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Abstract

This paper addresses the problem of computing the area
complezity of a multi-output combinational logic cir-
cuit, given only its functional description, i.e., Boolean
equations, where area complexity is measured in terms
of the number of gates required for an optimal multi-
level implementation of the combinational logic. The
proposed area model is based on transforming the
given multi-output Boolean function description into
an equivalent single-output function. The model is
empirical, and results demonstrating its feasibility and
utility are presented. Also, a methodology for convert-
ing the gate count estimates, obtained from the area
model, into capacitance estimates is presented. High-
level power estimates based on the total capacitance
estimates and average activity estimates are also pre-
sented.

1. Introduction
Rapid increase in the design complexity and reduc-
tion in design time have resulted in a need for CAD
tools that can help make important design decisions
early in the design process. To do so, these tools must
operate with a design description at a high level of
abstraction. One design criterion that has received in-
creased attention lately is power dissipation. This is
due to the increasing demand for low power mobile and
portable electronics. As a result, there is a need for
high level power estimation and optimization. Specif-
ically, it would be highly beneficial to have a power
estimation capability, given only a functional view of
the design, such as when a circuit is described only
with Boolean equations. In this case, no structural
information is known - the lower-level (gate-level or
lower) description of this function is not available. Of
course, a given Boolean function can be implemented
in many ways, with varying power dissipation levels.
We are interested in predicting the nominal power dis-
sipation that a minimal area implementation of the
function would have.

For a combinational circuit, since the only avail-
able information is its Boolean function, we consider
that its power dissipation will be modeled as follows:
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where D4 is an estimate of the average node switch-
ing activity that a gate-level implementation of this
circuit would have, A is an estimate of the gate count
(assuming some target gate library), and Cayg is an
estimate of the average node capacitance (including
drain capacitance and interconnect loading capaci-
tance). The estimation of Dy, was covered in [1-3].
The problem of estimating .4 from a high-level descrip-
tion of the circuit corresponds to the problem of high-
level area estimation. This problem is of independent
interest, as the information it provides can be very
useful, for instance, during floorplanning. The estima-
tion of gate count (or simply, area) A of single-output
Boolean functions was explored in [4, 5], where the
problem was addressed using a notion of complexity
of the on-set and the off-set of a Boolean function. In
this paper the authors propose an area model to pre-
dict the area complexity of multi-output Boolean func-
tions. This area model is based on a transformation,
which transforms the given multi-output Boolean func-
tion into an equivalent single-output function. The
transformation is such that it helps us infer the area
complexity of the multi-output Boolean function from
the area complexity of the single-output function, thus
enabling the utilization of the complexity based area
model of [5], developed for single-output functions.

However, the proposed area model, like its single-
output counterparts [4, 5], is inherently limited to cir-
cuits which do not have large exclusive-or arrays in
them. Circuits with large exclusive-or arrays are also
the source of problems in other CAD areas, such as
BDD construction for verification. One way around
the problem of exclusive-or arrays is to require that the
Boolean function specification explicitly list exclusive-
or gates. In that case, these can be identified up-front
and excluded from the analysis, so that the proposed
method is applied only to the remaining circuitry. In
any case, in the remainder of this paper we will not
consider circuits composed of large exclusive-or arrays.

Before leaving this section, we should mention
some previous work on layout area estimation from an
RTL view. Wu et. al. [6] proposed a layout area model
for datapath and control for two commonly used layout
architectures based on the transistor count. For data-
path units, the average transistor count was obtained
by averaging the number of transistors over different
implementations and, for control logic, they calculate
the number of transistors from the sum of products
(SOP) expression for the next state and control signals.
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A similar model was proposed by Kurdahi et.al. [7].
Both these models consider the effect of interconnect
on the overall area, while [7] considers the effect of
cell placement on the overall area. Since the controller
area, in [6, 7], is estimated based on the number of
AND and OR gates required to implement the SOP
expression, the optimal number of gates required to
implement the function can be much smaller than the
above sum. This is because it is frequently possible
to apply logic optimization algorithms to give a much
better implementation.

2. The Multi-Output Area Model

We aim to estimate the minimum number of gates (A)
required for a multi-level implementation the function,
given only its high level description (Boolean equa-
tions) and a target technology library. The area model
proposed for single-output Boolean functions [4, 5] is
based on the notion of complexity of the on and off-sets
of a Boolean function. One such complexity measure
which will be used in this paper is the linear measure,
defined in [5].

