. On the other hand, depending
on geometry, a line may continue to conduct current after void
nucleation. With time, the void starts to grow in the direction
of the electron flow and the line resistance increases towards
some finite steady-state value. In testing of single isolated lines,
failure is deemed to happen when the increase in resistance reaches
10%−20% of the initial resistance value.

B. Power Grid Model

EM is a long-term failure mechanism. As such, short-term
transients in workload typically experienced in chips do not play
a significant role in EM degradation. Thus, standard practice in
the field is to use an effective-current model [10] to estimate EM
degradation, so that the lifetime of a metal line when carrying the
constant effective current and the time-varying transient current is
the same. As voids nucleate due to EM, branch resistances change
fairly quickly. Correspondingly, the currents also change fairly

quickly to their new effective values. Hence, between any two
successive void nucleations, the power grid has constant (effective)
currents, voltages and conductances, and thus can be modelled as
a DC system. Also, given that the power grid is a linear system,
effective branch currents can be obtained directly from effective
source currents by doing a DC analysis. The power grid model
thus can be expressed as

G(t)v(t) = is, (1)

where G(t) is the piecewise-constant conductance matrix, v(t)
is the corresponding time-varying but piecewise constant node
voltage drop vector and is is the vector of effective source current
values that model the underlying logic blocks.

C. The Korhonen Model

Korhonen et al. [5] proposed a one-dimensional (1D) model to
describe the hydrostatic stress σ arising under the influence of elec-
tromigration. Here, hydrostatic stress is the average of all normal
components of the full stress tensor, i.e. σ = (σxx+σyy +σzz)/3.
Consider a uniform metal line embedded in a rigid dielectric.
Korhonen’s model starts with Hooke’s law to relate the variation
in concentration of atoms C, with hydrostatic stress

ΔC(x, t)
/
C(x, t) = −Δσ(x, t)

/
B, (2)

where B is the bulk modulus and σ(x, t) is the time-varying
hydrostatic stress at location x from some reference point, and at
time t. Following Korhonen’s formulation, σ is positive for tensile
stress and negative for compressive stress, and can be obtained by
solving the PDE

∂σ

∂t
=

BΩ

kbTm

∂

∂x

{
Da

(
∂σ

∂x
−

q∗ρ

Ω
j

)}
, (3)

where j is the current density in the line, Da = D0e
−Q/(kbTm) is

the lognormally distributed [11] atomic diffusivity with constant
coefficient D0, Ω is the atomic volume, kb is the Boltzmann’s
constant, Tm is the temperature in Kelvin, q∗ is the absolute
value of the effective charge of the conductor, ρ is the resistivity
of the conductor, and Q is the activation energy for vacancy
formation and diffusion. A void nucleates once the stress exceeds
a predefined threshold value σth > 0. The corresponding atomic
flux Ja in the line can be written as

Ja =
DaCΩ

kbTm

(
∂σ

∂x
−

q∗ρ

Ω
j

)
. (4)

D. Extended Korhonen’s model

We will now review the Extended Korhonen’s model (EKM).
This physics-based EM model was proposed in [8] [12], and
augments Korhonen’s model by introducing boundary laws to track
the material flow between connected branches. It also accounts for
thermal stresses generated by non-uniform temperature distribu-
tion. We will briefly summarize EKM and its use in power grid
EM checking for completeness.

EKM evaluates the EM degradation of an interconnect tree
as a whole. Formally, an interconnect tree is a acyclic graph
T = (N ,B), where N is a set of tree junctions and B is a
set of resistive branches. Fig. 1 shows a typical interconnect tree
structure. A branch is a continuous straight metal line of uniform
width. A junction is any point on the interconnect tree where a
branch ends or where a via is located. Junctions are classified based
on their degree, which is defined to be the number of branches
connected to it, as shown in Fig. 1. Note that vias do not contribute
to the degree of a junction.

EKM starts out by using Breadth First Search (BFS) to assign
reference directions to all branches in the tree (shown by dashed
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Fig. 1. A typical interconnect tree structure.

arrow lines in Fig. 1). The current density jk and the atomic
flux Ja,k for branch bk is positive if it flows in the reference
direction, otherwise it is negative. The initial stress at t = 0 in
branch bk is equal to its residual thermal stress σT,k, which can be
computed as shown in [13]. For any point within branch bk ∈ B,
i.e. at xk ∈ (0, Lk) where Lk is branch length, EKM determines
the stress σk(xk, t) using the original Korhonen’s model (3). The
boundary laws govern the behaviour of stress at branch ends
(xk ∈ {0, Lk}), i.e. junctions, and is summarized as follows [8]:

Law 1. Before a void nucleates at a junction, stress is continuous
across a junction and the number of metal atoms flowing into a
junction per unit time is equal to the number of number of metal
atoms flowing out from it.

