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Abstract

Excessive power dissipation in integrated circuits

causes overheating and can lead to soft errors and/or

permanent damage. The severity of the problem in-

creases in proportion to the level of integration, so that

power estimation tools are badly needed for present-day

technology. Traditional simulation-based approaches

simulate the circuit using test/functional input pattern

sets. This is expensive and does not guarantee a mean-

ingful power value. Other recent approaches have used

probabilistic techniques in order to cover a large set

of inputs patterns. However, they trade-o� accuracy

for speed in ways that are not always acceptable. In

this paper, we investigate an alternative technique that

combines the accuracy of simulation-based techniques

with the speed of the probabilistic techniques. The re-

sulting method is statistical in nature; it consists of ap-

plying randomly-generated input patterns to the circuit

and monitoring, with a simulator, the resulting power

value. This is continued until a value of power is ob-

tained with a desired accuracy, at a speci�ed con�dence

level. We present the algorithm and experimental re-

sults, and discuss the superiority of this new approach.

1. Introduction
Excessive power dissipation in integrated circuits

causes overheating and can lead to soft errors and per-
manent damage. The severity of the problem increases
in proportion to the level of integration. The advent
of VLSI has led to much recent work on the estimation
of power dissipation during the design phase, so that
designs can be modi�ed before manufacturing.

Perhaps the most signi�cant obstacle in trying to
estimate power dissipation is that the power is pat-

tern dependent. In other words, it strongly depends
on the input patterns being applied to the circuit.
Thus the question \what is the power dissipation of
this circuit?" is only meaningful when accompanied
with some information on the circuit inputs.

A direct and simple approach of estimating power

is to simulate the circuit. Indeed, several circuit sim-

ulation based techniques have appeared in the litera-
ture [1-2]. Given the speed of circuit simulation, these
techniques can not a�ord to simulate large circuits for
long-enough input vector sequences to get meaningful
power estimates. In order to simplify the problem and
improve the speed, the power supply voltage is often
assumed to be the same throughout the chip. Thus
the power estimation problem is reduced to that of
estimating the power supply currents that are drawn
by the di�erent circuit components. Fast timing or
logic simulation can then be used to estimate these
currents [3].

We call these approaches strongly pattern depen-
dent because they require the user to specify complete

information about the input patterns. Recently, other
approaches have been proposed [4, 5] that only require
the user to specify typical behavior at the circuit in-
puts using probabilities. These may be called weakly

pattern dependent. With little computational e�ort,
these techniques allow the user to cover a huge set of
possible input patterns. However, in order to achieve
good accuracy, one must model the correlations be-
tween internal node values, which can be very expen-
sive. As a result, these techniques usually trade-o�
accuracy for speed. The resulting loss of accuracy is a
signi�cant issue that may not always be acceptable to
the user.

In this paper, we investigate an alternative ap-
proach that combines the accuracy of simulation-based
approaches with the weak pattern dependence of prob-
abilistic approaches. The resulting approach is sta-

tistical in nature; it consists of applying randomly-
generated input patterns to the circuit and monitor-
ing, with a simulator, the resulting power value. This
is continued until a value of power is obtained with a
desired accuracy, at a speci�ed con�dence level. Ac-
curacy can be traded-o� to increase speed; however,
we will show that high levels of accuracy can be ob-



tained quickly. Since our approach uses a �nite num-
ber of patterns to estimate the power, which really de-
pends on the in�nite set of possible input patterns, this
method belongs to the general class of so-calledMonte

Carlo methods. A most attractive property of Monte
Carlo techniques is that they are dimension indepen-

dent, meaning that the number of samples required to
make a good estimate is independent of the problem
size. We will show that this property indeed holds for
our approach (see Table 3 in section 4).

Both [4] and [5] use probabilities to compute the
power consumed by individual gates, which are then
summed up to give the total power. In this context,
it was observed in [5] that it would be too expensive
to estimate the individual gate powers using a simula-
tion with randomly generated inputs. The key to the
e�ciency of our new approach is that, if one monitors
the total power directly during the random simulation,
su�cient accuracy is obtained in much less time than
is required to compute the individual gate powers. The
excellent speed performance and the simplicity of the
implementation make this a very attractive solution
for power estimation.

