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Abstract

This paper deals with the estimation of the median time-to-failure (MTF) due to electro-

migration in the power and ground busses of VLSI circuits. In our previous work [4, 5], we

had presented a novel technique for MTF estimation based on a stochastic current waveform

model. We had derived the mean (or expected) waveform (not a time average) of such a cur-

rent model and conjectured that it is the appropriate current waveform to be used for MTF

estimation. This paper proves that conjecture, and presents new theoretical results which

show the exact relationship between the MTF and the statistics of the stochastic current.

This leads to a more accurate technique for deriving the MTF which requires the variance

waveform of the current, in addition to its mean waveform. We then show how the variances

of the bus branch currents can be derived from those of the gate currents, and describe

several simplifying approximations that can be used to maintain e�ciency and, therefore,

make possible the analysis of VLSI circuits.
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1 Introduction

Reliability is becoming a major concern in integrated circuit design. As higher levels of

integration are used, metal line width and line separation will decrease, thereby increasing

a chip's susceptibility to failures resulting from line shorts or opens. This indicates that the

importance of reliability can only increase in the future.

This paper addresses electromigration [1, 2] (EM), which is a major reliability problem

caused by the transport of atoms in a metal line due to the electron 
ow. Under persistent

current stress, EM can cause deformations of the metal lines which may result in shorts or

open circuits. The failure rate due to EM depends on the current density in the metal lines

and is usually expressed as a median time-to-failure (MTF). There is a need for CAD tools

that can predict the susceptibility of a given design to EM failures.

We focus on the power and ground busses. To estimate the bus MTF, an estimate of the

current waveform in each branch of the bus is required. In general, the MTF is dependent on

the shape of the current waveform [3], and not simply on its time-average. However, a very

large number of such waveform shapes are possible, depending on what inputs are applied

to the circuit. This is especially true for CMOS circuits, which draw current only during

switching. It is not clear, therefore, which current waveform(s) should be used to estimate

the MTF.

The argument presented in [4, 5] is that the correct current waveform to be used for

MTF estimation is one that combines (in some sense) the e�ects of all possible logic input

waveforms. By considering the set of logic waveforms allowed at the circuit inputs as a

probability space [6], the current in any branch of the bus becomes a stochastic process [6].

CREST derives the mean waveform (not a time-average) of this process, which we call an

expected current waveform. This is a waveform whose value at a given time is the weighted

average of all possible current values at that time, as shown in Fig. 1. CREST uses statistical

information about the inputs to directly derive the expected current waveform. The resulting

methodology is what we call a probabilistic simulation of the circuit.

The feasibility of deriving the expected current waveform was established in [4, 5], where

we also conjectured that such a waveform is the appropriate current waveform to be used for

MTF estimation. In section 2 of this paper, we prove this conjecture and derive the exact
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relationship between the MTF and the statistics of the stochastic current. This leads to

an e�cient and more accurate technique for deriving the MTF, which requires the variance

waveform of the stochastic current as well.

The derivation of the variance waveform is discussed in section 3. We present a method-

ology by which the variance waveforms of the bus branch currents can be obtained from

those of the gate currents. We also present several approximations that can be used when

handling large chips to simplify the variance computations, and thus make it possible to

handle VLSI circuits. Section 4 draws some conclusions.

2 Stochastic Current Waveforms and the MTF

Consider a metal line of uniform width and thickness carrying a constant current. The

relationship between the MTF, t50, due to electromigration in the metal line and the current

density, j, has been extensively studied, and shown to be a complex nonlinear function [7],

as shown in Fig. 2. We will consider the MTF to be t50 / 1=f(j) where j is in A=cm2, and

f is a dimensionless nonlinear function, whose plot is shown in Fig. 3, which was derived

from Fig. 2.

If a metal line carries a varying current, of density j(t), then the MTF is t50 / 1=Je� ,

where Je� depends both on f and on the waveform shape of j(t). It has been suggested [3]

that, if the waveform is periodic with period T and consists of a train of pulses k = 1; : : : ;m

of heights jk and duration tk, then :

Je� =

mX
k=1

tk

T
f(jk): (1)

Since this strategy is conservative, as explained in [3], we will adopt it. For a general periodic

waveform, we take the summation to the limit and write :

Je� =
1

T

TZ
0

f(j)dt: (2)

If the current waveform is not periodic, then better estimates of Je� are obtained by using

larger values of T so that more features of the waveform are included. Therefore one can

write :