Law 2. After a void nucleates at a junction, there is no flow of
atomic flux between the connected branches. The stress gradient at
the junction will be

∂σjn/∂xk = ±σjn/δ, (5)

where σjn is the stress value at the junction and δ is the thickness
of the void interface.

EKM assumes that diffusivity (Da) is the same throughout a
branch. As a result, voids nucleate only at junctions of a tree. Once
the stress at any junction reaches σth, a void nucleates at that point
and is shared by all the connected branches. Because the initial
void growth rate is very high [13], EKM conservatively assumes
that once a void nucleates, it reaches the steady state volume in
a negligible period of time. Accordingly, the line resistance rises
immediately to its steady state value for all connected branches.
The steady state void volume for a branch bk is

Vk,max = Lkwkhk
(
σT,k/B + (q∗ρ|jk|Lk)/(2BΩ)

)
, (6)

where wk is the width and hk is the height of branch bk.

1) The PDE system for a tree: EKM scales time, stress
and distance (length) for any branch bk ∈ B by introducing the
following dimensionless variables

τ
�
=

BΩ

kbT
�
m

D�
at

L2
c
, ηk

�
=

Ωσk
kbT

�
m
, ξk

�
=

xk
Lk

, (7)

where D�
a is the atomic diffusivity at some chosen nominal tem-

perature T �
m, Lc is some chosen characteristic length and 0 ≤

xk ≤ Lk. The new variables τ , η and ξ are referred to as reduced
time, stress and distance, respectively. For any junction np ∈ N ,
let Bp,in (Bp,out) be the set of connected branches for which the
reference direction is going into (out of) the junction, and let τf,p
be its time of void nucleation. Then, the scaled PDE system that
describes stress evolution in the whole tree can be stated as (BC and

IC are abbreviations for boundary conditions and initial conditions,
respectively)

PDE:
∂ηk
∂τ

= θk
∂2ηk
∂ξ2k

∀bk ∈ B, (8a)

BC: ∀np ∈ N s.t. τ < τf,p∑
bk∈Bp,in

wkhkJa,k(1, τ) =
∑

bk∈Bp,out

wkhkJa,k(0, τ), (8b)

ηk(1, τ) = ηi(0, τ), ∀{bk, bi} ∈ Bp,in × Bp,out, (8c)

∀np ∈ N s.t. τ ≥ τf,p
∂ηk
∂ξk

= −ηk(1, τ)
Lk

δ
∀bk ∈ Bp,in, (8d)

∂ηk
∂ξk

= ηk(0, τ)
Lk

δ
∀bk ∈ Bp,out, (8e)

IC: ηk(ξk, 0) = ηT,k ∀bk ∈ B, (8f)

where θk=(L2
cDa,kT

�
m/L2

kD
�
aTm,k), ηT,k = ΩσT,k/(kbT

�
m),

Da,k is the diffusivity, Tm,k is the temperature and Ja,k is the
atomic flux in branch bk

Ja,k =
Da,kCT �

m

LkTm,k

(
∂ηk
∂ξk

− αk

)
, (9)

with αk = (q∗ρjkLk/kbT
�
m). Note that ηk ≡ ηk(ξk, τ) is the

reduced stress in branch bk at distance 0 ≤ ξk ≤ 1 and time τ .

E. Power Grid EM analysis using EKM

There are many ways to solve the scaled PDE system (8). In [8],
the authors converted (8) to an equivalent Initial Value Problem
(IVP) for each tree and solved it using variable step Runge-Kutta
method with Butcher tableau as given by Dormand and Prince
[14]. We will now present their power grid EM checking approach,
which we will refer to as the standard approach.

In the standard approach, the power grid lifetime is estimated as
per the mesh model [3], in which a grid is deemed to have failed
when enough voids have nucleated so that the voltage drop at a
node exceeds the user provided voltage drop specification. This
specification is based on the timing constraints of the underlying
logic and is captured in the vector vth. The temperature distribution
of the grid is determined at t = 0 using compact thermal models
[15], which gives the initial stress profile for the trees. A subset
of trees, called the active set, is chosen such that the first void
nucleation time for each tree in the active set is less than some
time threshold t = tm. All trees in the active set are then numer-
ically integrated using the IVP formulation to obtain their stress
as a function of position and time. Every time a void nucleates
at a junction, the steady state void volume is calculated for all
connected branches using (6) and the corresponding resistances are
updated. If the recently formed void leads to an early failure, the
corresponding via is removed from the power grid. Next, the node
voltage drops and the temperature distribution are updated. Finally,
the IVPs for all trees in the active set are reformulated using the
updated boundary conditions and the integration is carried on until
the next void failure. Due to increasing branch resistances, the
conductivity of the grid degrades and the voltage drops eventually
exceed vth. The earliest time when a voltage drop violation occurs,
is the TTF of the grid as per the mesh model.