As a �rst step, the technique to be presented in
this paper will focus on combinational circuits. It
turns out that the only issue to be resolved for sequen-
tial circuits is the choice of the so-called \setup period"
(see section 3.4). Otherwise, there are no fundamental
problems in implementing Monte Carlo power estima-
tion for sequential circuits.

An approach similar to this was independently
proposed in [6], but the treatment there is not very
rigorous and overlooks some important issues. Fur-
thermore, no comparisons were performed with other
approaches to show the superiority of the approach. In
this paper, we present a rigorous treatment that pro-
vides the theoretical justi�cation of this method. We
also present experimental results of our implementa-
tion and compare it to probabilistic approaches.

2. Overview
In this section, we provide an overall view of our

technique, and discuss its superiority to the probabilis-
tic approaches previously proposed [4, 5].

2.1. Monte Carlo power estimation
The block diagram in Fig. 1. gives an overall view

of the technique. The setup and sample blocks are
parts of the same logic simulation run, in which the in-
put patterns are randomly-generated. The power value
at the end of a sampling phase is noted and used to
decide whether to stop the process or to do another
setup-sample run. The decision is made based on the
mean and standard deviation of the power values ob-
served at the end of a number of successive iterations.

Stop?

End
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Setup

Start

Y

N

Figure 1. Block diagram overview.

The power is found as the average value of the
instantaneous power drawn throughout the sample
phase, and not during the setup phase. However, the
setup phase is a critical component of our approach,
and serves two purposes :
(1) In the beginning of the simulation run, the cir-

cuit does not switch as often as it typically would
at a later time, when switching activity has had
time to spread to all the gates. Thus, the circuit
is allowed to get up to speed during setup. This
argument will be made more precise in the sec-
tion 3, where we also derive an exact value for the
setup time.

(2) The values of power observed at the end of suc-
cessive sample intervals should be samples of inde-
pendent random variables. This is required in or-
der for the stopping criterion to be correct, and is
guaranteed by restarting the random input wave-
forms at the beginning of the setup phase. The
details are given in section 3.

Thus the setup phase guarantees that we are indeed
measuring typical power, and ensures the correctness

of the statistical stopping criterion.

2.2. Comparison with probabilistic
techniques
There are two distinct advantages of the Monte

Carlo approach that make it an excellent choice for
power estimation over probabilistic techniques. These
are : (1) It achieves desired accuracy in reasonable
time, avoiding the potential inaccuracy of probabilistic
techniques, and (2) the simplicity of the algorithm,
making it very easy to implement in existing logic or
timing simulation environments.

Probabilistic methods [4, 5] su�er from a
speed/accuracy trade-o� because they must resolve
the correlations between internal circuit nodes. If
these correlations are taken into account, these meth-
ods can be very accurate. This, however, is computa-
tionally very expensive and impractical. As a result,



fast implementations of these techniques are often in-
accurate. It is the aim of this paper to show that the
proposed Monte Carlo method is very fast (solving cir-
cuits with thousands of gates in a matter of seconds)
and also highly accurate (easily within 5% of the to-
tal power). Table 3 compares the accuracy of Monte
Carlo and probabilistic methods for power estimation.

We also should make the point that the accuracy
level in our approach is predictable up-front : the pro-
gram will work to achieve any level of accuracy desired
by the user. Naturally, as higher accuracy is desired,
the computational cost starts to increase. However,
we will show in section 4 that accuracy levels of 5%
are easily and e�ciently attainable.

3. Detailed Approach
This section describes the details of the approach.

We start out with a rigorous formulation of the prob-
lem and show how it reduces to the well-known prob-
lem of mean estimation in statistics. We then discuss
the stopping criterion, and the normality assumption
required for it to work. We conclude with a discussion
of the setup and sample phases.