Our approach to solving the multi-output area
estimation problem is inspired by the multi-valued
logic approach to address the problem of two-level
minimization of multi-output Boolean functions [8].
The approach is based on transforming a binary-
valued, multi-output Boolean function into an equiva-
lent multi-valued-input, single-output (binary-valued)
Boolean function. The transformation is accomplished
by adding an m-valued input to the Boolean function.
Each value of the multi-valued input corresponds to
one of the original m outputs. In our approach we
perform a similar transformation, except that we use
[logy(m)] binary-valued inputs to implement an m-
valued input. An equivalent way of representing the
transformation is to think of the additional [log,(m)]
binary-valued inputs as control signals of a multi-
plexor, and that the value of the control word cor-
responds to the output being selected. This corre-
sponds to multiplexing the m outputs of a m-output
Boolean function, as shown if Fig. 1. The original n
input m output function f is thus transformed to a
(n + [logy, m]) input, single-output Boolean function
f . Since f is a single-output function, its area can be
computed by the application of the area model of [5].
It must be noted that since we are applying the area
estimation technique to f , which is made up of all the
outputs, we are in effect dealing with all the outputs
at the same time and thus automatically accounting
for the effect of sharing.

A natural question to ask is, what is the relation

between the (optimal) area of f and that of f To
answer this question, consider the following two sce-
narios. In the first scenario, let all the outputs of the
multi-output Boolean function be the same. In this
case the area of the multi-output Boolean function is
equal to the area of any of its outputs. Also note that

the prime implicants of the on and off-sets of f are in-
dependent of the control inputs. Hence the complexity
measure of f is equal to the complexity measure of any
of the outputs of f. Also, as all the outputs of the func-
tion are the same, there is no need for the multiplexor.
Thus the area contribution of the multiplexor to the
overall area of a minimized f is zero. Now consider the
second scenario. Here, assume that all the outputs of
the multi-output Boolean function have disjoint sup-
port sets. It then follows that the optimal area of f is
equal to the sum of the optimal area complexity of f
and the area complexity of the multiplexor. Thus one
has to subtract the area of the multiplexor from the
area complexity of f in order to get the area complex-
ity of f. Moreover every prime implicant in the on and
off-sets of f contains all the control inputs.

Boolean Function
(nxm)

f

MUX
(mx1)

Control Inputs (logm) ~

f

Figure 1. Transformation of a m output Boolean
function into a single output Boolean function.

In the first scenario, when the contribution of the
multiplexor to the area of f was zero, we saw that the
control inputs were absent from all the prime impli-
cants, while in the second scenario when the contribu-
tion of the multiplexor to the area of f is maximum,
we saw that all the control inputs are present in every
prime implicant of f . Thus there seems to be a cor-
relation between the influence of the multiplexor on
the area of f and the number of control inputs in the
prime implicants of f .

The difference A(f) — A(f) represents the area
contribution of the multiplexor to an optimal area im-
plementation of f . Note that after optimization it
might so happen that certain control inputs become
redundant for certain outputs. This manifests itself as
some control inputs being absent in some prime impli-
cants of on and off-sets of f . Thus, we may think of
A(f)— A(f) as representing the area of a reduced mul-
tiplexor resulting from the optimization. This reduced
multiplexor area is related to the number of remaining
control signals, which leads us to a method for esti-
mating this area, as follows.

From the above considerations, we propose that
an appropriate area model for a multi-output function
f, in terms of the area off and the area of a m to 1



multiplexor is given by

A(f) = A(f) — aAmuz (2)

where A, is the area complexity of an m to 1 mul-
tiplexor, and 0 < a < 1 is a coefficient that represents
the contribution of the multiplexor to the area com-
plexity of f . In the following, we present an approach
for estimating c.

Note that the complexity measure [5] of a m to
1 multiplexor is given by [log, m] + 1, i.e., the com-
plexity of a m to 1 multiplexor is proportional to the
number of control inputs. This is true because every
prime implicant of a m to 1 multiplexor has a size
given by [logo m] + 1. In [5] it was observed that the
area complexity (Amus) is approximately exponential
in the complexity measure. Hence it follows that:

A (3)

Let C; denote the number of control inputs in a
prime implicant P;. Then define C,, to be the av-
erage number of control inputs in a prime implicant

belonging to the on-set of f , so that:

>t Ci (@)
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where K,, is the number of prime implicants in the
on-set of f. Similarly, one can define C,z;. From the
above discussion it follows that C,, and Cors can be
used to measure the area contribution of the multi-
plexor to an optimal area implementation of f. Notice
that the optimal implementation of f will contain a
(implicit) reduced multiplexor whose area depends on
the smaller of Cy, and Cy,f¢. Thus, we can model

this area contribution, in a fashion analogous to equa-
tion (3), as:

A(F) = Alf) o 2min(ConsCosr
It then follows from equations (3) and (5) that:
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o= 2min{Con,Coff}—[log2 m—\ (6)
It must be noted that o can be computed with minimal

effort from the prime implicants of f , and once « is
available, A(f) can be computed using (2).