In order to account for the randomness in EM degradation,
the standard approach performs Monte Carlo random sampling to
estimate the Mean Time to Failure (MTF) to within a user specified
error tolerance. The time threshold tm for selecting trees in the
active set is a part of the Monte-Carlo (MC) process. It is initially
set to a sufficiently high value and is updated as more mesh TTF
samples are obtained form the subsequent MC iterations.
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Fig. 2. Notion of subtrees for tree shown in Fig. 1.

III. STATE SPACE MODEL FOR A TREE

We will now present our approach for solving the scaled PDE
system by converting it to an equivalent state-space model (SSM),
which is a succession of LTI systems. Consider a tree T = {N ,B}
with |N | junctions and |B| branches. When a void nucleates at
a junction, EKM conceptually treats it as a diffusion barrier for
all connected branches, so that there is no material flow between
them. Thus, the tree is effectively divided into separate subtrees. A
subtree of tree T is graph T̂ = {N̂ , B̂} with N̂ ⊆ N and B̂ ⊆ B.

Let τp be the time of the pth void nucleation, with τ0 = 0. For the
time-span [τ0, τ1), a tree has no voids. We will call this time-span
as the pre-void phase. For all subsequent time-spans, the subtrees
will have at least one failed junction that has a void. We will refer
to these time-spans as the post-void phase.

Fig. 2 illustrates the notion of subtrees using interconnect tree
of Fig. 1 as an example. In the pre-void phase, T̂ = T . At τ = τ1,
the first void nucleates at n2, and the tree is divided into two
subtrees T̂1 and T̂2, as shown in Fig. 2. Note that n2 appears in
both subtrees and as per EKM, is treated as a diffusion barrier
with a void. Similarly, at τ = τ2, n6 fails and the whole tree is
divided into four subtrees. In general, if Nf is the set of failed
junctions in the tree, then the number of subtrees m can be found
using m = 1 +

∑
np∈Nf

(dp − |Nf |), where dp is the degree of

junction np before void nucleation.

In the following sections, we will show that for each time-span,
the scaled PDE system for a subtree can be represented by an
equivalent LTI system with constant inputs. We will describe state
stamps, that are conceptually similar to element stamps used in
SPICE for generating circuit matrices. A special case arises for the
pre-void phase: the system matrix obtained using the state-stamps
is singular. We will then use mass conservation to obtain a non-
singular LTI system for the pre-void phase. The complete SSM for
a tree in each time-span is composed of the LTI models of each of
its subtrees, and is also an LTI system. For example, the LTI model
of T is composed of LTI models of T̂1 and T̂2 in [τ1, τ2).

A. LTI model for a subtree

For each subtree T̂ = {N̂ , B̂}, converting the scaled PDE
system to an equivalent LTI system requires discretization of the
spatial domain. We uniformly discretize each branch bk into N
segments, where N is the same for all branches because all branch
lengths are scaled to 1 as in (7). Then, there would be a total of
q + 1 discretized points, where q = N |B̂|. Each discretized point
is given a unique index i ∈ i0 + {0, 1, 2, . . . q}, where the offset
i0 is to ensure unique indices for all discretized points within tree
T . Let xi represent the reduced stress at ith discretized point in the
tree. Then, using (8a), the time rate of change of xi in branch bk is

∂xi
∂τ

= θk
∂2xi
∂ξ2k

. (10)

Approximating the partial derivative with respect to ξk in (10)
using the central difference formula [16] and solving the boundary
conditions at junctions leads to the following translated LTI system
for a subtree in the time-span [τp, τp+1)

˙̂x(τ − τp) = Âx̂(τ − τp) + û, (11a)

x̂(0) = x̂0, (11b)

where x̂ = [xi]∈R
(q+1) is the state vector of the sub-

tree, Â= [ai,j ]∈ R
(q+1)×(q+1) is the system matrix and

û= [ui]∈R
(q+1) is the vector of inputs. The initial condition x̂0

is obtained from the stress profile of the tree at τ = τp computed
using the LTI model(s) of the previous time-span, or is equal to the
thermal stress profile at τ =0.

Each state xi contributes some non-zero entries to the ith row
of Â and û, which we will refer to as a state stamp. The notion
of stamps is useful to quickly assemble the LTI system for a
given subtree: we start by initializing Â and û to all zeros and
add the stamps as we traverse through the tree. The state stamps
are determined based on the location, the adjacent points and the
presence or absence of a void at point i. Two points are said to be
adjacent to each other if they are physically next to each other in
a subtree. We will denote the set of indices for points adjacent to
i as A(i). In order to simplify the presentation going forward, we
define the following for any two branches bi, bk ∈ B

rik � Li/Lk, wik � wi/wk, Δξ � 1/N,

Υk � θkN
2, γik � rkiwikDa,iTm,k/(Da,kTm,i).