3.1. Problem formulation
Consider a digital circuit with m internal nodes

(gate outputs). Let xi(t), t 2 (�1;+1), be the logic
signal at node i and nxi(T ) be the number of transi-
tions of xi in the time interval (�T

2
;+T

2
]. If, in ac-

cordance with [7], we consider only the contribution of
the charging/discharging current components, the av-
erage power dissipated at node i during that interval

is 1
2
V 2
ddCi

nxi (T )

T , where Ci is the total capacitance at
i. The total average power dissipated in the circuit
during the same interval is :

PT =
V 2
dd

2

mX
i=1

Ci
nxi(T )

T

The power rating of a circuit usually refers to
its average power dissipation over extended periods of
time. We therefore de�ne the average power dissipa-

tion P of the circuit as :

P = lim
T!1

PT =
V 2
dd

2

mX
i=1

Ci lim
T!1

nxi(T )

T

The essence of our approach is to estimate P , cor-
responding to in�nite T , as the mean of several PT val-
ues, each measured over a �nite time interval of length
T . In order to see how this mean estimation problem
comes about, we must consider a random representa-
tion of logic signals as follows.

Corresponding to every logic signal xi(t), t 2
(�1;+1), we construct a stochastic process xi(t) as a

family of the logic signals xi(t+�), where � is a random
variable. This process has been called the companion

process of xi(t) in [8], where the reader may �nd more
details on its construction. For each � , xi(t + �) is
a shifted copy of xi(t). Therefore, observing PT for
xi(t+ �) corresponds to measuring the power of xi(t)
over an interval of length T centered at � , rather than
at 0. We can then talk of the random power of xi(t)
over the interval (�T

2
;+T

2
], to be denoted by :

PT =
V 2
dd

2

mX
i=1

Ci
nxi(T )

T

where nxi(T ) is now a random variable. It was shown
in [8] that xi(t) is stationary [12] so that, for any T ,
the expected average number of transitions per second
is a constant :

E

�
nxi(T )

T

�
= lim

T!1

nxi(T )

T

where E[�] denotes the expected value (mean) operator.
As a result, E[PT] is the same for any T , and the
average power can be expressed as a mean :

P = E[PT]

Thus the power estimation problem has been reduced
to that of mean estimation, which is a frequently en-
countered problem in statistics.

In order to apply the above theory, we must en-
sure that the signals xi(t) observed throughout the
(�T

2
; +T

2
] interval are samples of the stationary pro-

cesses xi(t). This requirement will be addressed in
section 3.4.

3.2. Stopping criterion
Let us assume that PT is normally distributed for

any T . The theoretical justi�cation and experimen-
tal evidence for this assumption will be discussed in
the next section. Suppose also that we perform N

di�erent simulations of the circuit, each of length T ,
and form the sample average �T and sample stan-

dard deviation sT of the N di�erent PT values found.
Therefore, we have (1 � �) � 100% con�dence that
j�T � E[PT]j < t�=2sT=

p
N , where t�=2 is obtained

from the t distribution [9] with (N�1) degrees of free-
dom. This result can be rewritten as :

jP � �T j
�T

<
t�=2sT

�T
p
N

Therefore, for a desired percentage error � in the
power estimate, and for a given con�dence level (1��),
we must simulate the circuit until :

t�=2sT

�T
p
N

< �



In order to apply the above theory, we must ensure
that the observed PT values are samples from indepen-

dent PT random variables. This requirement will be
addressed in section 3.4.

3.3. Normality

A su�cient condition for the normality of PT is

that (i) m is large and (ii)
nxi

(T )

T are independent.
This is true under fairly general conditions irrespective

of the individual
nxi

(T )

T distributions (see [10], pp. 188{
189).

Another su�cient condition that holds even for
small m is as follows. If (i) the consecutive times
between identical transitions of xi(t) are independent
(which, using renewal theory (see [11], pp. 62{63),

means that
nxi

(T )

T is normally distributed for large T )

and (ii) the
nxi

(T )

T are independent (so that they are
also jointly normal (see [12], p. 126) for large T ) then
PT is normal for large T (see [12], p. 144).