Je� = lim
T!1

1

T

TZ
0

f(j)dt: (3)
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Now suppose that the current waveform is stochastic, i.e., it is a stochastic process j(t),

that represents a family of deterministic (real) current waveforms jk(t), with associated

probabilities Pk, k = 1; : : : ; N , over the (�nite) interval [0; t0]. Based on this information, we

can build a (non-stochastic) current waveform j(t), over [0; T ] as T !1, that is indicative

of the current during typical operation as follows. Consider a random sequence of the

waveforms jk(t), each being shifted in time, spanning an interval of length t0, and occurring

with its assigned probability Pk, as shown in Fig. 4. Let nk(T ) be the (integer) number of

occurrences of the waveform jk(t) in [0; T ], and let nT = bT=t0c. If Jk, k = 1; : : : ; N are

de�ned as follows :

Jk
4

=
1

t0

t0Z
0

f(jk)dt; (4)

then :

Je� = lim
T!1

1

T

TZ
0

f(j)dt = lim
nT!1

NX
k=1

Jk
nk(T )

nT
=

NX
k=1

Jk lim
nT!1

hnk(T )
nT

i
: (5)

By the law of large numbers [6], limnT!1
[nk(T )=nT ] = Pk, which leads to :

Je� =

NX
k=1

�
1

t0

t0Z
0

f(jk)dt

�
Pk =

1

t0

t0Z
0

h NX
k=1

f(jk)Pk

i
dt (6)

and, �nally :

Je� =
1

t0

t0Z
0

E
�
f(j)

�
dt (7)

where E[ ] denotes the expected value operator [6]. This is an important result; it says that

the MTF due to a stochastic current depends only on the expected waveform of a nonlinear

function of the current.

Since f is nonlinear, E
�
f(j)

�
is not easy to evaluate. At low current values, where f

is linear (Fig. 3), E
�
f(j)

�
= f(E[j]). If this is substituted in (7) and compared with (2)

it shows that, when f is linear, the expected current waveform E[j] derived in [4, 5] may

itself be used as the current waveform j(t) in (2) for MTF estimation. This establishes

the importance of the expected current waveform for electromigration failure analysis. In

general, f is nonlinear, and a generalized approach will be developed below.
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At any time t, the process j(t) can be thought of as a random variable j with mean �j
4

=

E[j], and variance �2j
4

= E
�
(j� �j)

2
�
. In general, the pth moment of j is �j;p

4

= E
�
(j� �j)

p
�
.

To estimate the mean of f(j), E
�
f(j)

�
, we resort to a Taylor series expansion of f , which

leads to equation (5-54) in [6], reproduced here for convenience :

E
�
f(j)

�
� f(�j) + f 00(�j)

�2j

2
+ � � �+ f (p)(�j)

�j;p

p!
: (8)

It is evident that, when f is linear, (8) reduces to :

E
�
f(j)

�
= f(E[j]); (9)

as observed above. Hence using the expected current waveform as an actual current waveform

for MTF estimation based on (2) amounts to making a �rst-order approximation in (8).

Naturally, higher order approximations would lead to better results. In particular, if f is

approximated by a quadratic in the neighborhood of �j, then :

E
�
f(j)

�
� f(�j) + f 00(�j)

�2j

2
: (10)

This second-order approximation becomes exact if f(j) is represented by the straight lines

corresponding to j1 and j2 in Fig. 3. It is more accurate than (9) since it covers a wider range

of currents. As a result, equations (10) and (7) o�er a new, more accurate technique for

computing the MTF. In order to make use of this technique, we need to derive the variance of

the current waveform in addition to its expected value. As pointed out in the introduction,

the estimation of the expected current waveform has already been described in our previous

work [4, 5]; the next section will discuss the derivation of the variance.

3 Estimating the Variance

Since the current density j(t) in any branch of the power or ground bus is directly propor-

tional to the current i(t) in that branch, then, to simplify the presentation, we will discuss

the derivation of �2i rather than �2j . The variance of the current waveform is a time function

�2i (t) which we will refer to as the variance waveform. Furthermore, we will discuss the

power bus only since the ground bus analysis is similar.
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The current in a branch of the bus, i(t), is a function of the currents being drawn o� the

bus contacts, ij(t); j = 1; : : : ; n. Each of these is, in-turn, simply the sum of the individual

gate currents tied to each contact :

ij(t) = ij1(t) + � � �+ ijk(t): (11)

Thus, in the framework of our probabilistic simulation technique, the process of deriving the

variance waveforms consists of three steps :

-1- Using the statistics of the signals at the inputs to each logic gate, derive the variance

waveform for its current.

-2- Combine these at each contact point to derive the variances of the contact currents.

-3- Using the bus topology, and the variances of the contact currents, derive the variances

of the bus branch currents.