(12)

1) State Stamps for branch interior: Consider state xi for a
discretized point within branch bk, with A(i) = {i1, i2}. Then, the
state stamps are given as

ai,i = −2Υk, ai,i1 = ai,i2 = Υk, ui = 0. (13)

2) State Stamps for diffusion barrier: Consider state xi for
a diffusion barrier np at the beginning of branch bk, with A(i) =
{i1}. Let τf,p be the time of void nucleation at this barrier. Then,
the state stamps for τ < τf,p are

ai,i = −2Υk, ai,i1 = 2Υk, ui = −2ΥkΔξαk, (14)

and for τ ≥ τf,p

ai,i = −2Υk(1 + ΔξLk/δ), ai,i1 = 2Υk, ui = 0. (15)

Similarly, for a diffusion barrier at the end of branch bk with
A(i) = {i1}, the state stamps for τ < τf,p are

ai,i = −2Υk, ai,i1 = 2Υk, ui = 2ΥkΔξαk. (16)

For τ ≥ τf,p, the state stamps are exactly the same as (15).
3) State Stamps for higher degree junctions: Consider a state

xi for a junction np with degree dp ∈ {2, 3, 4} andA(i) = {i1, . . . ,
idp
}. Without loss of generality, we will assume that np is at the

end of branch 1 and at the beginning of branches 2, . . . , dp. Let
τf,p be the time of void nucleation at np. Then, the corresponding
state stamp for np for τ < τf,p will be

ai,i = −2�1dp
Υ1

∑dp

k=1 γk1, (17a)

ai,ik = 2�1dp
Υ1γk1, k = {1, . . . , dp}, (17b)

ui = 2�1dp
Υ1Δξ

(
α1 −

∑dp

k=2 γk1αk

)
, (17c)

where �12 = r12/(r12+w21), �13 = (r12r13)/(r12r13+r13w21+
r12w31) and �14 = (r12r13r14)/(r12r13r14+ r13r14w21+ r12r14
w31 + r12r13w41).
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As mentioned before, when a void nucleates at junction np, it
generates new subtrees. Each subtree in the post-void phase will
have at least one void located at the newly created virtual diffusion
barrier. For example, for the time-span [τ1, τ2) in Fig. 2, n2 is the

virtual diffusion barrier (with a void) for both subtrees T̂1 and T̂2.
For any subtree, let i be the index of the discretized point where the
void is present, and let A(i) = {i1}. Then the state stamps for Â
and u are given by (15). Note that the state stamps for the pre-void
phase of Â are also stated in [12].

Theorem 1. (properties of Â) For a subtree T̂ , let Â be the system
matrix obtained using stamps (13)-(17). Then

(a) All eigenvalues of Â have non-positive real parts.
(b) For the pre-void phase, 0 is a simple eigenvalue of Â
(c) For the post-void phase, Â is non-singular, with all eigen-

values having negative real parts.

The proof of this theorem is given in the appendix.

From theorem 1, Â is singular in the pre-void phase. This
happens because the corresponding boundary conditions model it
as a closed system, i.e. there is no exchange of atoms with other
trees. This creates a dependency among the states xi of a tree,
which we will use in order to get a corresponding non-singular
LTI system, as shown in the next section.

B. LTI system for pre-void phase

In this section, we will consider the whole tree while stating the
LTI system because T̂ = T in the pre-void phase. Define

β(τ) �
∑q

i=0 cixi(τ), (18)

where q = N |B| and the value of ci coefficients are (Bp is the set
of branches connected to np)

ci =

{
LkwkhkΔξ xi is inside branch bk,

(Δξ/2)
∑

bk∈Bp
Lkwkhk xi is at junction np.

(19)
Then, it can be shown using Hooke’s Law (2) that in order to satisfy
the conservation of mass in a tree, we must have [12]

β0 =
∑q

i=0 cixi(0) = β(τ) ∀τ, (20)

where the stress values at τ = 0 are known from the initial
condition. This gives us a linear dependence between the states
so that one state can be eliminated from (11a), which makes the
system matrix non-singular as it has only one zero eigenvalue.
Note that we can only eliminate state xi if ui = 0. Without loss
of generality, let x0 be the state (with no input) to be eliminated. If
we denote x̃ = [xi] ∈ R

q for 1 ≤ i ≤ q to be the new state vector,
we can write

x0(τ) = −c
T x̃(τ) + β0

/
c0, (21)

where c = c−1
0 [ c1 c2 . . . cq ]

T ∈Rq . Using (21) in the LTI system
(11a) for a subtree, we get q ODE equations with q independent
states for the pre-void phase [0, τ1)

˙̃x(τ) = Ãx̃(τ) + ũ, (22a)

x̃(0) =
[
ηT,1 ηT,2 . . . ηT,q

]
. (22b)

Here, ηT,i is the initial reduced thermal stress at point i, Ã ∈ R
q×q

is the non-singular system matrix and ũ ∈ R
q is the input vector

such that

Ã = −âqc
T + Âq and ũ = ûq + (β0/c0)âq, (23)

with âq = [ai,k] ∈ R
q for 1 ≤ i ≤ q, k = 0, Âq = [ai,k] ∈ R

q×q

for 1 ≤ i, k ≤ q and ûq = [ui] ∈ R
q for 1 ≤ i ≤ q.