To the extent that these conditions are approxi-
mately met in practice, the power should be approx-
imately normal. We have found that for a number
of benchmark digital circuits [13], the normality as-
sumption is very good, as shown in the normal scores

plots [9] in Fig. 2. The plot for each circuit corre-
sponds to 1000 evaluations of the average power over
a 2.5 �sec interval. Each evaluation covered an average
of 50 transitions per primary input.
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Figure 2. Normal scores plot for the
ISCAS-85 circuits.

3.4. Setup and sample

This section deals with the mechanics of how the
input patterns are to be generated, when to start and
stop measuring a PT value, and how di�erent PT val-
ues should be obtained. We start by observing that,
by stationarity of xi(t), the (�nite) intervals of width
T , over which the PT values will be measured, need
not be centered at the origin. A PT value may be ob-
tained from any interval of width T , henceforth called
a sampling interval. However, the following two re-
quirements must be met :

(i) Throughout a sampling interval, the signals xi(t)
must be samples of the stationary processes xi(t).

(ii) The di�erent PT samples must be samples from
independent PT random variables.

We will now describe a simulation process that
guarantees both of these requirements. Suppose that
the circuit primary inputs are at 0 from �1 to time 0,
and then become samples of the stationary processes
xi(t) in positive time. Consider a primary input driv-
ing an inverter with delay td. Since its input is a sta-
tionary process for t � 0, its output must be station-
ary for t � td. By using a simpli�ed timing model
for every gate as in [5], we can repeat this argument
enough times to obtain the following conclusion: If the
maximum delay from the primary inputs to node i is
Tmax;i, then the process xi(t) becomes stationary for
t � Tmax;i.

If the maximum delay in the circuit is Tmax =
max
i
(Tmax;i), then the sampling intervalmay start only

after t � Tmax. This guarantees that requirement
(i) is met. From that time onwards, all internal pro-
cesses are stationary, and the circuit is in (probabilis-
tic) steady state. We will call the time interval from 0
to Tmax the setup phase. Intuitively, the circuit needs
to get up to speed before a reliable sample of power
may be taken and, as we have shown, the time needed
to do that is Tmax.

If the processes xi(t) for t � t0 are independent
of all occurrences for t < t0, then the state of the
circuit for t � t0+Tmax is also independent of its state
before t0. This observation is true because the circuit
is combinational and Tmax is the maximum delay. This
can be used to guarantee requirement (ii), as follows.
Suppose we start the simulation at 0, and measure
PT for the interval (Tmax; Tmax + T ], and let t0 =
Tmax + T . If we restart the primary input processes
at t0 so that they are independent of their past before
t0, then we may measure another value of PT over the
interval (t0 + Tmax; t0 + Tmax + T ]. The two resulting
values of PT are samples of independent PT random
variables. As a result, the time axis is divided into
successive regions of setup and sampling, as shown in



Fig. 3, where the input processes are restarted at the
beginning of every setup phase.

Tmax Tmax

t=0
T T

Sample

Setup

Figure 3. Successive setup and sample
phases.

The only remaining task is to describe how the in-
puts are to be generated. This has to be done in such
a way that the input processes, after the start of every
setup phase, are independent of the past. This can
be done as follows, for every input signal xi. At the
beginning of a setup phase, we use a random number
generator to select a logic value for xi, with appropri-
ate probability P (xi). We then use another random
number generator to decide how long xi stays in that
state before switching. This must assume some distri-
bution for the duration of stay in that state. Once xi
has switched, we use another random number genera-
tor to decide how long it will stay in the other state,
again using some distribution. Let F 1

xi
(t) be the dis-

tribution of times spent in the 1 state, and F 0
xi
(t) be

that of the 0 state. Since computer implementations of
random number generators produce sequences of inde-
pendent random variables, independence between the
successive sampling phases is guaranteed.