3. High-Level Area Estimation Flow

The transformation, as stated in the previous section,

does not place any restriction on the number of out-
puts that can be dealt with at a time (m). However,
we have observed that in practice there is a trade-off
between run time of the area estimation procedure and
m. As the value of m increases we observed that the
time taken to generate the prime implicants usually
increases. However, using too small a value of m can
affect the accuracy by overestimating the area, as the
sharing between all outputs is not captured. After ex-
perimenting with different values of m, it was found
that a reasonable choice for the value of m was 16.

Typically, a multi-output Boolean function has
outputs with varying support set sizes. Outputs whose
support set size is very small, for instance 1, 2 or 3,
consume very little area. For these outputs very lit-
tle area optimization can be done. One can make a
reliable area prediction for such outputs without hav-
ing to resort to the above approach. In fact it was
found that an area estimate of two gates for outputs
whose support set size is two, and an estimate of three
gates for outputs with support set size of three, works
very well in practice. As far as outputs with support
set size of one are concerned, their contribution to an
optimal area implementation depends on whether or
not they are realized by inversion of a primary input
signal. Those which are realized by inversion are as-
sumed to contribute an area of one gate while the rest
are assumed not to contribute to the area. The above
approach yields benefits in terms of both run time and
accuracy, and has been adopted in our area estima-
tion procedure. The flow diagram for the overall area
estimation procedure is given in Fig. 2.
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Figure 2. Flow of the Area estimation Procedure.




The area estimation tool reads an input descrip-
tion of f and partitions the function into two sub-
functions. One sub-function (f;) comprises of all out-
puts whose support set size is less than or equal to
three, while the other (f2), comprises of all outputs
whose support set size is greater than three. The parti-
tioning of the network into f; and fs can be performed
by a breadth first search and is fairly inexpensive. We
estimate the area of f; in the following fashion:

A(fr) = BIfL1+ 21 fE] + 31 F7| (7)
Here, | f{| is the number of outputs in f; with support
set size equal to 1, 8 is a fraction of these outputs which
are realized by inversion of a primary input signal, | f?|
is the number of outputs in f; with support set size
equal to 2, and |f}| is the number of outputs in f;
with support set size equal to 3. For estimating the
area of fo we use the transformation based approach
described above. Let the outputs of fo be grouped
into I groups of size sixteen each. Let the Boolean
function comprising of the ith group of outputs be g;.
We apply the multiplexor transformation to g;, and
compute «, probability and the linear measure of the
resultant ¢;. We then compute the area complexity of
g; using (2) and (6). This procedure is repeated until
all the outputs have been used up, and the area of fo
is estimated as:

I
A(f2) = Z A(g:) (8)
i=1

Finally, the area of f is computed as:

A(f) = A(f1) + A(f2) 9)

It must be noted that the proposed area model does
not account for area sharing across groups.
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3.1 Empirical Results

The above proposed area model for multi-output
functions was tested on several ISCAS-89 and MCNC
benchmark circuits. These circuits are listed in Table 1
which, in addition to primary input and output counts,
shows the functionality of these benchmarks. These

circuits were optimized in SIS using rugged.script for
optimization, and mapped using the library l:b2.genlib.
The area predicted using the area model was compared
with the SIS optimal area.

The performance of the model on all the bench-
marks in Table 1, except s13207* and s35932, is
shown in Fig. 3. Circuit s13207* is a modified version
of s13207, obtained by deleting the primary outputs
which contain exclusive-or arrays in them. The SIS-
optimal area of s13207* was 1367. The estimated area
for this circuit was 1045. The circuit $35932 could
not be optimized in SIS in one piece. Hence the cir-
cuit was partitioned based on the support set sizes (in
a fashion similar to the above discussion) and opti-
mized separately in SIS. The resulting SIS-area that
was obtained was 7252. The area estimated by the
area estimation tool was 8761.

Table 1.
Characteristics and run-times for
the benchmark function set

CIRCUIT| Circuit |Inputs |Outputs | CPU Time
Name Function sec
b9 Logic 41 21 5.7
c8 Logic 28 18 4.9
example2 Logic 85 66 28
frg2 Logic 143 139 268
i7 Logic 199 67 23.1
i8 Logic 133 81 81.5
i6 Logic 138 67 17.5
cht Logic 47 36 6.5
alu2 ALU 10 6 12.8
alud ALU 14 8 104
term1 Logic 34 10 174
ttt2 Logic 24 21 6.25
apex6 Logic 135 99 45.3
apex7 Logic 49 37 20.3
x1 Logic 51 35 12.8
x3 Logic 135 99 53
x4 Logic 94 71 28.6
vda Logic 17 39 39.3
k2 Logic 45 45 170.1
s298 Controller 17 20 4.4
s386 Controller 13 13 4.2
s400 Controller 24 27 8.5
s444 Controller 24 27 8.5
s510 Controller 25 13 6.9
$526 Controller 24 27 10.4
s526n | Controller 24 27 10
s641 Controller 59 43 41.4
s713 Controller 58 42 42.3
s820 Controller 37 24 16.3
s832 Controller 37 24 16.5
s953 Controller 39 52 38.8
s1196 Logic 28 32 163
s1238 Logic 28 32 141
s1494 | Controller 27 25 26.8
s1488 | Controller 27 25 29.3
s13207 Logic 152 783 212.8
$35932 Logic 1763 1728 942.4