Due to lack of space, the details of step 1, along with its implementation in the probabilistic

simulator CREST, will be presented in a forth-coming paper [8] (as well as in [9]). The other

two steps will be described below.

The critical issue is the correlation between the di�erent current waveforms. Since such

correlation is too expensive to derive for VLSI circuits, we will occasionally be making

conservative approximations to simplify the problem. Our experience with the probabilistic

simulation approach [4, 5, 9] suggests that neglecting the correlation between di�erent current

waveforms gives good results in most cases.

Based on this, we assume that the gate currents tied to the same contact are uncorrelated.

This immediately provides a simple solution for step 2, using (11), as follows :

�2
ij
(t) = �2

ij1
(t) + � � �+ �2

ijk
(t): (12)

The remainder of this section will be devoted to the more di�cult task of solving step 3, i.e.,

deriving the bus current variance waveforms from those of the contact currents.

The metal bus can be modeled as a multi-input multi-output, causal, linear, time-

invariant, (LTI) system with causal inputs xj and outputs yi. The inputs xj(t), j = 1; : : : ; n

represent the contact currents, and carry the stochastic processes ij(t) of known variance

waveforms �2ij(t). The outputs yi(t), i = 1; : : : ;m represent the bus branch currents at
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which the variance waveforms, �2
yi
(t), are required. Let hij(t) be the impulse response func-

tion relating yi(t) to xj(t) :

yi(t) =

nX
j=1

hij(t) � xj(t); i = 1; : : : ;m (13)

where \�" denotes the convolution operation.

It is well known (see [6], page 209) that the variances of the system inputs are not enough

to derive the variances of its outputs. The auto-correlation of each input, Rxjxj
(t1; t2)

4

=

E
�
xj(t1)xj(t2)

�
, is also required. Since the input processes are not wide-sense stationary [6],

an exact analytical solution can be quite complex, even if the auto-correlation were known.

Therefore, as is often necessary, we will make certain simplifying assumptions about the

structure of Rxjxj .

We will assume that the correlation between xj(t) and xj(t+ � ) goes to zero as � !1.

In terms of the auto-covariance, Cxjxj
(t1; t2)

4

= Rxjxj
(t1; t2) � �xj(t1)�xj(t2), this will be

formulated as :

Cxjxj
(t1; t1) = �2

xj
(t1); and Cxjxj

(t1; t2) = 0 for jt1 � t2j � T; (14)

where T is a (typically small) time interval.

Consider the discrete time system obtained by sampling, with period T , the continuous

time system de�ned by (13). If xj[k]
4

= xj(kT ) are the discrete processes at the inputs, and

yi[k]
4

= yi(kT ) are the discrete output processes, then :

yi[k] =

nX
j=1

h
(d)
ij [k] � xj[k]; i = 1; : : : ;m (15)

where h
(d)
ij [k] is the discrete impulse response function relating yi[k] to xj[k]. As shown

below, the discretized output variance waveforms can be derived irrespective of the shape

of Cxjxj (t1; t2) for jt1 � t2j < T . The continuous variance waveforms can then be obtained

by interpolation. Strictly speaking, therefore, the sampling period T should be small : 1=T

should be larger than the largest frequency component of the inputs. However, since �ne

waveform details are not of paramount importance in this work, we need only restrict T to

be small enough so that waveform features in so small an interval are inconsequential.
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To simplify the notation, de�ne yij[k]
4

= h
(d)
ij [k] � xj[k]. Furthermore, as pointed out

above, we will neglect the correlation between the contact currents. Hence the xj inputs are

uncorrelated, and :

�2
yi
[k] =

nX
j=1

�2
yij
[k]; i = 1; : : : ;m: (16)

We have thus reduced the problem to analyzing a single-input single-output discrete LTI

system :

yij[k] = h
(d)
ij [k] � xj[k] =

1X
�=0

h
(d)
ij [�]xj[k � �]: (17)

Let ~xj[k]
4

= xj[k] � �xj [k] and ~yij[k]
4

= yij[k] � �yij [k]. Then �2
yij
[k] = E[~yij[k]2] and

~yij[k] = h
(d)
ij [k] � ~xj[k], hence :

�2
yij
[k] = E

�� 1X
�=0

h
(d)
ij [�]~xj[k��]

�2�
=

1X
�1=0

h
(d)
ij [�1]

1X
�2=0

h
(d)
ij [�2]E

h
~xj[k��1]~xj[k��2]

i
: (18)

Furthermore, it is easy to see that E
�
~xj[k1]~xj[k2]

�
= Cxjxj(k1; k2), which, using (14), gives :