The probability P (xi) and distributions F 1
xi
(t)

and F 0
xi(t) should be supplied by the user. In fact,

these parameters represent the way in which the ap-
proach is weakly pattern dependent. They also pro-
vide the mechanism by which the user can specify any
information about typical behavior at the circuit in-
puts. In order to simplify the user interface, our cur-
rent implementation does not require the user to actu-
ally specify distributions. Rather, we require only two
parameters : the average time that an input is high,
denoted by �1xi , and the average time that it is low, de-
noted by �0xi . Based on this, it can be shown [8] that
P (xi) = �1xi=(�

1
xi
+�0xi). As for the distributions, and

since the choice is immaterial in the absence of addi-
tional user information, we choose for simplicity to use

exponential distributions, so that F 1
xi
(t) = 1 � e�t=�

1

xi

and F 0
xi
(t) = 1 � e�t=�

0

xi . This choice can be easily
modi�ed by the user.

4. Experimental Results
The Monte Carlo methods presented in this pa-

per were implemented based on a simple variable de-
lay logic simulator. This program will be referred to as
McPOWER. The test circuits to be used in this section
are the benchmarks presented at ISCAS in 1985 [13].

These circuits are combinational logic circuits and Ta-
ble 1 presents the number of inputs, outputs, and gates
in each.

Table 1. The ISCAS-85 benchmark circuits.

Circuit #inputs #outputs #gates

c432 36 7 160

c499 41 32 202

c880 60 26 383

c1355 41 32 546

c1908 33 25 880

c2670 233 140 1193

c3540 50 22 1669

c5315 178 123 2307

c6288 32 32 2406

c7552 207 108 3512

We will compare the performance of McPOWER
to that of probabilistic methods and substantiate the
claims of section 2.2 that McPOWER has better accu-
racy and competitive simulation times. DENSIM [5, 8]
is an e�cient probabilistic simulation program that
gives the average switching frequency (called transition
density in [5, 8]) at every circuit node. These density
values can be used to give an estimate of the total
power dissipation.

Table 2 compares the performance of DEN-
SIM, when used to estimate total power, to that of
McPOWER. In both programs, every primary input
had a signal probability of 0.5 and a transition den-
sity of 2e7 transitions per second (corresponding to
an average frequency of 10MHz). For McPOWER, a
maximum error of 5% with 99% con�dence was speci-
�ed. As mentioned in section 3, McPOWER performs
one long simulation that is broken into setup and sam-
pling regions. The delays of the circuit determine the
length of each setup region; however, the length of a
sampling region is speci�ed by the user. For Table 2,
the sampling region was set to 2.5 micro-seconds (ab-
breviated �s), which allows an average of 50 transi-
tions per sampling interval on each input. The col-
umn labeled LOGSIM gives our best estimates of the
power dissipation of these circuits. LOGSIM is a logic
simulator using models identical to those in DENSIM
and McPOWER. The values in the LOGSIM column
were obtained from extremely long runs of LOGSIM
using randomly generated inputs consistent with the
input descriptions used by DENSIM and McPOWER.



As seen from the table, McPOWER is consistently and
highly accurate, while DENSIM has signi�cant errors
for some circuits. Although DENSIM is frequently

faster, McPOWER's reliable accuracy makes it a more
attractive approach for power estimation.

Table 2. Power and Time results for the ISCAS-85 circuits. Time is in cpu seconds on a SUN
SparcStation1. McPOWER is based on 5% error, 99% confidence, & 2.5�s sampling region.

Circuit Power Cpu Time

Name DENSIM LOGSIM McPOWER DENSIM McPower

c432 0.974 mW 1.165 mW 1.17 mW 0.7 sec 2.5 sec (3.6X)

c499 1.977 mW 2.048 mW 2.13 mW 0.8 sec 2.2 sec (2.8X)

c880 2.086 mW 2.829 mW 2.81 mW 1.4 sec 3.8 sec (2.7X)

c1355 3.695 mW 5.735 mW 5.65 mW 1.9 sec 3.6 sec (1.9X)

c1908 5.154 mW 9.734 mW 9.77 mW 3.1 sec 5.6 sec (1.8X)

c2670 7.319 mW 11.438 mW 11.24 mW 4.5 sec 7.1 sec (1.6X)

c3540 9.235 mW 15.328 mW 15.25 mW 5.8 sec 12.2 sec (2.1X)

c5315 15.471 mW 24.102 mW 23.66 mW 8.5 sec 21.9 sec (2.6X)

c6288 31.941 mW 78.883 mW 75.53 mW 7.5 sec 40.4 sec (5.4X)

c7552 23.156 mW 40.006 mW 38.78 mW 12.4 sec 24.7 sec (2.0X)
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Figure 4. McPOWER convergence results
for c6288.