IV. IMPROVED SOLUTION METHOD

We will now present our improvements to the standard approach
(reviewed in Section II-E) that makes it significantly faster than
before. Note that unless stated otherwise, MTF and TTF refer to
mesh model based MTF and TTF.

A. Dealing with Stiffness

We found from practical experience that the LTI systems (11a)
and (22a) are stiff systems. An LTI system with all negative
eigenvalues (which is the case for us) is said to be stiff if the ratio
of its largest to smallest magnitude eigenvalue is very large. We
observed this ratio to be of the order of 109 − 1010 for many of
the system matrices. Thus, an explicit method like Runge-Kutta is
not suitable for solving these systems. Instead, we use Backward
Differentiation Formulas (BDFs) to numerically integrate the LTI
systems.

BDFs are a type of linear multi-step method that are particularly
suited to solve stiff ODE systems. Suppose we wish to numerically
integrate a stiff ODE system ż = f(z, τ), where z(τ) ∈ R

q is a
function of independent variable τ ∈ R. Let zn denote the solution
computed by the numerical method that approximates the true
solution z(τn), i.e. zn ≈ z(τn). A variable coefficient p-step BDF
method, denoted by BDFp, uses p previous solution(s) (τn, zn),
(τn−1, zn−1), . . ., (τn−p+1, zn−p+1) to compute the solution at
the next time point and is defined as

hn+1b−1f(zn+1, τn+1) = zn+1 +
∑p−1

i=0 aizn−1, (24a)

εPLTE = ςpz
(p+1)(τn), (24b)

where zn+1 is the solution at time τn+1=τn+hn+1 that needs to
be computed. εPLTE is the principal local truncation error (PLTE)

and estimates the error in the computed solution zn+1. z(p+1)

denotes the (p + 1)th derivative of z with respect to τ . This
method is referred as a variable coefficient method because the
scalar coefficients b−1, a0, . . ., ap−1 and error constant ςp are not
constant, but a function of the p time steps hn+1, . . ., hn−p+2. This
makes it easier to implement a change in time-step without using
interpolation methods. The formulas for the coefficients and the
error constant can be determined using newton divided differences
or linear difference operator [17] [18], and is omitted due to lack
of space. BDFs with p > 6 are known to be unstable and BDF1 is
Backward Euler.

A major drawback of an implicit method like BDF is the
requirement of Newton iterations to solve (24a) for a non-linear
f(·). Fortunately, in our case, the ODE system we are trying to

solve is an LTI system with constant inputs. Define z � x+A
−1u,

where we have dropped the accents to avoid clutter. Then, for
each time-span, we only need to solve a homogeneous LTI system
ż = f(z, τ) = Az(τ) for each tree. Thus, the solution zn+1 at next
time-point τn+1 is easily obtained by doing a linear system solve
of the following equation

(hn+1b−1A− I)zn+1 =
∑p−1

i=0 aizn−1, (25)

where I is the identity matrix. Another factor that affects the
performance of BDF methods is the estimation of εPLTE, as it
requires the calculation of (p+1)th derivative of z, which is usually
not available or is difficult to compute. However, given that we
have a homogeneous LTI system, it is straightforward to compute
the (p+ 1)th derivative. Thus, the PLTE can be stated as

εPLTE = ςpA
p+1z(τn) ≈ ςpA

p+1zn, (26)

We use εPLTE for error control, i.e. keeping the solution within the
absolute and relative error bounds provided by the user and in
deciding the next time step to be taken. For a given value of zn,
larger εPLTE denotes higher error.
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Fig. 3. Workflow for each process in the parallel implementation.

B. Updating voltage drops using PCG

Every time a void nucleates, the node voltage drops need to be
updated in order to check for voltage drop violation. As the power
grid size increases, updating voltage drops due to changing branch
resistances becomes more computationally expensive, which lim-
ited the scalability of previous approaches. In our approach, we
update voltage drops using Preconditioned Conjugate Gradient
(PCG) method. At t = 0, we have to factorize the conductance
matrix in order to find the initial voltage drops. We use this initial
factorization as a pre-conditioner for our Conjugate Gradient (CG)
method. This works because the perturbation in G due to void
nucleations is minimal, hence the factorization at t = 0 acts as an
excellent incomplete factorization for G(t), which results in very
fast convergence within a few iterations.