The execution time required by our area estima-
tion tool is also given in Table 1, in cpu seconds on a
SUN sparch with 24 MB RAM. We compared these run
times, on the above benchmarks, with one run of SIS



using script.rugged followed by SIS technology map-
ping. The speedup obtained is shown in Fig. 4. The
figure shows a speedup between 2x and 24x. Notice
that a speedup of 10x was obtained on large bench-
marks like $35932 and s13207*. It must be kept in
mind that the reported SIS time for s35932 was ob-
tained after the circuit was partitioned. Strictly speak-
ing the circuit was not completed in SIS. Hence we be-
lieve that on large benchmarks the speedups that can
be obtained in practice can be significant.
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4. Estimation of C,,,
In order to estimate the power, one needs to estimate
not only the area complexity but also Cgyg, Which is
the average node capacitance (including interconnect)
in a circuit. If Ciy; is the total circuit capacitance of
an optimal area implementation and A is the number
of gates, then:

Ctot

A

This quantity depends on the target gate library and
on the fan-out structure of the circuit. In order to
estimate this, it is assumed that one has access to a
few area optimal circuit implementations in the de-
sired target library. This does not appear to be an
unreasonable assumption. In this case, an estimate of
Cavg can be obtained by performing an average of the
Cavg estimates obtained from the area optimal circuit
implementations.

In order to test the accuracy of this approach,
only a few benchmarks from the benchmark set listed
in Table 1 were used to obtain an estimate of Cgyyg.
These benchmarks were s13207*, s35932, k2 and 18.
This estimated value of C4, 4 was used to compute Cyot,
assuming that the exact value of A was available. The
estimated value of C;»; was compared with the true
value of C;.t, and the results are shown in Fig. 5, which
validates the above estimation procedure for Cgyg.

The estimated value of C,,q was combined with
the estimated area complexity of Boolean functions
to obtain an estimate of the total capacitance of the

(10)

Ca'ug =

Boolean function, C;.:. The plot comparing the actual
versus predicted values of Cip:, when both A and Cgyg
are estimated, is shown in Fig. 6.
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5. High-Level Power Estimation

The area estimate can be used to estimate the power
dissipated by a Boolean function, by combining it with
average activity estimates [3] and the average node ca-
pacitance estimate. We will compare our power esti-
mates to the power dissipated by a gate level opti-
mal area implementation of the Boolean function un-
der two different timing models, namely, the zero-delay
model and the general-delay timing model [3]. In the
case of the general-delay timing model the delays were
obtained from a gate library and an event driven sim-
ulation was performed.
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It must be noted that the activity prediction
model [3] does not account for the increase in switching
activity due to glitches, as is probably to be expected
from a high-level model. Hence it is important to check
the accuracy of the high-level power model against the
zero-delay simulation results. This is shown in Fig. 7.
Since the activity prediction model [3] depends on the



input switching statistics of the circuit, we varied the
signal probabilities at the circuit inputs from 0.1 to
0.9. Thus, each benchmark circuit is represented by a
number of data points in the figure.
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For the benchmarks vda and k2, the predicted
power is significantly different from the actual zero-
delay power inspite of the fact that the predicted total
capacitance is very close to the true value of total ca-
pacitance. This is because of an over-estimation in the
average activity of the circuit. The correlation plot be-
tween predicted and actual zero-delay power obtained
after removal of the power estimates corresponding to
these two circuits is shown in Fig. 8. The better agree-
ment in this plot shows that indeed for all but two of
the benchmarks considered, the method works rather
well. These two circuits are responsible for most of the
bad points in Fig. 7.
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We also compared the predicted power against
the general-delay simulation results. This is shown in
Fig. 9. Asis to be expected, the error in the prediction
increases. This is due to the possible presence, in the
general-delay case, of multiple transitions per cycle at
a logic node, i.e., glitches.
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6. Conclusions

In this paper we presented a new area model to
predict the area complexity of multi-output Boolean
functions. This was based on transforming the multi-
output function at hand to an equivalent single-output
function. The advantages of this model is that no addi-
tional characterization in necessary beyond that done
for single-output functions. Moreover it offers a nat-
ural framework to account for sharing occurring in a
multi-output function. The predicted capacitance was
then combined with average activity estimates [3] to
get high level power estimates.
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