Typical convergent behavior of McPOWER is

shown in Fig. 4. The �gure shows the power from three
di�erent iterations converging to the average power for
c6288, one of the most complex ISCAS circuits.

Care must be taken in drawing conclusions from a
single run of McPOWER. Since it uses random input
vectors, the speed of convergence and the error in the
power estimate depend on the initialization of the ran-
dom number generator. This is illustrated in Table 3,
which shows the statistics obtained from one thousand
McPOWER runs. The minimum, maximum, and av-
erage number of iterations required per run for 5%
accuracy with 99% con�dence are given. Notice that
the average number of iterations required to converge
does not increase with the circuit size. This con�rms
the dimension independence property of this approach
which, as pointed out in the introduction, is a com-
mon feature of Monte Carlo methods. Also shown in
the table are the percentage number of runs for which
the error was greater than 5%, which, as expected, is
less than 1% in all cases.

Even smaller execution times are possible if the
desired accuracy and con�dence levels are relaxed. Ta-
ble 4 compares DENSIM to a single run of McPOWER
with 95% con�dence, 20% accuracy, and a sampling re-
gion of 625 nano-seconds. As in Table 1, each input
has a signal probability of 0.5 and a transition density
of 2e7 transitions per second. With these parameters,
McPOWER shows competitive speed and still exhibits
superior accuracy.



Table 3. Statistics from 1000 McPOWER
runs.

Name Min Max Avg %>5% Err Avg Cpu Time

c432 3 15 8.0 0.9% 3.2 sec

c499 3 7 3.9 0.0% 2.9 sec

c880 3 14 6.7 0.4% 3.9 sec

c1355 3 7 4.0 0.0% 4.8 sec

c1908 3 11 5.6 0.3% 10.3 sec

c2670 3 10 5.2 0.1% 12.4 sec

c3540 3 13 6.0 0.0% 18.3 sec

c5315 3 7 4.1 0.0% 22.4 sec

c6288 3 6 3.8 0.0% 50.4 sec

c7552 3 10 5.5 0.0% 44.4 sec

5. Conclusions
We have presented a Monte Carlo based power

estimation method. Randomly generated input wave-
forms are applied to the circuit using a logic/timing
simulator and the cumulative value of total power is
monitored. The simulation is stopped when su�cient
accuracy is obtained with speci�ed con�dence. The
statistical stopping criterion was discussed, along with
experimental results from our prototype implementa-
tion McPOWER.

We have shown that Monte Carlo methods are, in
general, better than probabilistic methods for the esti-
mation of power since they achieve superior accuracy
with comparable speeds. They are also easier to im-

plement and can be added to existing timing or logic
simulation tools. Furthermore, the accuracy can be
speci�ed up-front with any desired con�dence.

Feedback circuits present a severe problem for
probabilistic methods. Monte Carlo methods are
based on simple timing or logic simulation techniques
and, therefore, experience very few di�culties with
feedback circuits. The only unresolved problem is to
determine the length of the setup region, but we feel
that good heuristics can be developed for this. Fu-
ture research will focus on developing such heuristics,
thus generalizing Monte Carlo techniques to handle
any logic circuit.

Although we have clearly demonstrated the supe-
riority of Monte Carlo methods for power estimation,
it is not clear that they will be better than probabilis-
tic methods for other applications, such as estimating
the power supply current waveforms. Future research
will be aimed at exploring this and other applications
of the Monte Carlo approach.
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