C. Parallelization

Due to the random nature of EM degradation, estimating power
grid MTF requires MC random sampling approach, whereby each
MC iteration generates one TTF sample and the average of all
TTF samples gives the power grid MTF. The stopping criteria
(number of samples required) is determined such that we have
(1−ζ)×100% confidence that the relative error in MTF estimation
is less than a user provided relative error threshold εMC [19]. We
generate at least 30 TTF samples before checking the stopping
criteria. In each MC iteration, we assign randomly generated
diffusivities to all branches in the power grid, which effectively
generates a new sample grid. Estimating TTFs of sample grids in
different MC iterations are independent of each other, and thus it
can be parallelized. In our implementation, we use a multi-process
architecture, with each process bound to a separate core, to carry
out several MC iterations simultaneously. The workflow for each
process is shown in Fig. 3. These processes use shared memory
for inter-process communication. The first process allocates and
initializes the shared memory object, which contains 1) a random
number generator to be used for generating sample grids, 2) a
table to store the TTF samples (and other data) generated from all
processes, 3) the time threshold tm required for selecting the active
set, 4) process IDs for all processes using the shared memory and
5) several read-write locks to synchronize the read/write accesses
to the shared memory. All subsequent processes map this memory
space to their own address space.

Whenever a process obtains a new TTF sample by completing a
MC iteration, it writes the results to the shared table, updates the
estimated MTF and tm based on TTF samples obtained so far from
all processes and checks if the stopping criteria has been satisfied.
If its not satisfied, this process uses the shared random number
generator to generate a sample grid and starts a new MC iteration.
On the other hand, if the stopping criteria is satisfied, this process
sends an interrupt to all other processes to signal the end of the task
and then stops. Any time a process receives an interrupt, it assumes

TABLE I

RUNTIME COMPARISON OF BDF SOLVERS

Grid tBDF2 tBDF3 tBDF4 tBDF5 tBDF6

Name (mins) (mins) (mins) (mins) (mins)

ibmpg1 0.588 0.633 0.756 1.460 3.954

ibmpg2 1.235 1.442 1.740 4.803 16.116

ibmpg5 1.944 1.981 2.268 4.092 11.254

ibmpgnew1 4.708 4.814 5.936 15.534 48.023

ibmpgnew2 3.504 3.546 4.111 10.792 35.953

0 1 2 3 4 5 6 7 8 9

Speed-up

IBMPG1

IBMPG2

IBMPG5

IBMPGNEW1

IBMPG6

IBMPG3

IBMPG4

IBMPGNEW2
P = 12

P = 8

P = 4

Fig. 4. Bar chart showing speed-ups with using 4, 8 and 12 parallel processes.

that the stopping criteria has been satisfied in some other process,
and thus stops execution. The last process to stop deallocates the
shared memory object.

V. EXPERIMENTAL RESULTS

A C++ implementation was written to test the proposed method-
ology. Two types of test grids were used to verify our approach:
IBM power grids [20] and internal grids. The internal grids are
non-uniform grids, synthesized as per user specifications, includ-
ing grid dimensions, metal layers, pitch, and width per layer. The
current sources are randomly placed on the grid. The technology
specifications are consistent with 1V 45 nm CMOS technology.
The grids named PG1-PG5 are internal grids. We use a 12 core
3GHz Linux machine with 128 GB of RAM to perform all
simulations. The interconnect material is assumed to be Copper,
so that the following parameters are used in our EM model:
B = 1.35× 1011Pa, Ω = 1.66× 10−29m3, kb = 1.38× 10−23J/K,
q∗ = 8.0109 × 10−19C, σth = 600 × 106Pa and δ = 10−9m.
An ambient temperature of 300K is used for all simulations. The
LTI models are generated with N = 16 discretizations per branch.
We use a relative tolerance of 10−3 and an absolute tolerance of
10−6 for the BDF solver. For MTF estimation, we use ζ = 0.05
(95% confidence bounds) and εMC = 0.1 (maximum relative error
threshold of 10%).

First, we compare the performance of BDF2-BDF6 solvers, in
terms of time taken for mesh MTF estimation. The results are
shown in table I. Clearly, BDF2 is fastest of all with BDF3 being
a close second. Overall, BDF2 is 1.06x faster than BDF3, 1.25x
faster than BDF4, 2.97x faster than BDF5 and 9.2x faster than
BDF6. The reason for the slowdown of BDF4-BDF6 solvers can
be attributed to the calculation of PLTE in (26) : BDFp requires
A

p+1 to calculate the PLTE, which results in higher error norms
for larger p values (in our case, ‖Ap1z‖ ≥ ‖Ap2z‖ iff p1 ≥ p2).
This forces the BDF4-BDF6 solvers to take smaller time-steps in
order to maintain the solution accuracy.