�2
yij
[k] =

1X
�=0

���h(d)ij [�]
���2�2xj [k � �] =

���h(d)ij [k]
���2 � �2xj [k]: (19)

And, �nally, the variance waveforms for the system outputs are, using (16) :

�2
yi
[k] =

nX
j=1

���h(d)ij [k]
���2 � �2xj [k]; i = 1; : : : ;m: (20)

In other words, the variances of the system outputs (bus branch currents) can be obtained

from the convolution of the variances of its inputs (contact currents) with the squares of its

discrete impulse response functions. This discrete convolution can be easily performed once

the discrete impulse response functions are found. Of course the summation need not be

taken to in�nity, and may be conveniently truncated after
���h(d)ij [�]

��� is less than some small

value. To obtain the discrete impulse response functions, note that if a unit-step input

current is applied at contact j, with all other contact currents held at zero, and if the

resulting outputs yi(t) are monitored, then :

h
(d)
ij [k] = yi(kT )� yi

�
(k � 1)T

�
=

Z kT

(k�1)T

hij(� )d�; i = 1; : : : ;m: (21)
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This suggests two methods for deriving h
(d)
ij [k]. The �rst uses a simulation program such as

SPICE to simulate the bus with unit-step input currents applied at each contact (one at a

time), while monitoring the bus branch currents. This gives the mn functions h
(d)
ij [k] using

(21). Another (approximate) method would be to make use of the second equality in (21) :

if the continuous impulse response functions are approximated using some RC time-constant

analysis of the bus, then the discrete impulse response functions can be obtained from them.

For very large chips, it may be prohibitively expensive to perform the required convolu-

tions. One can simplify the calculations by making an additional assumption as follows. If

the bus is known to be \fast", i.e., if h
(d)
ij [k] dies down faster than changes in �2

xj
[k], then

(19) reduces to :

�2
yij
[k] � �2

xj
[k]

1X
�=0

���h(d)ij [�]
���2: (22)

So the convolutions in (20) can be replaced by simple multiplications, and the constantsP
1

�=0

���h(d)ij [�]
���2 can be derived in a pre-processing step from the impulse response functions

and stored in a single m� n constant matrix.

If the chip is too big to even derive h
(d)
ij [k], then one further simpli�cation can be made

as follows. If h
(d)
ij [k] dies down faster than changes in xj[k] then (17) reduces to yij[k] =

xj[k]
P
1

�=0
h
(d)
ij [�], and so :

�2
yij
[k] � �2

xj
[k]
� 1X
�=0

h
(d)
ij [�]

�2
: (23)

The constants
�P

1

�=0 h
(d)
ij [�]

�2
can be very easily obtained as follows. Note that

P
1

�=0 h
(d)
ij [�]

is the steady state current in branch i in response to a unit-step input current at contact j,

with all other contact currents held at zero. If the bus is modeled as a resistive network,

then the steady state node voltages in response to such inputs are the entries of the driving

point impedance matrix. So if the node-admittance matrix is built by simple inspection of

the bus and then inverted to produce the driving point impedance matrix, the steady state

currents are immediately available.

4 Conclusions

In conclusion, we have looked at the problem of estimating the MTF due to electromigration

in the power and ground busses of VLSI circuits. In our previous work [4, 5], we had

8



presented a novel technique for MTF estimation based on a stochastic current waveform

model. We had derived the mean (or expected) waveform (not a time average) of such a

current model and conjectured that it is the appropriate current waveform to be used for

MTF estimation. This paper proves that conjecture and presents new theoretical results

which show the exact relationship between the MTF and the statistics of the stochastic

current. We prove the following two main results. The �rst, equation (7), relates the Je� ,

required for MTF estimation, to the mean waveform of a nonlinear function of the stochastic

current. Coupled with equation (10), it provides an e�cient and more accurate technique

for computing the median time-to-failure. The second result, equation (20), provides a

technique by which the variances of bus branch currents can be derived from those of the

contact currents. Such variances are required for MTF estimation in (10). Several simplifying

approximations are presented that make it possible to handle VLSI circuits.
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Figure Captions :

Figure 1 : Actual current waveforms (dashed), and

the corresponding expected current waveform (solid).

Figure 2 : The dependence of MTF on current den-

sity, reproduced for convenience from [7]. The dashed

lines show the results of the approximation t50 / j�n

for n = 1, 3=2, and 2.

Figure 3 : A plot of f(j), obtained from Fig. 2 by

inverting and appropriately scaling the ordinate axis.

Figure 4 : A (non-stochastic) current waveform, j(t),

built as a sequence of the waveforms jk(t), each occur-

ring with its assigned probability Pk.
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