Next, we compare the performance of our improved solution
approach with the standard approach in [8]. Table II compares the
the series and mesh MTF estimated 1) with the standard approach
using the RK solver [14] (μRKs and μRKm) and 2) with the improved
approach using the BDF2 solver (μBDF2s and μBDF2m ). Although we
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TABLE II

PERFORMANCE COMPARISON OF RUNGE-KUTTA SOLVER AND BDF2 SOLVER

Power Grid Standard Approach [8] Proposed Approach with BDF2

Grid # #bra- #trees μRKs μRKm tRK μBDF2s μBDF2m tBDF2 εs εm tRK

tBDF2Name nodes nches (yrs) (yrs) (hrs)† (yrs) (yrs) (hrs)† (%)$ (%)$

ibmpg1 6K 11K 709 3.32 7.11 0.033 3.28 7.06 0.01 1.17 0.61 3.40x

ibmpg2 62K 61K 462 6.69 11.94 0.27 6.67 11.95 0.02 0.33 0.09 12.95x

ibmpg3 410K 401K 8.1K 4.58 7.02 2.77 4.50 6.83 0.07 1.82 2.75 42.02x

ibmpg4 475K 465K 9.6K 8.97 16.88 2.68 8.97 16.81 0.11 0.00 0.46 24.68x

ibmpg5 249K 496K 2K 4.56 6.20 0.14 4.48 6.39 0.03 1.62 2.99 4.33x

ibmpg6 404K 798K 10.2K 5.67 11.41 1.83 5.60 11.22 0.24 1.23 1.66 7.67x

ibmpgnew1 316K 698K 19.5K 3.81 13.16 0.43 3.84 13.29 0.08 0.90 0.95 5.43x

ibmpgnew2 718K 698K 19.5K 4.72 7.36 0.73 4.67 7.44 0.06 1.00 1.03 12.42x

PG1 560K 558K 2.6K 4.43 17.40 2.77 4.44 17.22 0.04 0.33 1.08 77.11x

PG2 1.2M 1.2M 5.6K 3.55 10.25 2.36 3.64 10.37 0.12 2.52 1.19 20.46x

PG3 1.6M 1.6M 6.9K 3.82 8.55 2.25 3.87 8.52 0.06 1.28 0.26 40.55x

PG4 2.6M 2.6M 12.2K - - - 3.34 14.76 0.15 - - -

PG5 4.1M 4.1M 12.7K - - - 4.39 9.21 0.14 - - -

Average 1.11 1.19 22.82x

† tRK and tBDF denote the wall-time(s) for Runge-Kutta and BDF solvers, respectively.
$The percentage error in results of BDF solver with respect to the results from Runge-Kutta Solver.
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Fig. 5. Percentage error plot between solutions obtained using (a) N = 10
and (b) N = 16 vs. N = 64.

use the mesh model for estimating power grid MTF, we also
report the MTF as per the series model, which is generated as
a byproduct. For a fair comparison, the MC iterations for both
approaches are parallelized using 12 parallel processes. As can be
seen, the average relative error in series and mesh MTF estimation
is 1.1% and 1.2%, respectively. Thus, the MTF estimated by both
approaches is almost the same. However, due to the optimizations
we implemented, our p/g EM checking methodology is∼23x faster
than the standard approach and has a runtime of only 8.2 minutes
for a 4.1 M node grid. For some of the bigger grids, the results for
the standard approach are not shown as it ran out of memory.

We also report the speed-ups obtained with the multi-process
architecture in Fig. 4. All speedups are calculated based on se-
quential runtime in which all MC iterations are performed in a
single process. We obtained an average speed-up of 3.38x, 5.6x
and 7.75x using 4, 8 and 12 parallel processes, respectively. The
reason for this sub-linear speedup is due to ‘slow’ update of tm
in parallel version as compared to the sequential version. Recall
that the initial value of tm is very high, and it is updated as more
TTF samples are obtained. A higher value of tm leads to a longer
runtime for a given MC iteration. In the sequential version, only
the first few MC iterations run with the initial high value of tm,
after which all subsequent iterations use updated values of tm. On
the other hand, for a parallelized version with P processes, the first
P MC iterations will run with the initial high value of tm, which
reduces the speed-ups obtained.

In Fig. 5, we use an interconnect tree form ibmpg2 to com-
pare the solutions obtained using different discretizations. A finer
discretization leads to a larger LTI system that gives accurate

results but takes more time to solve and vice versa. We will use
LTIN to denote an LTI model generated with N discretization per
branch. The best solution is considered to be the one obtained with
LTI64. As compared to the best solution, the maximum percentage
error for solutions obtained using LTI16 and LTI10 are 0.6% and
1.7% respectively, and the corresponding speed-ups are 7.7x and
11.17x. Given the accuracy vs speed trade-off, we use N = 16
discretization per branch for MTF estimation.

VI. CONCLUSION

We proposed a fast and scalable methodology for EM assess-
ment of on-die power grids using previously published physics-
based models. We improved the computational speed by converting
the PDE system for a tree to an equivalent LTI system and solving
it using an optimized BDF solver. Further speedup is obtained by
using preconditioned CG for updating the voltage drops and par-
allelizing the code using a multi-process architecture. Overall, our
proposed methodology is ∼23x faster as compared to previously
published work, and is suitable for very large power grids.
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APPENDIX

Definition 1. A square matrix M = [mi,k] ∈ R
n×n induces a

directed graph Γ(M) whose vertices are {0, 1, 2 . . . n − 1}, and
whose directed edges are i→ k if mi,k �= 0.

Definition 2. If there is a directed path in the graph from every
vertex to every other vertex, then the graph is strongly connected.

Theorem 2. A matrix M is said to irreducible if Γ(M) is strongly
connected (proved in [21]).

Lemma 3. Â is an irreducible matrix.

Proof. For any subtree T̂ , consider two weighed directed graphs
G(T̂ ) and G′(T̂ ), where the discretized points are the vertices and

any two adjacent points have an edge between them. In G(T̂ ), the
direction of each edge is the same as reference direction assigned to
the branches and in G′(T̂ ), the direction of every edge is opposite

to the assigned reference direction, so that G′(T̂ ) is the converse

of G(T̂ ). For G(T̂ ) (G′(T̂ )), the weight of a directed edge i → k
(k → i) between adjacent vertices is equal to ai,k (ak,i), which can

be determined using (13) -(17). Fig. 6 shows the graphs G(T̂ ) and

G′(T̂ ) for interconnect tree of Fig. 1. A weighed adjacency matrix

can be used to represent the connectivity of a graph. If a graph has
n nodes, then the adjacency matrix will be of size n×n. The entry
in the ith row and kth column of a weighed adjacency matrix is
equal to weight of edge i → k if its exists, otherwise it is 0. Let
W = [wi,k] and W

′ = [w ′
k,i] be the weighed adjacency matrices

for graphs G(T̂ ) and G′(T̂ ), respectively. Then, wi,k = ai,k and

w
′
k,i = ak,i. Now, we can write Â as:

Â = W + Âd +W
′

(27)

where Âd is simply a diagonal matrix whose ith diagonal entry is
equal to the ith diagonal entry of Â. From (27), it is clear that
Γ(Â) = G(T̂ ) ∪ G′(T̂ ) ∪ Γ(Âd), so that for any two adjacent

vertices i and k, Γ(Â) has both edges i → k and k → i. Thus, in

Γ(Â) there is always a path from every vertex to every other vertex.

Hence Γ(Â) is strongly connected and Â is irreducible.

Definition 3. A matrix M = [mi,k] is said to be non-negative if
mi,k ≥ 0 ∀i, k.

Definition 4. Let λ0, λ1, . . . λn−1 be the (real or complex) eigen-
values of a matrix M = [mi,k] ∈ R

n×n. Then the spectral radius
is defined as: κ(M) = max{|λ0|, |λ1|, . . . |λn−1|}.

Definition 5. A matrix M = [mi,k] ∈ R
n×n is said to be

irreducibly diagonally dominant if M is irreducible, all its rows
are diagonally dominant and there is at least one row i that satisfies
|mi,i| >

∑n
k=0,k �=i |mi,k|.

Theorem 4. (Perron-Frobenius theorem) Let M ∈ R
n×n and

suppose that M is irreducible and non-negative. Then κ(M) > 0 is
a simple eigenvalue of M with an associated positive eigenvector
(proved in [21]).

Theorem 5. An irreducibly diagonally dominant matrix is non-
singular (proved in [21]).

A. Proof for Theorem 1

(a) From Gershgorin disc theorem [21], all eigenvalues of Â are
located in the union of q + 1 discs:⋃q

i=0{z ∈ C : |z − ai,i| ≤
∑q

k=0,k �=i |ai,k|} ≡ G(Â) (28)

From construction, we always have |ai,i| ≥
∑q

k=0,k �=i |ai,k|

and ai,i < 0 ∀i. Thus, G(Â) would lie in the left-half of the
complex plane touching the imaginary axis at the origin. Hence,
all eigenvalues of A have non-positive real parts.

(b) In the pre-void phase, all the row sums in Â are zero. Thus,

we must have at least one eigenvalue at 0. Define Âc � Â + cI,
where c = max{|ai,i|}. Then, clearly Âc is non-negative and
irreducible because it is obtained by only adding c to the diagonal
entries of Â (non-diagonal elements are unaffected). Also, if λ0 ≥
λ1 ≥ . . . λq are the eigenvalues of Â (including multiplicities),

then λ0 + c ≥ λ1 + c ≥ . . . λq + c are the eigenvalues of Âc.
From part (a), we know that all eigenvalues are non-positive, thus
λ0 = 0 is the largest eigenvalue of Â and λ0 + c = c is the largest
eigenvalue of Âc. But, since Âc is non-negative and irreducible,
we must have κ(Âc) = c. By Perron-Frobenius theorem, c is a

simple eigenvalue of Âc. Hence, 0 is a simple eigenvalue of Â.

(c) In the post-void phase, the system matrix Â will have at
least one row i that satisfies |ai,i| >

∑q
k=0,k �=i |ai,k| [from (15)].

Hence, Â is irreducibly diagonally dominant and non-singular.
Also, from part (a), all eigenvalues have non-positive real parts.
Since 0 cannot be an eigenvalue of Â, all eigenvalues of Â will
have negative real parts.
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